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The right-hand side of the Jensen inequality is multiplied by a constant and the related
equation is considered. It is shown that every continuous solution of this equation is of the
form flx)=cxd for some c N, d (-oe, 0)U(1, oe). Further, it is proved that some
functions satisfying the inequality considered are bounded below but not above by suitable
solutions of the corresponding equation.
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1 INTRODUCTION

Unless explicitly stated otherwise, we deal with real functions defined on
R+ := (0, ). For these functions we consider some inequalities and
equations that are slightly stronger than the classical Jensen inequality.
Namely we shall introduce a factor 6 (for some 6 E (0, 1)) on the right-
hand side of Jensen’s inequality

f(x + y) < f(x) +f(y)
2 2

(1)
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getting

f(x- y) < (1- 5)f(x) +f(Y) (2)
2

In what follows the solutions of (1) will also be termed J-convex. To
simplify the notation we will replace (1 )/2 by -y E (0, 1/2) arriving at

f(x + y) < 7[f(x) +f(y)] (3)
2

It is easily seen that iff(x) > 0 for some x thenffails to be a solution of
inequality (3) whatever the constant 7 E (0, 1/2). Because of this we shall
add some condition which restricts the variability of x and y. It can be
done in different ways. One ofthe posibilities is to be found in a paper of
Kolwicz and Ptuciennik [1] in connection with some functionals on
Orlicz-Bochner spaces and reads as follows:

V V A f(x + y) < ’7[f(x)+f(y)] (4)
2

aE(0,1) "rE(0,1/2) x,y;x<_ay

Other inequalities of this type are dealt with in a recent work of Hudzik
et al. [2] but will not be considered in the present paper. Condition (4) still
looks stronger than the Jensen inequality but it is not. As it will be seen,
there are functions that satisfy (4) and fail to be J-convex. It is obvious
that one can find functions fulfilling the Jensen inequality which do not
satisfy (4). It will also be shown that there exist discontinuous locally
bounded functions that satisfy (4). Summarizing, this condition does not
seem to be interesting enough. To make it stronger we shall change it a
bit, replacing it by the following requirement:

A V A f(x + y) < "7(a)[f(x)+f(y)] (5)
2

aE(0,1) 7(a)E(0,1/2) x,y;x<ay

In what follows, we shall assume that 7(a) is uniquely determined by a, i.e.

7 is a function.
Finally some extreme solutions of inequality (5) can be found by

considering the following equation:

A V f(x+ax)_2 7(a)[f(x) +f(ax)]. (6)
aE(0,1) -y(a) E(0,1/2)
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All the facts and notions within the theory offunctional equations and
inequalities we shall be using in the sequel are to be found in Kuczma’s
monograph [3], the reader is referred to without explicit indications.

2 RESULTS

Remark 1
J-convex.

A functionf: (0, ) (0, ) satisfying (5) or (6) is strictly

Example 1 (ofa function satisfying condition (4)) Let us consider the
function fix) x2, x E (0,) and let a -12. Take an arbitrary pair x, y
fulfilling the inequality x < ay. We may assume that y- 2x + 5 for some
g > 0. Hence we get

f(X+y)= (3x;_5)
2 9x2+6x5+2

2 4

On the other hand,

f(x) +f(y) x2 + 4x2 + 4x6 + 62.

Our task now is to find a 7 (0, 1/2) such that

9x2 + 6x6 + 62 < "),(20x2 q-- 16x6 + 462).

We shall show that -y 2-26 will do this task. To see this we have to show
the following inequality:

9x2 q-- 6x5 + 52 9
20x2 q- 16x5 + 452 -< 2--6’

being equivalent to

45x2 -+- 30x + 552 _<, 45x2 -+- 36x + 952,

Joe,

3x5 + 252 _> O,

which obviously is true.
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Example 2 (of a function satisfying condition (4) that is neither J-
convex nor continuous) Let

x 10,f(x)-
100+e, x= 10.

We are going to show that there exists an e > 0 such thatfsatisfies (4)
19 Let us distinguish three cases:fora-1/2and’y .

I. (x + y)/2, x, y 10; it sufficies to apply Example 1.
II. x 10 or y 10. In this case f(x) >_ x2, f(y) > y2, f((x -+- y)/2)

((x + y)/2)2. Again by Example we get the desired inequality for the
function g(x)= x. Hence by condition (4)fis satisfied.

III. (x+y)/2= 10. There exists an cEI+ such that x= 10-c,
y-10+c. Recall that x/Y<1/2, which forces c to be greater
than !. Let us remind that we want to show the existence of an

e > 0 such that

19
100 + e _< [(10 O)2

@ (10 +

ioeo

20e < 19c2 100.

Butwe have already observed that c > !. It implies that c2 > 10 and

19o2- 100 > 90,

i.e. we may take e := .
Remark 2 Let function f: (0, oc) (0, oo) be a solution of Eq. (6). If
the function 3’ occurring in this equation is increasing then f satisfies
inequalities (4) and (5).

Remark 3 Function f(x) cx, x (0, oc), (a IR) yields a solution
to the equation

f(x + ax.)2
7(a)[f(x)+f(ax)]
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postulated for every x E R+ and a E (0, 1) provided that 7 ")’ where
-y "(0, 1) IR is given by the following formula"

(1 +a)%(a) 2c( + a,),
a (0, 1).

Proof We have

[x + ax, (x + ax) x(1 + a)
2 ) c

2
c

2

(1 +a)
2(1 +a
(1 +a)
2(1 + a

c(1 + a)x

(cx + cax)

%(a)[f(x) +f(ax)].

LEMMA Let f: (0, ec)- IR be a solution of Eq. (6)for some strictly
increasingfunction 3’. Then there exists afunction c (0, oe) -- IR such that

f(bx)

for every b, x N+.
Proof Without loss of generality we may assume that f-p/= 0. For the
functionf= 0 the claim holds true with any function a.

At first we shall prove the lemma for the arguments b (1, o).
So, let Xo R+ and b E (1, ) be arbitrarily fixed. Put Yo :=f(x0) and

Yb :=f(bxo). Let I’1 := q,(1/b). Then we obtain:

f(.bx + x) rl [f(xo) +f(bxo)] F (yo + Yb)
2

Denote P2 ’)’(1/(2b 1)) to get

Yb-f(bxo) =f(.(2b 1)xo + xo,) r[f((:2b- 1)xo)+f(xo)]
2
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whence

f((2b 1)xo) ---Yb YO.
12

Now put I’3 := 7(b/(2b- 1)). Then

f(3b 2 xo) f(’(2b-1)x + bx) +f(bxo)]

(112 ) P3(1 + P2)
P2=P3 --Yt, Yo + Yb Yb P3Yo.

Finally, let r4 := "),((b + 1)/(3b 1)). Then we have:

y, =f(bxo)=f(.[(3b 1)/2]xo
2
+ [(b + 1)/2]xo)

-1
P4 [.f(3b 2 xo)+f(b+2 xo)]
r4

(1 + r2)
F2

yb 1-’3yo q- I1 (Yo + Yb)1
1-’3(1 + P2) -+- 1-alP2

Yb --I- (Il P3)Yo1-’4 i2

I’4[r3(1 + P2) + riP2]
1-’2 Yb -+- [’4([’1 1-’3)Y0.

Now we get

yelP2 P4(r3(1 + I’2) + rlI’2)] yor2r4(r P3).

Let us define the following two functions: g(b):= [12-14(13(1 + P2)-k
Ill-a2) and h(b)= P2F4(Pl P3), b (1, oo) then

f(bxo)g(b) f(xo)h(b).

Since the function 7 is strictly increasing, we have h(b) O. It means that
f(xo) (g(b)/h(b))f(bxo). Recall that the point Xo was arbitrarily fixed.
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It follows that the equality

g(b)
f(x) (b)f(bx

holds for every x E ll+ and b E (1, o). Sincef 0, we infer that g(b) 0
for every b (1, oe). Thus

.f(x)f(bx)
1‘2 1-’31-’4(1 -+- 1-’2) 1‘11‘21‘4

(7)

and it remains to put

1-’21‘4(1"1--1‘3)o(b)
1‘2 1’31-’4(1 -t- 1‘2) 1‘11‘21‘4

where 1‘ 1,..., 1‘4 are defined as above.
Fix now arbitrarily a, b E (0, 1). Then from the first part ofthe proofwe

obtain that

 xo)
Hence

f( xo)  f(xo).
a(1/b)

We see that for b (0, 1) the required result is achieved by setting
a(b) :- 1/(a(1/b)). For b we put a(b):- 1.

Now we are going to reverse Remark 3 partially.

PltOIOSITION Ifafunctionfis a solution ofEq. (6) with ",/(a) (1 + a)2/
[4(1 + a2)], a (0, 1), thenf(x) CX2, X (0, c)for some c

Proof We shall start with evaluating coefficients 1‘1,..., 1‘4 occurring
in Lemma 1. Observe that

() 1/62+2/6+1 +26+62 (1 +6)2

rl-3’ 4(1/b)-+1) 4+4b2 =4(1+b2)=’7(b)’
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i.e. 7(l/b)- 7(b). This property will prove to be useful in our further
calculations which read as follows"

1) (2b- + 1)27(2b 11
4[(2b 1)2 + 11

r2 ")/ 2b’
b2

4b2 4b + 2’

b 1/_ (l+b/(2b-1))2
I’3-7 2b 4(b2/(2b-1)2+ 1)

(2b- 1) 2 + 2b(2b- 1) + b2

4b2 + 4(2b 1)2

4b2 4b + + 4b2 2b + b2

4b2 + 16b2- 16b + 4
(3b 1) 2

4(5b2 4b + 1)’

(3bb+_l)-_ ((b + l)/(3b-1) + l)2
r4 "--7 4(((b + 1)/(3b- 1))2+1)

(4b): 2b2

4(b2 + 2b + + 9b2 6b + 1) 5b2 2b +

Now we are going to evaluate c(b). To this end we shall use the
formula (7). Start with the numerator:

b2 2b2 ( (1 + b)2

2(2b2 2b + 1)5b2 2b + \1 :)
(3b 1)2 ’4(5b:z 4b + 1)

b4(1 + b)2(5b2 -4b+ 1)- b4(3b- 1)2(1 + b2)
4(2b2 2b + 1)(5b2 2b + 1)(1 + bZ)(5b2 4b + 1)

b4(5b4 9b4 + lOb 4b + 6b + b2 + 5b2 8b2 9b2 b2

+ 2b 4b + 6b + 1)/(4(2b2 2b + 1)(5b2 2b + 1)

(1 + b2)(5b2- 4b + 1))

bS(-b + 3b2- 3b + 1)
(2b2 2b + 1)(5b2 2b + 1)(1 + bZ)(5b2 4b + 1)"
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Now calculate the denominator:

(1 / b2)(3b 1)(5b2 4b / 2) / (1 / b)2b2(5b2 4b / 1)
4(262- 26+ 1)(5b2- 4b + 1)(5b2- 2b / 1)(b + 1) ]"

Expand the numerator of the latter fraction"

N(D) b2{(1 / b:Z)[50b4 45b4 20b 40b / 36b / 30b / lOb2

/ lOb: / 16b2 18b2 5b2 24b2 8b- 4b

+ 4b + 12b + 2 2] (1 + b):Z(5b4 4b + b:)}

b2[(1 / bZ)b(5b /6b2 llb / 4) (1 / b)2(5b4 -4b / b2)]
b (5b / 6b2 lb + 4 + 5b2 / 6b4 lb / 4b2 5b

+ 4b b 5b + 4b4 b 10b4 / 8b 2b:z)
b (-4b / 12b2 12b + 4).

Thus the denominator looks as follows"

b (-b / 3b2 3b + 1)
(2b2 2b + 1)(5b2 2b + 1)(1 / b2)(5b2 4b / 1)’
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and consequently

for every b > 1. On the other hand, from the proof of Lemma 1, we
obtain a(b)= 1/(a(1/b))=b2 for b E (0, 1). It means a(b)= b2 for all
b E I+. Finally

f(x) f(lx) xZf(1)

for every x R+, as claimed.

LEMMA 2 Let f: (0, ec)N be a continuous solution of Eq. (6). Then
condition f(x) +flax)=_ 0 for some a (0,1) implies that f equals zero
everywhere.

Proof Fix an arbitrary point x (0, oe). We shall show thatflx) 0. By
assumption we get

f() -f(x) :f(ax)

for some a (0, 1). We know that ax < x < x/a. Suppose that f(x) O.
Then there are two possibilities: f(x) > 0 >flax)=fix/a) or f(x) < 0 <
f(ax) f(x/a). In both cases there exist points b (ax, x) and c (x, x/a)
such thatf(b)=tic)= 0. By Eq. (6) we obtain

Similarly, one can prove that

mb+
2n

c =0

for every n N and m N, m < 2n. Numbers of this form form a dense
subset of the interval (b, c) and it follows thatf(x) 0, a contradiction.
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THEOREM Iff is a continous solution of Eq. (6) with a strictly
increasing function % then f(x)= cxa, x E (0, o) for some c E IR and
dE (- c, O) LJ (1, ).

Proof Let f: (0, oe) I be a continuous solution of Eq. (6) and
let "), (0,1) (0, 1/2) be a strictly increasing function. At first we are
going to show that 3’ is continuous as well. To this aim take an
arbitrary point a(0,1) and two sequences (a) and (a2) both con-
vergent to a and such that 3’(a) al, 3’(a]) a2. We get al [f(x)+

ax)f(ax)]=lim3"(al,,)[f(x) +f(ax)]=limf((x + anx)/2 =f((x + /2)
limf((x + a2,,x)/2) lim 3"(a2)[f(x) +f(a2x)] a2[f(x) f(ax)] for
every x E (0, oc). Hence

al[f(x) +f(ax)] az[f(x) +f(ax)],

which jointly with Lemma 2 leads to the continuity of 3’.
A careful inspection ofthe construction ofthe function a occurring in

Lemma shows that a is continuous on the set R+\{ }. On the other
hand, we know thatf(bx) a(b)f(x). Consequently a(ab)f(x) f(abx)
a(a)f(bx) a(a)a(b)f(x). Hence a is a solution of the equation

O(ab) O(a)O(b),

that is continuous everywhere but at one point. Therefore we know that
a(b) bd for every b > 0 and certain d E N. Finally

f(x) f(lx) a(x)f(1) f( 1)xd cx.
Note that dE (-ec,0)U(1, ee). Indeed, if we had d= 1, then the

function 3’ occurring in Eq. (6) would be equal to 1/2 whereas if d E (0, ),
then the same function

(1 +a)
a 3"(a) 2(1 + aS

would not have values in (0,1/2) because lima-03’(x)- > 1/2, the
function 3" is continuous so there would exist a point a0 E (0, 1) such
that 3’(a0) > 1/2. Finally, if d were zero, then 3’ would be equal to 1/2.

Summarizing, we have shown that d
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COROLLARY Iff (0, ) (0, ) is a continuous solution ofEq. (6), with
a strictly increasingfunction % such that limxof(x) O, thenf(x) cxd

for some c > 0 and d> 1.

Proof From Theorem we obtainf(x) cx, x E (0, c) for some c E I
and d (- c, 0) U (1, ). The constant c is positive becausefis positive,
d is also positive because for the negative values of d we would have
limx_of(x) c.

THEOREM 2 Letf: (0, ) (0, ) be an arbitrary continuousfunction
satisfying inequality (5) such that

limf(x) 0.
x--+0

Then

A V A
b>0 c>0,d> xE(b,o)

Proof At first we shall assume that b 1. Put

g(x) :=f(1)x, a .
Theng(1) =f(1) for every a. Denoting c :=f(1), we shall distinguish two
cases.

(1) V>l Vxo/x>xof(x) >- g(x) cx. Consider the function given
by the formula G(x):=f(x)/g(x). Clearly G "[1, x0]-+ is contin-
uous on compact interval. Hence function G is bounded and

p := inf G(x)
xE[1,x0]

is finite. Obviously

G(x) > p for all x E [1,x0],

whence

f(x) >_ pcx for x E [1, x0].
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Put g(x) := min{p, }cx.This function satisfies the desired inequality
on the whole interval [1, oo) because it is bounded by functions pgo
and g, which satisfy our inequality on [1, Xo] and (Xo, oo), respectively.

(2) Ao>l Axo /x>xof(x) < g(x). We are going to show that the
above assumption leads to a contradiction.
To see this let us extend f on [0, ) by putting f(0)= 0. Let us still

denote this function by f. Continuity and strict convexity of such an
extension is transparent. We shall prove that f(x) > cx for every x > 1.
Suppose the contrary:

f(xo) < cxo for some x0 > 1.

Sincef(0) 0 cO we get

f(x) <_ cx for all x E (0,x0).

In particularf(1) < c, a contradiction. Therefore:

V A c2<f(2)"
c0>l <o<0

Fix an a satisfying the above condition. By assumption, one can find an
x > 2 such thatf(x) < cx. From the continuity ofthe functionfwe infer
that there exists a point x0 > 2 such thatf(x0) cx. For the same reason
we may find a neighbourhood (a, b) of the point 2 such that for every
x E (a, b) we have cx <f(x). By choosing the maximal neighbourhood
satisfying the above condition we obtain points

such that

as < 2 < b (8)

f(x) >
xE(a,b,)

andfla) c(a,)’, f(b,) c(b). Hence

f(.a+b.)>2 , b,.)c[’.a +
2
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On the other hand, by Remark 3,

(a,+b,.) ’ (a_) ),e
2 7, [e(a, + c(b)’],

and consequently,

( ) (a_)f as + b,. > 7, [f(a) +f(b)].2

Recall that the function 7, is defined by the formula

(1 +a)7(a) 2(1 + a,),
a (0,1).

Thus we have

f(.a, + b,) + a,/b, ’
2

> 2(1 + (a,/b,),)[f(a,)+f(b,)],
and setting h(a):= (1 + a)’/(1 + a’), a (0, c), we may write

f(’a’ + b) > --dh() [f(a’) + (9)

Observe that h(0)-1, h(1)-2-1 and, moreover, lima__,h(a)--1.
The derivative

h’(a) a(1 + a)’-(1 + as) aa’-(1 + a)
(1 + a)2

vanishes at a point a E (0, ) if and only if

(1 -+- a)’-l(1 + a’) a-l(1 + a)’ 0,

which states that

a’-1 1.

Consequently, the only zero of this derivative is just a 1. Jointly with
the previous observations it implies that a--1 is a maximum of
function h which happens to be increasing from 0 to and decreasing
from to o. Hence by (9) we have got

f(.a, + > J--d[f(a’) +f(b’)] (10)
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Now setting an:= + 1/n we get the sequence (aa,,bs,) satisfying
inequality (10). This sequence satisfies also aa,/bs, 7 1. Suppose the
contrary. Then in view of (8), as, 2 bs,. From the continuity of

f we get f(2)=c2. But f(2)> c2> 2c, a contradiction. Since as,
ban 7/-+ 1, one can choose a subsequence (as.k,bank) such that

as,k/bsn a < 1. Denote this sequence by (cn, dn). For all but finitely
many n E N we have cn/dn < (1 + a)/2. Hence, by (5), we obtain

2 2 [f(e,) +f(dn)],

for almost all n E N, which contradicts inequality (10).
The proofis now complete in the case b 1. To finish the prooftake an

arbitrary b R+. We have shown that for every x > one hasf(x) > cx.
If b > then we have the inequality trivially satisfied for x > b. Now let
b (0, 1) and let us consider function G(x) :=f(x)/cx. Set
p := minx[b,ll(f(x)/exS). Thus f(x)>_pex for every x[b, 1] and
f(x) > min {p, }cx for every x > b.

kRemark 4 All functions of the form (0, ) x ,n=l cnxdn
ci IR+; di E (1, oe), { 1,..., k} satisfy inequality (5).

Proof Putf.(x) := cix
di for i-- 1,..., n. Then

Z (x +2 Y) Z’Y() +fn(Y)2
n--1 n--1

_< max ,,
n=l

i=1 k 2

k

max ,(-)(f.(x)+f.(y))i=l,...,k n=l

k

n--1

k

<_ 3’(a) Z(fn(X) +fn(Y))
n=l

for every pair (x, y) satisfying the inequality y/x <_ a (’di are increasing).
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The following example will show that there exist functions satisfying
inequality (5) which are not bounded above by any solution of Eq. (6).

Example 3 The functionf(x)- x2e satisfies inequality (5).
To see this, at first we shall show that

ebXx2 4-eX(bx)2 <_ ebX(bx)2
4- eXx2 for all b (0, 1). (11)

This inequality may equivalently be written as

+ bZex-bx < b2 4- ex-bx

and since ex-bx > we are able to write ex-bx= 4- for some > 0. The
inequality considered looks now as follows:

+b2(1 +) _< b2 + 4-5,

i.e. b26 < 3, which is just obvious because b < 1. Now,

e(x+bx)/2 x 4- bx 2 ex 4- ebx x 4- bx 2

2 2 2 2

ex + e6x (1 + b)2

2 4(1 + b2) (x2 + (bx)2)

I__ ebX(bx)2 ex(bx)2 ebx2](b) + +-+

( +Z(x++2 2

where, as previously, we have put 7(b)’= (1 + b)/[4(1 + b)], b (0,1).
Clearly is strictly increasing.

Finally inequality (11) enables us to write

[fx eX(bx) eb ] [2fx)2fx)
72(a)[f(x)

and the proof has been completed.
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