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Let we have an integral operator

b(x)

Kf(x) := v(x) k(x, y)u(y)f(y)dy for x > 0
Ja(x)

where a and b are nondecreasing functions, u and v are non-negative and finite functions,
and k(x, y) >_ 0 is nondecreasing in x, nonincreasing inyand k(x, z) < D[k(x, b( y)) + k( y, z)]
for y <_ x and a(x) < z <_ b(y). We show that the integral operator K: X Ywhere Xand Y
are Banach functions spaces with/-condition is bounded if and only if A < o0. Where
A := Ao + A1 and

A0 := sup
x<_y,a(y)<_b(x)

A1 := sup
x<_y,a(y)<_b(x)
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1 INTRODUCTION

Let Xand Ybe two Banach function spaces on (c, d) and respectively.
We define the general Hardy operator

Kf(x) := v(x)
r[b(x) k(x, y)u(y)f(y) dy
Ja(x)

for x (1.1)

where a,b are nondecreasing functions on , -<c<a(x)<
b(x) < d<, and v and u are non-negative measurable and finite
functions a.e. on/R and (c, d). The kernel k(x, y) > 0 is defined a.e. on
{(x, y); x E IR, a(x) < y < b(x)} and satisfies the following conditions"

(i) it is nondecreasing in x and nonincreasing in y;

(ii) k(x, z) < D[k(x, b(y))+k(y, z)] for every y < x and a(x) < z < b(y),
where the constant D > is independent of x,y,z. (1.2)

In this paper we describe the necessary and sufficient condition for the
boundedness of the operator (1.1) in Banach function spaces.

This paper extends results of Lomakina and Stepanov [3] and Opic
and Kufner [4]. In these papers the operator (1.1) was characterized
for a(x) 0 and b(x) x.

Sections 2 and 3 contain the definitions, formulations of the main
results and some comments. In Section 4 we treat the simpler case
when the kernel k(x,y) is equal to and the spaces X, Y satisfy the
/-condition. We use this result in Section 5 to deal with the general kernel
satisfying (1.2).

2 DEFINITIONS

In this section we recall the definition and some basic properties of the
Banach function spaces. In what follows A4(f) will be the set of all
measurable functions on f, where f is any measurable subset of.

DEFINITION 2.1 Anormed linear space (X, II.llx)onfiscalledaBanach
function space (BFS) on f if the following conditions are satisfied:

(2.1) the norm Ilfllx is defined for allfE M(f) andfe Xif and only if
Ilfllx<;

(2.2) Ilfll= Ifl I1 for everyfE l(f);
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(2.3) if 0 <fn/fa.e. in f then Itf=ll/llfllx;
(2.4) if IEI < o, EC f, then XE E x;
(2.5) for every set E, IEI < c, EC f, there exists a positive constant CE

such that flJ(x)ldx <_ Cllfll.
By we denote a Banach sequence space (BSS), which means that the

axioms (2.1)-(2.5) are fulfilled with respect to the counting measure and
{ek} denotes the standard basis in l.

Recall that the condition (2.3) immediately yields the following
property:

(2.6) if 0 <f< g then [[fllx < Ilgllx.

DEFINITION 2.2 The set

X’={f’,fafgv < for every g E X},
equipped with the norm

"f"e =sup{ fafgv ;,,g[[x < 1},
is called the associate space ofX. It is known from Bennett and Sharpley
[1] that X" Xand that X’ is again a BFS.

Let T be a linear operator from a BFS Xinto a BFS Y. Then T’ is an
associate operator to the operator Tif fn(Tf)g faf(T’g) for allf X
and g Y.

LEMMA 2.3 (Bennett and Sharpley [1]) Let T be a linear operator

from aBFSXinto aBFS Y. Then TTII <_ CIIf xfor allf Xwith afinite
positive constant C, ifand only/f T’gllx’ _< Cllgll for all g Y’.

Moreover II Tllx r II Z’ll r-. x,.

DEFINITION 2.4 (Lomakina and Stepanov [3]) Given a BFS X and a
BSS l, X is/-concave, if for any sequence of disjoint intervals (Jk} such
that t_J Jk f, and for allfE x
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where is dl a finite positive constant independent on fE X and {Jk}.
Analogously, a BFS Y is said to be/-convex, if for any sequence of
disjoint intervals {Ik}, t3 Ik f and for all g Y

Ilgllr d21[ekllxzgllrk
with a finite positive constant d2 independent on g E Y and {Ik).
We say, that BFS X, Ysatisfy the/-condition, ifthere exist a BSS 1 such

that Xis/-concave and Yis/-convex simultaneously.

LEMMA 2.5 (Lomakina and Stepanov [3])
Then Y’ is an l’-concave BFS and

Let Y be a l-convex BFS.

k

for allf Y’ and (Ik}, tO Ik Ft.

3 MAIN RESULTS

Assume X and Y are two BFS on (c, d) and , respectively. Then we
denote

Ao := sup
x<y,a(y)<b(x)

A :: sup
x<_y,a(y)<_b(x)

IIX(x,yl (.)v(.)k(., b(x))II rllX(a(y,b(xllullx,

vii yllX(a(y),b(x))(.)k(x, .)u(.)]Ix’

and A := Ao + A1.
Note that Ao A1 if k(x, y) 1.

THEOREM 3.1 Let X and Y be two BFS on (c, d) and I, respectively,
satisfying the l-condition. Let K be the integral operator of theform (1.1)
with kernel k(x, y) > 0 satisfying (1.2). Then K: X-- Y is bounded, ifand
only if, A isfinite. Moreover



THE GENERALIZED HARDY OPERATOR 5

To prove Theorem 3.1 we need a corresponding result for the general
Hardy operator with kernel k(x, y) 1.

Let

b(x)

Hf(x) v(x) u(y)J(y) dy
Ja(x)

(3.1)

where -o < c < a(x) < b(x) < d< o are nondecreasing functions on
v and u are real measurable and finite functions a.e. on I and (a,/3),
respectively.

THEOREM 3.2 Let X and Y be two BFS on (c, d) and 1t, respectively,
satisfying the l-condition, and let Hbe the operator defined by (3.1). Then
H" X-. Y is bounded, ifand only if,

A. := sup
x<y,a(y)<_b(x)

4 BOUNDEDNESS OF THE OPERATOR H

In this section we prove Theorem 3.2. At first we prove a lemma.

DEFINITION 4.1 Let v be a non-negative measurable function on an
interval (a, fl) where o < a </3 < . Let c E, let < a(x) < c <
b(x) < be nondecreasing functions, and let u be a non-negative mea-
surable function on (e,d) where e:=liminfx_a(x) and d:=
lim supx b(x). Then we define

b(x)
Hbf(x) := v(x) u(t)f(t) dt

for every measurable functionfon (c, d), and

c

Haf(x) v(x) u(t)f(t) dt

for every measurable functionfon (e, c).
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LEMMA 4.2 Let 3( and Y be two BFS on (e, d) and (a,/3), respectively,
satisfying the l-condition. Then Hb X-+ Y is bounded, ifand only if,

Ab := sup Ilvx(x,llrllux(c,b(xllll, < .
c<x</

Moreover

Ilnbllx-+r Ab.

Also Ha:X--> Y is bounded, ifand only if,

ha :-’- sup 11VX(x,)II yl]ux(a(x),c)I1, < .
a<x<fl

Moreover

Proof We will give the proof only for Hb. The proof for Ha is similar.
Necessity Given x E (a, fl) andfE Xsuch thatfu > 0, we have

v(.) u(t)f(t) dt
,+c y

b(.)
>_ V(.)X(x,Z)(.) u(t)f(t) dt

b(x)
>_ v(.)X(x,Z)(.) u(t)f(t) dt

b(x)

VX(x,l r lu(t)f(t)l dt.

Taking the supremum over all suchfand x E (a, fl) we obtain

Ilnbllx+ y IlvX(x,lllrlluxc,b<xlll[

and so,

Ilnbllx-+r --> Ab.
Sufficiency If Ab--Cxz

II/-/,,11,,- ,-= o.
then )lHllx-+ r Ab. If Ab- 0 then
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Let O<Ab< (X). Choose fEX such that [[fllx 1. Define C/=
{t; E (Ce,/), fbc(t) [fu[ 2i}, O Ci\C + and Ei {x; x (c, d),
b(x) C}, Bg E\E+ 1. Then I(c, d)\ t.J z Bil 0 and [(a,/3)\
I..J E Z De[--0 and we have

gHbf < 2i+lgv <_ 2e+lllvx,llrllgx,llr,
iz iz, IDil>0

_< ’ 2g/allvxc,llllgX,l[
iZ, IDI>O

_< 2i+1 hb

(using 2i-1 _< [fXBi-1 Ilul

<- IIfi-, IIllux(c,up,_,/ll,)

< Ab2i+l
iZ, IDil>0

(using Holders inequality and/-condition)

<_4Ab eillfx(.i_,)[[x eillgxo, l[y,
ieZ, lDl>0 iez, [ai[>0 l’

<_ 4dld2Ab[[f[[x[[g[[r.

Then we have

b

sup glibf<_ 4dld2Abllf[[x.
lig[Ir,<l

Now we prove Theorem 3.2.

Proof of Theorem 3.2 Necessity LetfX be such that fu >_ 0 and

Ilfllx- 1, and let x, y be such that a _< x _< y </3 and b(x) >_ a(y). Then

I[Hf[[r >_ [Iv(.)X(x,y)(.) u(t)f(t) dtl[ r
(.)

fb( u(t)f( t) dr.VX(x,l
Ja(y)
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Taking the supremum over all such x, y andfwe obtain

IIHII _> IlVX(x,y)II

Sufficiency Define M:= {(x, t); x , a(x) < < b(x)}. M is a
measurable set. If IMI 0 then it is easy to see that IIHIIx_ y O.

Suppose that IMI > O. We set My {x; (x, t) M, y}, y ]R, and
P := {y; (x, t) M, IMyl > 0}. Then P tAim=lPi, where Pi are intervals,
[Pi[ > O, and rn <

Let yoint Pi; then we have a set My and co =a(infMyo ),
do b(sup Myo).

Suppose we have defined Yi, ci, di and My,.
If i>O and diEint Pi then we define Yi+l=di, i+1 ----a(infMyi+l),

di+l b(supMyi+l). If i<O and ciEintPi then we define yi-1 =ci,

ci-1 a(infMy_), di-1 b(sup Myi_).
f i’l niBy using this method we can construct, for everyP sequences tYj]j=mi’

( ni ni "})=mi’ wherec)}j=m, {dtj}j=mi, {My n

We can rewrite all these sequences in the following way: {Yi}ik=l,
{Ci)gL, {di}i= and {My,}g= where k Zi%l(ni mi + 1).
Then we have

nf(x) Z XMyi (X) ?(X) u(t)f(t) dt + V(X) u(t)f(t) dt
i=1 Yi X)

a.eo

and

k

jfgHf ZL gHf
i=1

k :Mr(I fb(x) )fay tl ))y v(X)Jyi f(t)u(t) dt + v(x f(t)u(t) d g(x dx
i=I (x)

Z V(X) f(t)X(yi,di)U(t dt g(x) dx
i=1 Yi

+ v(x) f(t)X(ci,y,)U(t) dt g(x) d
()

(Using Lemma 4.2 and Aa + Ab <_ AH)
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k

gHf <_ 4dd2 Al-II]fX(e,,y,)Ilxllgxt, r,
i=1

k

+ 4dl d2 ZAHIIIxy,,d,I IlxllgXM,
i=1

k

8dd2An IIfX(c,,d,llxllgx,ll
i=1

(use H61der’s inequality and/-condition)

5 BOUNDEDNESS OF THE OPERATOR K

In this section we prove Theorem 3.1.

LEMMA 5.1 Let b(x) be a nondecreasing right continuous function on

(a, fl) andlet b(cO c, b(/) d. Let ko(x, y) > 0 be a kernelsatisfying(1.2),
and ko(x, y) > 0 on set ofpositive measure. Suppose that ko(x, y) is right
continuous with respect to xfor all x E [a, ] andfor a.e. y (c, b(x)).

Let u,fbe measurablefunctions on (c, d),fu > O, and

b(x)

Go(x) go(x, y)u(y)f(y) dy.

For a fixed number 6 > D (where D is a constant from(1.2)), we define
Ak {x G (a,/); Go(X) >_ (t5 + 1)}, k Z, andN sup{k; Ak ). Then
there exist sequences {Xk}, {"/k) such that a < < Xk- Xk
and the inequality

b(xk)

(6 + 1)"- < ko(x, y)u(y)f(y) dy
,]b(Xk-l)

+ dy
.16(Xk_2)

+ Dko(xk, b(xk-1)) ab(x_)u(y)f(y) dy

+ Oko(xk, b(xk-2)) u(y)f(y) dy.

holdsfor all k <_ N, and Go(x) <_ (1 + 6)"’-’+1 when x [Xk- , Xk).
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Proof By the Lebesgue Dominated Convergence Theorem Go(x) is a
nondecreasing right continuous function for all a < x </ and limx
Go(x) =0.

Set ak infAk, for k < N.
Fix E Z such that IzXel > 0. We set x0 ai, 7o max{i; ai xo), Xk

ak where "Yk max{i; ai a,k_+ for k > 0 and "Yk max{i; ai a,k+ }
for k<0.

It is obvious that {7k} is an increasing sequence of integers, therefore
7k, < k- 1, G(xk)- G(a.,) > (1 + 6)"k.

If x [Xk, Xk+ 1), then we have a+ Xk+l, and therefore x < a+l
G(x) < (1 + 6)"+ 1. Next on using (1.2) we find that

As DGo(Xk 2) D(1 + 6)"k-2+ < D(1 + 6)"k t(1 + 6)k

(1 + 6)"k 6(1 + 6)*- (1 + 6)e*- the lemma follows.
and

THEOREM 5.2 Let Xand Ybe two BFS on (c, d) and (c, ), respectively,
(where b() d and b(a) c) satisfying the l-condition and

b(x)
Kbf(x) := v(x) k(x, y)f(y)u(y) dy,
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where k(x, y) satisfies (1.2). Then

where

A "= sup II<z,)vllrllX<c,bz)l(.)k(z,.)u(.)ll,,
a<z<g

A "= sup IIX(z,(.)v(.)k(.,b(z))llllX(c,b(zlull,.
a<z<g

Proof Necessity Let x > a. Then b(x)> c. Since k(x,y) is non-
decreasing in x and nonincreasing in y, for every a < x < z < fl we have

b(x)

Kf(x) >_ v(z) k(x, t)f(t)u(t) dt

and

b(x)
Kf(z) > v(z)k(z,b(x)) u(t)f(t) dt.

Hence,

b(x)

IIKfllf >- IIX(x,g)(.)v(.) k(x, t)f(t)u(t) dtl] r

>_ IIx(x,l vll Yllx(c,b<xl> (.)k(x, .)u(.) IIx, IlfX(c,b(x)l IIx
for allf X and a < x < , and

b(x)

IIKfll r _> IIX(x,l(.)v(.)k(.,b(x)) u(t)f(t) dtll,

_> IIx(x, (.)v(.)k(., b(x))II rllx(,b(xlul[ IIX(c,b(xllfllx

for allfE Xand a < x < g.
Sufficiency Let D be the constant from condition (1.2) and let 6 > D

be fixed. Without loss of generality we may assume that k(x, y) and b(x)
satisfy the assumptions of Lemma 5.1. Otherwise we replace k(x, y) by
k(x +, y) and b(x) by b(x +).
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By the principle of duality it is sufficient to show that

J v(t)G(t)g(t) dt < Allxllgllr,, for all f E X and g E Y’,

where G(t) fbc(t)Ik(t,y)f(y)u(y)l dy. By Lemma 5.1 we obtain

J < fxk+l Iv(t)G(t)g(t)l dt
k<N, Xk

< -(1 + 6)"k+l fXk+ Iv(t)g(t)l dt
k<N Xk

_< (1 + 6)[Jl +J + Jl + J],

where

f fXk+b(xk)
Ik(xk, t)u(t)f(t)l dt Ig(t)v(t)l dt,Jll :--

k<N’-’- Jb(xk_) x
rb(xk-)

J12 :-- D k<NJb Ik(Xk_l, t)u(t)f(t)l dt Ig(t)v(t)l dt,
(x-2) x

fb(Xk-l fXk+l

J21 D k(xk, b(xk-1)) [u(t)f(t)ldt Ig(t)v(t)l dt,
k<N Jb(xk-2) . Xk

k<N c xk

Applying the Holder inequality and the/-condition we find

k<N

IIx(x,x+lgllllx(x,x+lvllr)
IIX(c,b(x))k(Xk, .)ull IIx(x,)vll rllx(b(_,),b(x))fllxllX(x,x+,)gll r’

kN

kN

kN kN 1’

dd2Ailfi[xllgllr,.
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Analogously, we obtain

J12 < dd2Abllxllgll.
The estimate for J21 is similar to that for Jll on applying the knowledge

that k(x, y) is nondecreasing in x and proceeding like for Jl1" we find that

J2 <_ dd2Abllllgllr,.
For J22 we write

fcbl(x)
J.2 lu(t)f( t) dt k(x, b(xg_2))X,+,)(x)Ig(x)v(x)ldx

k<N

_< Ilgtfll rllgll ,
where Ktf(x) (x)v(x) fbc’(Xl lu(t)f(t)ldt and bl(x)"= Ek<_Nb(Xg-2)
X(xk,xk+)(X) and (x) -k<_Nk(xg, b(xk_2))X(xk,x/,)(x). By
Theorem 3.2 we have that

IIglt_y C sup IIx(z,vlllix(,b(zull
a<z<

if Xko < z < Xko+l when bl (z) b(Xko-2) and

(t)X(z,)(t) < E k(xk, b(xk-2))X(x,x+,)(t) < k(t,b(xko-2)).
k=ko

Therefore we have

<_ Ab
Thus J22 < C4bllfllxllgll,. Then we have that Ilgbil-y C(b + 40b).

Proof of Theorem 3.1 Necessity Letfu > 0 a.e., x < y and b(x) > a(y).
Since k(x, y) is nondecreasing in x and nonincreasing in y, for every
x < z < y we have

fb(x) k(x, t)f( t)u( t) dtgf(z) y(z)da(y)
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and

b(x)

Kf(z) > v(z)k(z, b(x))
a a(y)

f(t)u(t) dt.

Therefore we get

b(x)

k(x, t)u(t)f(t) dtllx(,ylll <_ Ilgfll r _< Ilgll-rllfll
y)

and

b()
u(t)f(t)dtllvx(x,y)k(.,b(x))l[r Ilgfllr Ilgll_rllfll

(y)

for allfX such that fu >_ O.
Then by duality we have

Sufficiency We use the same technique as in the proof of Theorem
3.2. For a(x), b(x)we define {ci}ik=l, {di}ik=l, {yi}/k=l and {My }/k=l as in
that proof. Then we have

k ib(x)Kf(x) E XMyi (x)(v(x) k(x, t)u(t)f(t)dt
i=1 yi

+ v(x) k(x, t)u(t)f(t)dt)
(x)

k k

i=1 i=1

fb(x) k(x, t)u(t)f(t)dtxMy, (x) and K v(x) f.ay(gx) k(x, t)where K v(x) jy,

u(t)f(t)dtxM,(x).
By the/-condition we obtain

IICfll r < ellJ (f)Xy, II
i=1

I1 +I2.

k

i=1
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By Theorem 5.2 we have

IIgJ (f)xMy, II r

and therefore we obtain

k

I1 <_ CAll Z eillx(,,a,lfllx]lz <- C411fllx.
i=1

To estimate 12 we use the condition (1.2) for X --inf(My,) and
a(x) < < Yi b(xi), xi < x. Then k(x, t) < D[k(x, Yi) 4- k(xi, t)] and we
have

yi

XMy (x)gf(x) XMy (x)v(X) k(x, t)u(t)f(t) dt
(X)

<__ DXMy (x)v(x)k(x, yi) u(t)f(t) dt
(x)

4- DXM, (x)v(x) k(xi, t)u(t)f(t) dt.
(x)

Theorem 3.2 yields

XM,, v(x)k(x, Yi) u(t)f(t) dt
(x)

AIIf<c,,dlllx
Y

and

yi

XM,V(X) k(xi, t)u(t)f(t)dt
()

Therefore

and by the/-condition we obtain that

12 <_2cA
i=1
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Combining the estimates of I1 and 12 we arrive at

Ilgfll Afllfll.

Theorem 3.1 is proved.

Remark When this paper was finished we learned (by oral commu-
nications) that this problem for Hardy operators in Lebesgue spaces was
considered by Heinig and Sinnamon [2].
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