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We consider perturbations of a first-order differential operator with matrix coefficients
known as the Dirac operator. These operators have one singular point which is allowed to
be either zero or infinity. Unitary transformations are used to apply results for an operator
with a singularity at infinity to one with a singularity at zero. After introducing notation
and several preliminary results, we give necessary and sufficient conditions for perturba-
tions to be relatively bounded or relatively compact with respect to the Dirac operator.
These conditions involve explicit integral averages of the coefficients of the perturbation.
Results are given for both limit point and limit circle type operators.
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1 INTRODUCTION

In this paperwe develop a perturbation theory for the formal differential
expression

ly(t) w-l(t){[Qo(t)y(t)]’- Q(t)y’(t) + Po(t)y(t)}, (1)

where the functions y are defined on the interval I= (a, b), cx < a <
b < and the coefficients W, P0, and Q0 are 2 x 2-matrix valued
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18 S.C. MELESCUE

functions on L Each coefficient is assumed to be locally Lebesgue
integrable on I, W(t) is positive definite, Po(t) is hermitian, i.e. P0 P,
and Qo(t) is nonsingular. In our considerations W(t) is a diagonal matrix
and Qo(t)is frequently the constant matrix J (0 -1). An operator of
the form (1) is called a Dirac operator.
The expression F isformally self-adjoint, i.e., for "sufficiently smooth"

functions y, z’I C2 with compact support

S IW(t)Fy(t)’z(t))dt fI (W(t)y(t),Fz(t))dt

where/., .) denotes the usual inner product in C. Hence, F generates a
hermitian operator which is densely defined (i.e. symmetric) in the
separable, weighted Hilbert space v(I). This Hilbert space is the space
of(equivalence classes of) Lebesguemeasurable functionsy I C2 such
that fz(wllyll2 + W2ly212) < where y (Y) and W1 and W2 are

Y2
positive measurable functions on the interval. For y, z Z;Ew(I), define

_/,z. 0)y, z) w (t) 0 W2 (t) y(t) dt

and Ilyll 2w (Y,Y)w. We will omit the subscript W when there is no
ambiguity.

Associated with the formal differential expressions F are maximal and
minimal operators (F1 and Fo, respectively) on the Hilbert space/22w(I).
The maximaloperator 171 is the differential operator defined byF with the
largest possible domain in 2w(I which is mapped into Z2w(I), i.e.,

z (rl) {y y aCtor(I), ry

where ACo(I) is the set offunctions which are absolutely continuous on
compact subsets of L We define the minimal unclosed operator 1-’ to be
the restriction of I to the functions with compact support in the interior
of L The minimal operator F0 is defined to be the closure of I. Similar
definitions may be made for the differential operators ofarbitrary order.
We note several well-known facts [12, pp. 41, 46] for formally self-

adjoint F:

1. D(F1) is dense in 2w(I and F1 is closed.
2. I F1 and I F0.
3. Any self-adjoint extension A ofF0 satisfies F0 c A c 11.
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We say that F is regular at a if a > -o and the assumptions on the
coefficients are satisfied on [a, b) instead of (a, b). We define regular at b
similarly. IfF is regular at a and regular at b, then we say that F is regular.
Otherwise, F is singular.

Since F0" D(F0) C/22(I) -+ Z:2(I)is a closed, symmetric operator,

D(r) D(ro) N(iE- F) @ N(-iE- F), (2)

where N(+iE F) {y E D(r): +iEy ry o} and E denotes the
identity operator. Equation (2) is referred to as thefirstformula of Von
Neumann and can be rewritten as

D(r) D(ro) N(iE- F1) @ N(-/E- F1), (3)

since 1 F1.
Deficiency indices play an important role in the study of self-adjoint

operators associated with the differential expression F in that they
determine the number of boundary conditions necessary to construct a

self-adjoint operator [12, Chapter 4]. The deficiency indices of F0,
denoted by d+ (F0), are defined by

d+(Fo) dimR(iE- Fo) +/- dimN(-iE- F1)

and

d_(Fo) dimR(-iE- Fo) +/- dimN(iE- F1).

If the coefficients of Fo are real, we have d+ (Fo)- d_ (Fo). It is well-
known [12, pp. 52, 55] that

d+ (F0) < 2, (4)

and if F is regular at a and singular at b, then

d+(Fo) + d_(Fo)_> 2.

If F is regular at a and singular at b, we say that F is limit circle at b if
d+ (Fo) 2 and [’ is limitpoint at b ifd+ (Fo) + d_ (Po) 2. This notation
stems from the geometricmethod ofWeyl for the second-order equation.
(See [5, Chapter 9].)



20 S.C. MELESCUE

As an example, we compute the deficiency indices for the minimal
operator F0 corresponding to the differential expression (1) with

0 t. P0(t)=0, and Q0(t)= t 0

for some constants 7 and a. Since the coefficients are real, d+ (F0)=
d_(ro).
We know that if there exists a A C such that each solution of

Fy(t) y(t), /, is square integrable, i.e., fzy*(t) W(t)y(t) dt < , then
for every A each solution of Fy(t)= ,y(t), /, is square integrable
[3, Theorem 9.11.2]. Thus, to determine d+ (Fo) and d_ (Fo) it is enough
to consider dim N(II). Notice that inequalities (4) and (5) imply that the
deficiency indices are either one or two since d+ (Fo) d_ (Fo). Now, we
determine conditions on 7 and a for which we have 2(I)-solutions to
Fy(t) 0.
Two linearly independent solutions to the equation Fy(t) 0 are

and (0)r t) t_/

If we take the interval I= [a, ), a > 0, then Y1, Y2 E D(F1) iff

7-a <-1. Therefore, d+(F0)=d_(F0)= 2 (implying that F is limit
circle at)iff,,/- a < 1. We also have, via [3, Theorem 9.11.2], thatF is
limit point at iff 7 c > 1.
On the other hand, if we take the interval I=(0,a], a > 0, then

Y1, Y2 E D(F1)iff7 c > 1. Therefore, d+ (F0) d_ (F0) 2 (implying
that F is limit circle at 0) iff7 a > 1. Moreover, F is limit point at 0 iff

3’ a < [3, Theorem 9.11.2].
One importance of perturbation theory is that it allows the

decomposition of an operator into the sum of a simple operator and a
complicated operator which is, in some sense, small with respect to the
simple operator. Since some properties are preserved under certain types
of perturbations, knowledge about the simple operator is often enough
to gain some knowledge about the sum. For example, the essential
spectrum is preserved under a relatively compact perturbation. Also, a
relatively bounded, symmetric perturbation with relative bound less
than one preserves self-adjointness. (See [7-9].)
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In the case of a limit point operator, there is no difference in the
perturbation theory of minimal and maximal operators. This fact has
been proved in the case of a scalar operator by Anderson and Hinton
([2, Theorem 2.2]). In Theorem 2.6 we considerably simplify their proof
and extend it to differential operators with matrix coefficients. (The
proof does not depend on the order of the operator.) In Section 3 we
prove perturbation theorems for several operators ofthe form (1) which
are in the limit point case. In the simplest case ofTheorem 3.1 with unity
weights, a result is obtained which is analogous to the Schrodinger
operator -y" result which states that the perturbing term V(x)y is
a relatively bounded (relatively compact) perturbation of -y" if and
only if

lim sup m2 (t) dt < ,
X--OO ,/X

lim f’+’ V’9(t)dt:O)X---O3

for some e > 0. (See [11, p. 53].) The perturbation theorems ofthis paper
may also be applied repeatedly to decompose an operator as is done
following Theorem 3.4.
For limit circle operators the results for perturbations ofminimal and

maximal operators are quite different. In Section 4 we consider the limit
circle operator of the form (1) with power coefficients. For the minimal
operator the results are somewhat analogous to the limit point case.
However, for the maximal operatorwe have the surprising result that the
concepts of relative boundedness and relative compactness coincide.

2 PRELIMINARIES

The purpose of this section is to introduce notation and theorems which
will be used throughout this work. We use definitions given by Goldberg
[7] and Weidmann [12].

LetXand Ybe Banach spaces and let G and Fbe linear operators, each
having domain in Xand range in Y. Denote the domains of G and Fby
D(G) and D(F), respectively. By definition the graph norm ofFon D(F),
denoted II’IIF, is given by IlYlIF= IlYll + IIFylI. We say that G is relatively
bounded with respect to F (or F-bounded) if D(F) C_ D(G) and G is
bounded on D(F) with respect to I1" IIF, i.e., there exist constants a,/3 > 0
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such that Ilayll allyl[ + IIFyll for all y E D(F). The infimum ofall such

3 is called the relative bound ofG with respect to F(or the F-bound ofG).
A sequence (Yn}n=l is F-boundedifthere exists a constant C> 0 such that
Ilylle< c for each n. We say that G is relatively compact with respect to

F(or F-compact) ifD(F) C_ D(G) and G is compact on D(F) with respect
to II’IIF, i.e., if {Yn}n=l is an F-bounded sequence, then {Gyn)nC=l contains
a convergent subsequence.
Now, we establish some general properties of operators. As before

the subscript 0 denotes a minimal operator, and the subscript denotes
a maximal operator.

THEOREM 2.1. Let Fand G be closed linear operators in a Banach space
13 with D(F) C_ D(G). Then G is F-bounded.

Proof Let t’graph FB be defined by (y, Fy) Gy. Then t is
linear since G is linear. Let {(yn, Fyn)}nC=l C D() be such that
(y, Fyn)- (y,z) and (Yn, Fyn) as n- c. Now, we show that t
is closed, i.e., (y, z) E graph Fand ((y, z) (. Since Fis closed, graph F
is closed. Thus, (y, z) graph Fwhere z Fy; hence, (yn, Fyn) - (y, Fy)
in D((). Since G is closed, Yn -Y and Gyn (Yn, Fyn) - ( imply that
Gy (. So, we have ( Gy ((y, Fy). Thus, ( is closed. By the Closed
Graph Theorem, G is F-bounded.

THEOREM 2.2 Let F and G be formal differential expressions on an
intervalIwhere Fissymmetric, the order ofG is less than the order ofF, and
the coefficients ofFandG are sufficiently smooth so that D(F) C_ D(Go).

4. IfGo is F-bounded, then Go is Fo-bounded.
5. IfGo is F-compact, then Go is Fo-compact.

Proof (i) Let y D(Fo). Then there exists a sequence {Yn)n=l C D(F)
such that Yn-- Y and Fyn Foy as n o. Since G is F-bounded,
{Yn}nl C D(G’o) and there exists a constant C1 > 0 such that

IlG’oy GoYmI[ ym)ll < Cl(l[y. Yml[ q- [IF(yn Ym)ll).
(6)

Since {Yn}nC=l and {Fyn}n=l are convergent sequences, they are Cauchy.
Hence, by inequality (6), o(GoYn}n=o is a Cauchy sequence in the complete
space/2(a, b) and, therefore, converges. By definition of Go, y D(Go).
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Since y ED(Fo) is arbitrary, we have D(Fo)C_ D(Go). By applying
Theorem 2.1 we conclude Go is Fo-bounded.

(ii) Since G is F-compact, G is F-bounded. By part (i), Go is Fo-
bounded. Let {Yn)n=O C D(Fo) be an Fo-bounded sequence, i.e., there
exists a constant C2 > 0 such that for each n

Ilyll + IIFoyll C2. (7)

Since Fo is the closure ofF, there exists a Zn D(F) such that for each n

IIY. Znll / IlFoy Fzn[[ < (8)
n

Then {z,}no c D(F() is an F-bounded sequence since, via the triangle
inequality and inequalities (7) and (8),

IlZnll+ --IIZ. + IIFznll
(llz+ -Yni[ + IlFzn Foy.ll) + (IlY.II + IIFoynlI)

_<-+C _< +C.

Since G is F-compact, there exists a subsequence {z.}k=l of {Zn}nC=0
such that {Goz,,}k converges as k oz, say to . Thus, via the triangle
inequality, the F0-boundedness of Go, and inequality (8), we have that
{Y.}.=I c D(Go) and for some constant C3 > 0

GOYnk 11 -- 11GOYnk aoznk / Goznk 11
[[GO(Ynk- z,k)[[ / I[Goznk-

< C3([[y zn[I / [[Foy, Foznll) / Ilaoz.
<_ C3

/ Ilaozn fill --’ o as k -nk

Therefore, {GoYn }n=l contains a convergent subsequence. By definition,

Go is Fo-compact.

THEOREM 2.3
Then

Let Fand G be as in Theorem 2.2 and let D(F1) C_ D(G1).

(i) GliSFl-bounded’,
(ii) Go is Fo-bounded;
(iii) Go is Fo-compact ifG1 is Fl-compact.
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eroof
(i) Apply Theorem 2.1.
(ii) Let y E D(F).
Then via part (i), there exists a constant C > 0 such that

Since y D(F)is arbitrary, we have that G is F-bounded. Apply
Theorem 2.2 (i) to complete the proof.

(iii) Let {Yn}nC=l C D(F0) be an Fo-bounded sequence. Then
{Yn}n=l C D(F1) and is an Fl-bounded sequence. Since G1 is F1-
compact, there exists a subsequence {Ynk}kC=l of {Yn}nC=l such that
the sequence {GlYnk)k=l converges as k -. cx. Now, part (ii) implies
that D(F0) C_ D(Go). Hence, Goy,, GlYn for any n. Therefore, the
sequence {GoYn}kl converges as k---o. By definition, Go is
F0-compact.

The following lemma is stated and proved in [2, Lemma 2.1]:

LEMMA 2.4 Let Xand Y be subspaces ofa Banach space 13, where X is

closed, Y is finite dimensional, and XN Y= (0}. Then there exists a

constant K> 0 such that

x+yl[>-Kl[y[I for all x X and y Y.

THEOREM 2.5 Let Fand G be as in Theorem 2.2, Go be Fo-compact, and
D(F1) C_ D(G1). Then G1 is Fl-compact.

Proof Let {Yn}n%1 C D(F) be an Fl-bounded sequence, i.e., there
exists a constant C > 0 such that for each n

[[Ynl[ + [[FlYn[[ <_ C1. (9)

Since D(F1) D(Fo) @ S where S is finite dimensional [see Eq. (3) and
inequality (4)], Yn can be written as Yn Yn,o "+- Yn,c where Yn,o D(Fo) and
Y,,,c S for each n. Thus, we have

GlYn GlYn,o -’k GlYn,c GoYn,o -+- GlYn,c

for each n since D(Fo) C_ D(Go) C_ D(G1). Since F0 C F andF is bounded
when acting upon a finite dimensional space, there exists a constant
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C2 > 0 such that for each n

IIFy,cll C211Y,cll. (10)

Thus, via the triangle inequality and inequalities (9) and (10), we have
for each n

IIFyn,011- IIFy,, -Fyn,cl[ IIFlYII + IIFly,cll C + C211Yn,ll.
(11)

Via Lemma 2.4,

(12)

Thus, via inequalities (9), (11), and (12), we have that for each n,

C2[IF0y.,011- IIFy,011 C +-C, (13)

’[FoYn,o}nC=l is bounded in Zw(I).
Also, via the triangle inequality and inequalities (9) and (12), we have

that for each n

IlYn,011 IlYn- Y,,,cll < IIY.II + IlYn,cl]

<- Ily.II / . IlynllF, _< c / Cl. (14)

Thus, {Yn,O}nC=l is bounded in Z32w(I). Via inequalities (13) and (14),
{Yn,o)nl is an Fo-bounded sequence. Since Go is Fo-compact, {G0Yn,0}n=l
contains a convergent subsequence, say {GoYnk,o)k=l When acting on
a finite dimensional space, G1 is bounded. Thus, there exists a constant

C3 > 0 such that for each k, alYn,,c < C3][Yn,,cl]. Via this inequality
and inequalities (9) and (12), we have that GlYn,,c < (c3/g)c1 for

G is bounded in a finite dimensional subspace ofeach k, i.e. { lYnk,c}k=l
/22w(I). Hence, {GlYnk,c)k=l contains a convergent subsequence. There-
fore, {GlYn}nC=l contains a convergent subsequence since Gly,,=
GoYn,o -k- GlYn,c. By definition, G1 is Fl-compact.
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THEOREM 2.6 Let Fand G be as in Theorem 2.2. IfF is regular at a and
limitpoint at b, then Go is Fo-bounded(Go is Fo-compact) ifandonly ifG1 is

Fl-bounded (G1 is Fi-compact).

Proof Via Eq. (3) and inequality (4), we can write D(F1) D(Fo) @ S,
where S is finite dimensional. Since F is regular at a and limit point at
b, dimS=n x m. We know [12, p. 62] that there exists n x m-functions
which are in the domain of F1, have compact support in (a, b), and are
linearly independent modulo D(Fo). Let us call this span offunctions So.
WLOG, we can take S So. Since the order ofG is less than the order of
F, we have So c_ D(G1). Thus, D(Fo) c_ D(Go) implies that D(F1) C_ D(G1).
Suppose that Go is Fo-bounded. Then D(Fo)C_ D(Go). Hence, G1 is

Fl-bounded via Theorem 2.3 (i). Suppose that Go is Fo-compact. Then
D(Fo) C_ D(Go). Hence, G1 is F-compact via Theorem 2.5. Moreover,
if G is F-bounded (G1 is Fl-compact), then Go is F0-bounded (Go is
Fo-compact) via Theorem 2.3 (ii) (Theorem 2.3 (iii)).
The following theorem and lemma [4, pp. 570, 575,576] are important

in the proofs of later theorems.

THEOREM 2.7 Let I [a, cz) and let N, I4/, andP bepositive measurable
functions such that N, IV- 1, and P- E/loc(I). Suppose there exists an

eo > 0 and a positive continuousfunctionf f(t) on Isuch that

and

S2(E) := sup[-Stt-t-ft,I

for all e (0, eo). Then there exists a constant k > 0 such that for all
e (0, eo) andy D,

f NlYl2 < k{S2(e) fI WlYl2 + e2SI(e) f PlY’[2}
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where

D= (y’yE ACIo,(/), S WlYlg<’ and f1 ,iy’I2

Note that if Sl(e), S2(e) < c for e el, then Sl(e), S2(e) < for all
e(0,el].

LEMMA 2.8 Let f,g ACloe(I) be positive functions on an interval I
satisfying If’(t)l < No and ]f(t)g’(t)l < Mog(t) a.e. on Ifor some constants

NoandMo. Thenforfixed I, 0 < e < l/No, and < 7 < / ef(t), we have
that

(1- eNo)f(t) <_f(7") <_ (1 + eNo)f(t)

and

e-Mo/Nog(t) < g(7-) < et/Ng(t).

This lemma implies that both positive and negative powers off(r)
and g(7-) are essentially constant for < r < + ef(t) and fixed t.

In the proofs of several results in this work, we will use unitary
transformations. Here, we develop sufficient conditions for a unitary
change of dependent and independent variables for a maximal (or
minimal or self-adjoint extension of a minimal) operator of the form

0 W-1 [(02)’-+- Ok] + N’z x e X, (15)

where

O=
-0 0 2

and" d/dx.
Let =fix) where f: X T is a strictly increasing (decreasing) C(1)-

function, and let

(#1 (x)Uz(t) 0
Z (X)) /V(Xfor z 22(X)

where #i C(X), for 1, 2, are never zero on X.
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If the weight functions wi satisfy on T

wi(t) Wi(x) for i= 1,2,
u(x)l(x)l (16)

then after some calculations we have for , z E E,(X)

(U’Uz)2w(T)---fT [Uz(t)]*( w-{l(t)O
(, z)

O)w (t)
[U(t)] dt

(17)

Thus, U is a unitary map from E2w(X) onto E2w(T). Let L UMU- 1,
y Uz D(L) for z D(M), and d/dt. Then

MU_ly(x w_l ( 1 {(O-’y) ](x) + e[(-’) y

-k- #-ly(x)]) +.A/’/l-ly},
where

W(x)--(Wl(X) 0 ) (#i (x) 0 )0 W2(x) and #(X) 0 #2(X)

Hence, suppressing independent variables and carrying out-the indi-
cated operations, we have that

Ly UMU-ly

y ,y ly#W- {e#- ’j+ (e#-) j- e#-l/2# + e#-ly j}

-I--.A/’#-ly} =#2jw-l{[(y’-+-((y)’]+.y},
where

(t)--" (#-lo#-l)(x) (18)
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and

( 11 1] 11./’(t) -’--- [#-1(#-10#- (-10#-)#- +-1- (X).

(19)

Thus, via Eq. (16)

Ly(t) (sign j) ( wi-O W-10 )( [(y)/_._ l)y/] _l_.].y) tET.

(20)

Also, for U3, E D(M we have

(Ly, L,)Zw(r) (UMU-ly, UMU-I)w(r)
UMz, UM)c.(r)
(Mz, M3)c.(x), (21)

where the last equality follows by Eq. (17). Therefore, if we have the
conditions on the weight functions (16) and on and., which are given
by (18) and (19), then

[[zll(x> Ilyllw(/ and IlMzll(xl Iltyllw(/

via Eqs. (17) and (21).

3 PERTURBATIONS OF T: LIMIT POINT CASE

In this section, we consider perturbations B of a higher-ordered
differential operator T. These operators T and B are defined on I by
the equations

and

01(00 w-I y) (22/

By--(w-{1 0 )(ql q41(yl) (23)0 w-1 q3 q2 Y2
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where the coefficients ql, q2, q3, and q4 are assumed to be real, locally
Lebesgue integrable functions. Since B is a multiplicative operator,
B1 B0. If q3 q4, then B1 is self-adjoint.
We develop necessary and sufficient conditions for the perturbations

to be relatively bounded or relatively compact with respect to T. These
conditions involve explicit integral averages of the coefficients of B. In
Theorem 3.1 we consider the maximal operators T1 and B1 associated
with the differential operators (22) and (23), respectively. The proof
relies heavily upon Theorem 2.7 and Lemma 2.8. Corollaries 3.2 and 3.3
apply Theorem 3.1 to perturbations of an operator of the form (1) with

0) 1(0 _xo)0 x. Po(x)=O, and Qo(x)=- x 0

for some constants 7 and a. Each proof makes use of a unitary
transformation. Corollary 3.2 considers the operators on the interval
[a, o), a > 0, with 7 a _> so that the unperturbed operator is limit
point at o; whereas, Corollary 3.3 considers the operators on the interval
(0, a], a > 0, with 7- a _<-1 so that the perturbed operator is limit
point at 0.

THEOREM 3.1 Let I= [a, cxz)for some a > O, let q (-]/4=1 q2i l/2, andlet
Wl w2 __f-1 wherefE ACloe(I) is positive and If’(t)l <_ No a.e. on Ifor
some constant No. Then thefollowing statements hold:

(i) B1 is T-bounded ifand only if

t’t+ef(t)f2sup (T)q2(T) dT" < cxz,
tel f (24)

for some e E (0, 1/2No). Further, when (24) holds, the relative bound

ofB1with respect to T1 is zero.

(ii) B1 is Tl-compact ifand only if

lim ft+ef(t)f2t-o f-- (T)q2(T) d- 0, (25)

for some e (0, 1/2No).
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Proof By applying Lemma 2.8 with g-- 1, we know that positive and
negative powers off are essentially constant on intervals of length ef.
Thus, we may replace

1

f(t) ft t+ef(t)f(’r)q2(’r) d’r

with either

rt+ef(t)
f(t) at[t+f(t) q2(T) dr or Jt f(T)q2(r) dT.

(i) Sufficiency Let us consider any y eD(T1). Then we have,
suppressing the independent variable,

ilYl[ f-1 [lY 9
/ lyv.lz], (26)

and

IITyll = f[lyl + ]yl], (27)

IIBylI= .Z" f{[q + q]lYl[2 + [qlq4 + q2q3lYlff2

+ [qlq4 + q2q3]lY2 + [q + qa]lY[}
< f f{[q + q]lYl + 21qlq4 + qq3llYYl + [q + qa2]lYl}

(28)

We make use of the inequalities 21YlY21
_

[Yll 2 + lye[
[qlq4 + q2q3[ < 2q in inequality (28) to obtain

and

Ilnyll 2 f 3f(’r)q2(’r)[lyl (7)12 + ly2(r)[2] dr. (29)

Now, we show that the hypotheses of Theorem 2.7 hold for some
e E (0,1/2N0) with N=fq2, IV=f-1, and P =f. Since positive and
negative powers offare essentially constant on intervals oflength ef, we
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have for some constants C1, C2 > 0

Sl:SuplL[St’t-ef(t)f-l(7")dT"l[Tt-Pef(t)f(7")q2("i’)dT"l)tI t2
C1_< sup f(r)q2 (r)dr
E tI ,t

and

(30)

{1 [itt t+ef(t) }[Stt t+ef(t) "r])$2 suPt., E" 2f2 (t) f(r) dr f(r)q2(r) d

< C2sup f(’r)q2(’r) dr]
E tEI

(31)

for some e E (0, 1/2N0). Inequalities (24), (30), and (31) give us S1, $2 < oo
for some e E(0, 1/2N0). Therefore (via Theorem 2.7), there exists a
constant Ca > 0 such that

f(r)q2(r)[ly, (r)l2 + ly2(r)l2] dr

<_ C3{:f-’(r)[ly,(r)l + ly2(r)l2] dr

+e2 ff(){lY(r)l+ ly()121 d’r}. (32)

By substituting (26), (27), and (29) into (32), we obtain for some constant

C4>0

IlZlyll <_ C4(llyll: + :llryll2).

Thus, y D(Bi). Since y is arbitrary, the above inequality implies that B1
is T-bounded and that the relative bound of B1 with respect to T1
is zero.

Necessity Let b be a function in C(R) such that b on [0, 1] and
supp(b) [-2, 2]. Fix e (0, 1/2N0). For each r _> a we define

br(t q5 (ef(r))’t- r for _> a.

Then, b,-- on [r, r + ef(r)] and supp(br)= [r- 2ef(r), r + 2ef(r)].
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For each r > a we define

(0)qr(t)
q t) and r(t)= b(t) for t>_ a. (33)

Via Lemma 2.8, a change of variables, and the continuity of b, there
exist constants C1, C2 > 0 such that for each r > a

11112 f-1 (t)dp2(t) dt < Cle b2(u) du < C2.
2

(34)

Similarly, for each r > a

Via Lemma 2.8, a change of variables, and the continuity of b’, there
exist constants C3, C4 > 0 such that for each r > a

IIZll2-- ’f(t) d 2

dt _< C3g-1 [tt(u)]2 du C4.
2

(36)

Similarly, for r > a

(37)

Since br 1 on Jr, r + ef(r)] and supp(G)= [r- 2ef(r), r / 2ef(r)],

[r+2ef(r)r+ef(r)
2 2f(t)[qEl (t) + q3(t)] dt _< f(t)[q(t) + q3(t)]oE (t) dt

,it d r-2ef(r)

-I1,112. (38)

Similarly,

f(t)[qZ(t) + q]4(t)] dt _< f(t)[q(t) + q](t)]dp(t) dt
,I r-2ef(r)

I111. (39)
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Thus, via the Tl-boundedness of B1 and inequalities (34)-(39), there
exists a constant C5 > 0 such that

+ef()f(t)q
2 (t) dt <_ C5.

Since the right-hand side of the above inequality is independent of r,
inequality (24) holds.
Note that the proof of necessity shows that (24) holds for every

e E (0, 1/2N0).
Sufficiency By the previous argument B1 is T-bounded. Thus,

D(T) C_ D(B). For every positive integer N> a, define BN on D(T) by

By on [a, N],BNy
0 on (N, cx).

In order to simplify the proof, we break the argument into two claims.

CLAIM 3.1.1 BN B1 in the space ofbounded operators on D(T) with
the T-norm.
Proof of Claim 3.1.1 By a note in Section 2, we know that T is closed
since it is a formally self-adjoint maximal operator of the form (1).
Therefore, D(T) is complete under the T-norm.

Supressing the independent variable and using the inequalities
21ylY21 <_ lyll2 / ly2l2 and Iqq4 + q2q3[ <_ 2q2, we have for y E D(T1)

[[By BuYl[ f{[q + q][Yla + [qlq4 + qEq3]YlY2

+ [qlq4 + q2q3]YlY2 + [q22 + q42]lY2[2}

< f([q2 + qllY a + 2[qlq4 + qzq3llYlY.[

+ [q + ]lY }

< 3 /q[lyl + (40)

We apply the sufficiency argument in part (i) with IN [N, o) to the
last inequality in (40). Via Theorem 2.7 and inequalities (30) and (31),
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there exist a constant kl > 0 such that

IIBy- BYll2 _< kl sup fq2 f-l[ly + lY.l2]
tIv ,

+egfN f[ly12 + ly12]}. (41)

Via inequality (41) there exists a constant kz > 0 such that

lily- BuyII < k. sup f(r)q(r)dr {IlYll + YlI}. (42)
tEIv

Therefore, inequality (42) implies that for y 0

[[By-BNyI, < k/2(supl[t+ef(t) /)
1/2

Ilyll, \ti .t
f(7")q2(T) dr (43)

Since Iv [N, c), Eq. (25) implies that suptEiN {f+ef(t)f(r)q. (r) dr} 0
as N so that, via inequality (43), we have

liB- "ll - 0 as N -- x.
CLAIM 3.1.2 Each BN is Tl-compact.

Proof of Claim 3.1.2 Let {Yn}nC=l C D(T1) be a Tl-bounded sequence
where Yn (yY:’12) for each n. We need to show that for each N the

(X3sequence {BNYn}n=l has a convergent subsequence. We make use of
the Arzela-Ascoli Theorem.

Let us consider the sequence of the first component functions

{Yn,1 }n%l" Using the following well-known inequality, we show that this
sequence is uniformly bounded on [a, N].

If gEAC[a,b] and h(t) >O is Lebesgue measurable with

f: h-1 (t) dt < cx, thenfor [a, b]

1/2

Ig(t)l < fbh-l(r)lg(12_d.
f: h-1 (T) dT

+ (o/a’bh-l(7-)dT-) 1/2 (lab h(7")lg’O-)l d-)
1/2

(44)
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Sincefis a positive, continuous function on [a, c), f-1 is bounded
above and below on [a, N]. This fact along with the above inequality
implies that there exists a constant k3 > 0 such that for [a, N]

lYn, (t)l <- k3 f-1 (r)lyn, (r) dr + f(r)lY’n, (7")] 2 dr

_< k3 (lly + Ten I])

for each n. Since {yn},=0 is a Tl-bounded sequence, the above inequality
implies that the sequence {Yn,1 }n=l is uniformly bounded on [a, N].
,Now, we show that {Yn,1}nC=l is equicontinuous on [a,N]. Via the

Cauchy-Schwarz inequality and the boundedness of f-1 on [a,N],
there exists a constant k4 > 0 such that for s, [a, N]

lYn, (s) Yn, (t)l Yn’,l (7") dr

<_ f-1 (r) dr f(r)ly’n, (r) dr

1/2
<_ k4ls t[ 1/2 f(r) ]yn,l (7")12 dr

< ,41 tl / Ily. ,-

Since {Y,},I is a T-bounded sequence, the above inequality implies
that the sequence {Yn,1 }nC=0 is equicontinuous on [a, N].

Therefore, via the Arzela-Ascoli Theorem we conclude that there
exists a subsequence {Ynk,1 )k%l of {Yn,1 }n=0 which converges uniformly
on [a,N]. By repeating the above arguments on the subsequence
{Ynk,E}k=l of {Yn,2}n=l, We conclude that there exists a subsequence of
{Ynk,E}k=l which converges uniformly on [a,N]. Hence, there exists a
subsequence of{y,}n=l whichconverges uniformly on [a, N]. WLOG,we
assume the sequence {Yn}nC=l converges uniformly on [a, N].
Now, using an argument similar to the one in (40), we have for eachN

N

IlBvyn nrymll2 _< 3 f(r)q2(r) Ily,,- ymll2 dr

< 3 sup IlYn- Ymll22 f(r)q2(r) dr
a<t<N
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where

IlYn Ymll [Yn,1 (t) Ym,1 (t)]2 at- [Yn,2(t) Ym,2(t)]2.

Since the integral on the right-hand side is finite, there exists a constant

k5 > 0 such that

2IIBy BNYm[[ 2 5 k5 sup Ily -Yml[2.
a<_t<_N

Since {Yn}n%l is a Cauchy sequence in the uniform norm, the above
inequality implies that the sequence {BvYn}n%l is Cauchy in 2w(I for
each N. Therefore, (Bvyn }n%1 converges for eachNas n oe since/22w (I)
is complete. Hence, each Bv is Tl-compact.

Since B1 is the uniform limit of Tl-compact operators, B is
Tl-compact.

Necessity We use contradiction arguments to show that (25) must
hold.
Suppose that for some e E (0, 1/2N0) there exists a p > 0 and a sequence

{rn}n=l of positive numbers such that rn oe as n x and for each n

2f(t) [q21( t) + q3(t)] dt _> p.

Let {fir}r_> a be defined by (33). Thenvia inequalities (34) and (36) there
exist constants C2, Ca > 0 such that for each n

/.1/22II , ll r, (11 , 11 + IIr , ll)a < (Cd/ + "4

Thus, {Orn}n% is a Tl-bounded sequence. Since B1 is T-compact,
{Bqrn}n%l has a convergent subsequence. WLOG, we assume {Bqr,}
converges, say to some Y0. Via the properties of, we have for each n

p < f(t)[q(t) + q23(t)] dt

rn+2eJ(rn)
2 2<_ f(t)[q21(t) + q3(t)]dpr(t) dt

Jrn-2ef(rn)

-IIB  .II2.
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Notice that a contradiction is reached if we show that Yo 0 a.e. in
[a, oo). Let Jo be a finite subinterval of [a, oo). Since rn as n o

and supp(br)= [rn- 2ef(rn),r + 2ef(rn)], we conclude that br --0
on Jo for sufficiently large n. Hence, ff 0 and B --0 on J0 for
sufficiently large n. For such n

Ily0llJo -I[y0 Br,l[So <_ Ily0

Since BCbr, Yo as n o, and the left-hand side ofthe above inequality
is independent of n, we have Ily011J0 0. Thus, Yo 0 a.e. in [a, oo) since
the interval Jo is arbitrary. This contradiction implies that

t+ef(t)
2lim f(-)[q20- + q3(-)] d- 0, (45)

for some e E (0,1/2No).
Moreover, by repeating the above argument with ql and q3 replaced

by q2 and q4, respectively, and fir replaced by r (as defined by (33)),
we conclude that

t+ef(t)
lim f(-) [q24(7- + q24(7-)] dr 0,

for some e E(0, 1/2N0). This equation along with Eq. (45) implies
(25) holds.
Note that the proof of necessity shows that (25) holds for every

e (0, 1/2N0).

Next, we prove two corollaries of Theorem 3.1. We consider the
maximal operators associated with the following differential expressions
on the interval I:

0 0 --Xa Zl{ [(xo 0

(o _xo) 1-+-
Xa 0 22

(46)

and

0 blx-7)(b362 ) (47)
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where the coefficients bl, b2, b3, and b4 are assumed to be real, locally
Lebesgue integrable functions and= d/dx.
COROLLARY 3.2 Let I= [a, o)for some a > O, let b (i4=1 b/) 1/2, and
let "7 a > and No [a "7]a-’- 1. Then the following statements
hold:

(i) /1 is l-bounded ifand only if
x+exa-’

sup x"- u-2"b2(u) du < o,
xI x

(48)

for some e E (0, 1/2N0). Further, when (48) holds, the relative bound

ofJ with respect to J’l is zero.

(ii) /1 is J’l-compact ifand only if
x+ex’-’

_27b2lim x-’ u (u) du 0, (49)

for some e E (0, 1/2N0).

Proof We begin by applying an argument in Section 2 to transform the
differential expressions unitarily. Notice that J" is of the form (15) with

W1(x) W2(x) x, O ( -0x), and A/" 0. Let #1 (x) #2 (x)
so that y(x) x’#2z(x) and, via Eqs. (16), (18), (19), and (20),

(x’-’ 0 )(0-1)(.1) (50)Ty(x) 0 x-’ 0 j;2

and

( xa-7 0 )( x-abl x-ab4) (yl) (51)By(x)-- 0 xa-’r x-ab3 x-b2 Y2"
Now, we apply Theorem 3.1 (withf(x) x-zand q(x) x- b(x)) to

the maximal operators T1 and B1 associated with the transfoed
differential expressions (50) and (51), respectively. Notice that for x E L
I(X)[ a 7[Xa-7-1 [a 71a-- since a 7 0. Thus, the
sharpest constant No in Theorem 3.1 is given by No [a- 7[a -e- 1.

Hence, B1 is T-bounded if and only if

x+exa-’
sup x7-a u2(a-7)[u- b(u)]2 du < c,
xI x
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for some e E (0, 1/2N0), i.e., B1 is Tl-bounded if and only if

x+exa-’r
sup x"-a U-27 bE(u)du <
xEI x

for some e E (0, 1/2N0). Since the transformation is unitary, inequality
(48) holds if and only if/1 is l-bounded.

Similarly, B is T-compact if and only if

lim x- u-2 b2 (u) du O,
X X

for some e (0, 1/2N0). Thus, via the unitary transfoation, Eq. (49)
holds if and only in 1 is l-compact.

COROLLARY 3.3 Let I (0, ]for some a > O, let b (E=I b)1/2, and
let 7 a and N0 17 a + 2la- + 1. Then the following state-

ments hoM:

(i) h is -boundedand only

Zxsup x-+ u-- b(u)du < , (52)
xI

for some sufficiently small e. Further, when (52) holds, the relative
bound of with respect to 1 i zero.

(ii) is -compact and only

X

lim X7-+2 U-27-2 b2(u)du 0, (53)
X---O

_
tXa_.

for some sufficiently small e’.

Proof We prove this result by using a unitary transformation to
transform the singularity at 0 to a singularity at and then applying
Theorem 3.1 to the new operators.

Again, we use the argument in Section 2 to transform the operators T
and Bunitarily. Let #1 (X) #2(X) Xa/2 SO thaty(t) Xa/22(X), t= 1Ix
and, via Eqs. (16), (18), (19), and (20),

(t"-+2 0 )(0-1)fy,) (54)Ty(t)=
0 -a+2 0 ,y
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and

( t’-a+2 0 )( ta-2bl ta-2b4)( yl ) (55)By(t)--
0 "-+2 t-2b3 t-2b2 Y2"

Now, we apply Theorem 3.1 (withf(t) "r- + 2 and q(t) x2-b(x),
t= I/x) to the maximal operators T1 and B1 associated with the
transformed differential expressions (54) and (55), respectively. Notice
that for E [a, c), If’(t)l I’r- a + 2It-+ I O 4- 2la-=+ since
q,- c 4- < 0. Thus, the sharpest constant No in Theorem 3.1 is given by
No--I’r- c + 21a-+ 1.

Hence, B1 is Tl-bounded if and only if

sup ta-’Y-2 ftt+et’r-a+2a<_t<_o

for some e E (0, 1/2N0), i.e., B1 is Tl-bounded if and only if

t+et’r-a+2
7.27 b2 ()sup -’-2 f dT< , (56)

a<t<cxz d

for some e (0, 1/2N0).
Via a change ofvariables and some analysis (See [6, pp. 34-35]), we can

show that (56) is equivalent to (52). Since the transfoation is unitary,
inequality (52) holds if and only if 1 is -bounded. Using a similar
argument, wecan showthat Eq. (53) holds ifand only ifl is l-compact.

The following theorem is a well-known result, e.g., see [1, p. 59] and
[11, pp. 52, 53].

THEOREM 3.4 Suppose A, C and D are linear operators such that D is

C-bounded with relative bound less than one.

(i) If A is C-bounded, then A is (C+ D)-bounded. Moreover, if the
relative bound ofA with respect to C is zero, then the relative bound

ofA with respect to (C+ D) is zero.
(ii) IfA is C-compact, then A is (C+ D)-compact.

Theorem 3.4 may be applied to successive perturbations B and C
of T. For example, if-J is given by (46) with a =- 2 and/ and t
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are given by

[lz(x) - kx x2 z2(x)
0 )0

for 0 < x <, then + + d is the energy operator of the relativistic
hydrogen-like atom [10, pp. 218-21]. The 6-tesrepresent the Coulomb
field. By an argument of [7, pp. 169, 170], it follows that (+)
+1 so that Theorem 3.4 combined with Corollary 3.2 yields that

towards infinity, i.e., on [a,),a>0, d is a relatively compact
perturbation of (+ ).
We conclude this chapter with an argument to show that the operator

T of Theorem 3.1 is limit point at . Since T is a focally self-adjoint
operator of the fo (1), T is limit point at iff d+ (T0) + d (T0) 2.
Hence, Tis limit point at iffd+ (To) d (T0) since the coefficients
of T are real. In order to deteine d+ (T0) and d_ (T0), it is enough to
consider dim N(T1) (see [3, Theorem 9.11.2]). Note that inequalities (4)
and (5) imply that the deficiency indices are either one or two since

d+ (To) d_ (To). Suppose that d+ (T0) d_ (T0) 2. Then every solu-
tion to Ty 0 is a linear combination of

(1) and YE(t)=(0)Y1 (t) 0

and is in Ew(I). Let Y3 be a nontrivial solution of Ty=O. Then for
some constant C > 0

IIY311=- r;(t) f (t)
f-l(t)

ra(t) dt

C f-1 (t) dt.

Via the hypothesis on f, we conclude that f(t) < Not + b for some con-
stant b. Hence,

f- (t) dt > (Not + b)-1 dt oe
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SO that Y3 D(T1). Since Y3 is arbitrary, there exist no nontrivial Ew(I)
solutions to Ty 0, i.e., d+ (T0) d_ (T0) - 2. This contradiction implies
that the deficiency indices are one. Therefore, Tis limit point at .
4 PERTURBATIONS OF T: LIMIT CIRCLE CASE

In this section, we consider perturbations of the higher-ordered
differential operator ’, where " and/} are defined by (46) and (47),
respectively. In Theorem 4.1 we consider the minimal operators 0 and
/}0 associated with the differential expressions (46) and (47), respectively,
on the interval [a, oc), a > 0, with 7 a < 1. The prooffollows a similar
argument as that ofTheorem 3.1 and applies the Hardy inequality:

b 4 fabflly(t)12dt < fl+21y’(t)12dt, (57)
(/3+ 1)

where -oc < a < b < ,/3# 1, and y(a) 0 y(b).
As an application of Theorem 4.1, Theorem 4.2 deals with the

maximal operators ’1 and/}1 associated with the differential expressions
(46) and (47), respectively, on the interval [a, oc), a > 1, with 7 a < 1.
In this section we let’= d/dx.

THEOREM 4.1 Let I=[a,c)for some a>0, b= (-/4=1b/2)1/2 and

7- c <-1. Then

(i) 0 is ’o-bounded ifand only if

fx+exsup U
2-2a b2 (U) du < o,

xEI X x
(58)

for some e (0, 1/2)
(ii) /o is o-compact ifand only if

lim -1 fx+ex U
2-2a b2(u) du O,

X--C X X

(59)

for some e (0, 1/2).
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Proof (i) Sufficiency As in Corollary 3.2, we make a unitary
transformation. Thus, we can consider 7 and/ to be of the form (50)
and (51), respectively. We begin by showing that/ is -bounded if
inequality (58) holds. Let us consider y E D(). Since y has compact
support in the interior of/, there exists a b < c such that the support
of Yl and the support of Y2 are contained in [a,b]. Then we have,
suppressing the independent variable,

IlYl[ 2 uT-[ly + ly212], (60)

II’yll u,-’r[ly12 + ly[], (61)

and

(62)

We make useofthe inequalities 21yly2[ < [yl[2 q-[y212 and [bib4 -q- b2b31 _<
2b2 in inequality (62) to obtain

II yll 2 _< 3 u-’r-’b2(u)[lyl (u)l2 / ly2(u)l2] du. (63)

Now, we show that the hypotheses of Theorem 2.7 hold for some
e E (0, 1/2) with N x 7- ab2, W xc 7 2, p x --, and f= x. By
applying Lemma 2.8 with g-- and f= x, we know that positive and
negative powers of x are essentially constant on intervals of length ex.

Thus, we have for some constants C1, C2 > 0

s, l [fx+Xu.r-duI [fxX+Xu-.r-,b2(u)dul}
_< C1 sup u-2b2(u) du (64)

E xEI I, x
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and

x
u--b(u) }

sup u2-2b:(u) du]
xI x

(65)

for some e (0, 1/2). Inequalities (58), (64), and (65) give us $1, $2 < oo
for some e (0, 1/2). Therefore (via Theorem 2.7), there exists a constant

C3 > 0 such that

(66)

Applying the Hardy inequality (57) to the first integral on the right-hand
side of the above inequality gives

By substituting (60), (61), and (62) into the above inequality, we obtain
for some constant C4 > 0

IIyll 2 _< c411 ?ll= _< c4(llyll / ?yll)=. (67)

Thus, y E D(/}). Since y is arbitrary, the inequality above implies that
/ is ?-bounded. Via Theorem 2.2,/}0 is i0-bounded.

Necessity Fix e (0, !) For each r > a define q, and , to be the2
vector-valued functions with compact support given by (33), where
f(r) r. Then via Lemma 2.8, a change of variables, and the continuity
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of b, there exist constants C1, C2 > 0 such that for each r _> a

I1,112 x-2(x) dx <_ ClEf7-t t2(U) du _< C2r"-c+l.
2

(68)

Similarly, for each r > a

Via Lemma 2.8, a change of variables, and the continuity of bt, there
exist constants C3, Ca > 0 such that for each r > a

limekiln= x- (x) dx

_< C3e-lra-’-I [qS’(u)]2 du _< C4r-’-1
2

(70)

Similarly, for each r > a

11 C4ra-’r-1. (71)

Since 0r---- 1 on [r, r + er] and supp(b) [r 2er, r + 2er],

r+Sx--’[bE(x) b(x)] dx+
r+2er

x--[b(x) + b(x)](x)dx I1112. (72)
r-2er

Similarly,

r+erx--[b(x) + b](x)] dx
r+2er

x--[b(x) + b](x)lO(x)aN IIll2. (73)
ar-2er

Thus, via the 0-boundedness of0 and inequalities (68)-(73), there
exists a constant C5 > 0 such that

+Sx-’-ab2(x) dx <_ Cs(r/-a+l -k-ra-’l’-l).
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After multiplying the above inequality by r7- + 1, we apply Lemma 2.8
to the left-hand side and obtain a constant C6 > 0 such that

l lr+rxV._2ab2(x) d < C6(r2(7_+1) + 1).
Jr

Since 3’-a-4- < 0, the right-hand side of the above inequality is
bounded on L Hence, inequality (58) holds.
Note that the proof of necessity shows that (58) holds for every
(0,

(ii) Sufficiency By the previous argument/}0 is 0-bounded. Thus,
D(0) C_ D(/}0). For every positive integer N> a, define/}n on D(0) by

NY= { y on [a,N],
0 on (N,

Notice that each n is 0-bounded with the same norm as 0 since

IInYll <_ IIBYlI. In order to simplify the proof, we break the argument
into two Claims.

CLAIM 4.1.1 :N -- 0 in the space ofbounded operators on D(o with
the ’o-norm.
Proof of Claim 4.1.1 By definition 0 is closed. Therefore, D(]P0) is
complete under the ’0-norm.

Let y E D(0). Since 70 is the closure of ’, for each integer n >
there exists a yn E D() such that

Ily- y.ll + lily-  Ynll <-, (74)
n

where y. ( y"’’ ] for each n.
\ Yn,2

For each y, T we have, suppressing the independent variable,
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Since each y has compact support in the interior of/, there exists a
b < o such that the support ofy, and the support ofyn,2 are contained
in [a, b]. Thus, we can apply the sufficiency argument in part (i) with
IN--[N, ) to the last inequality in (75).
Via Theorem 2.7 and inequalities (64)-(66), and (75), there exists a

constant k > 0 such that

IIDy. Dy.II2 k sup -2abE(u) du
xIs x

x u-*-2[ly.,(u) +ly.,2(u)du

We apply the Hardy inequality (57), as before, to obtain a constant

k > 0 such that

IIy 1 sp
xIkX x

x+ x
sup -b()d I1.11.xIkx x

Therefore, via the triangle inequality, the o-boundedness of 0, and
inequalities (74) and (76), we have for each n

< + , sup u2-2b2(u) du
n xxeIu x

for some constant k3 > 0. By applying the triangle inequality and
inequality (74) again, we obtain for each n

c x+ x

IID- D.II 2g + gi: sup :-::b:() d
xIs x

2k3x (11.- 11o Ilsllo)-

+
kxeiukxx -2ab2(u)du}) (+
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We let n c to obtain for each N

lily iyll <_ k/2 (sup
\xii x

Since Iv [N, o), Eq. (59) implies that

1 fx+Xu2_2ab2(u) du} 0asNsup
x6lkx x

so that, via the above inequality, we have for y 0

I1- NII
CLAIM 4.1.2 EachN is o-compact.

Proof of Claim 4.1.2 Let (Yn}nl C D(0) be a 0-bounded sequence
Ynwhere y, ) for each n. We need to show that for each N the
Yn

sequence {BNYn}n=I has a convergent subsequence. We make use
of the Arzela-Ascoli Theorem.

Letus consider the sequence ofthe first componentfunctions {Yn,1 }n1"

We show that this sequence is unifoly bounded on [a,N]. Via
inequality (44) there exists a constant k4 > 0 such that for each x [a, N]

[y,, (x)[ k4 u-lYn,a (U)l2 du + u-iy, (u) du

Since {Y,},I is a 0-bounded sequence, the above inequality-implies
that the sequence {Yn,1 }n is unifoly bounded on [a, N].
Now, we show that {Y,}nl is equicontinuous on [a,N]. Via the

Cauchy-Schwarz inequality and the boundedness of u- on [a,N],
there exists a constant k5 > 0 such that for s, e [a, N]

y’n,l(u) du

< u7- du U-lY’n, (u) du

I1/2< ksls_ tll/2 f ,,-i,,’ 12..,(u) du

< ksls- t[1/21lynllo.

lYn,1 (S) yn,l t)
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for each n. Since {Yn}n=l is a J’0-bounded sequence, the above inequality
implies that the sequence {Yn,1}nl is equicontinuous on [a, N].

Therefore, via the Arzela-Ascoli Theorem we conclude that there
exists a subsequence {Ynk,1)kC=l of {Yn,1 }n=l which converges uniformly
on [a,N]. By repeating the above arguments on the subsequence

{Yn,2}n=l, we{Ynk,2)k=l of conclude that there exists a subsequence of

{Ynk,2)k= which converges uniformly on [a,N]. Hence, there exists a

subsequence of{Yn}nl whichconverges uniformly on [a, N]. WLOG,we
assume the sequence {Yn}nC=l converges uniformly on [a, N].
Now, using an argument similar to the one in (40), we have for eachN

N

[[VYn -/VYm 2 -< 3 u-’-b2(u)[lYn, (u) Ym,1 (U)[2

+ [Yn,2(U) Ym,2(U)[2] du

< 3 sup Ily ymll2 u-’-b2(u) du.
a<x<N

Since the integral on the right-hand side is finite on [a, N], there exists
a constant C > 0 such that

II/y. -/ymll2 _< C sup IIY Ymll.
a<x<N

Since {Yn}n=l is a Cauchy sequence in the uniform norm, the above
is Cauchy in 2 (I) forinequality implies that the sequence {BNYn)n=I -’w

each N. Therefore, {/NYn}nl converges for eachNas n x since 2w(I
is complete. Hence, each/N is J’0-compact.

Since /)0 is the uniform limit of J’0-compact operators, /0 is
J’0-compact.

Necessity We use contradiction arguments to show that Eq. (59)
must hold.

Suppose that for some e E (0, !) there exists a p > 0 and a sequence2

/’n }n=l of positive numbers such that rn as n---. and for
each n

1 r/rn+rn x2-2[b21(x)+ b](x)] dx > p.
l’n rn

(76)
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Let {fir}r>_ a be defined as in (33) withf(r)= r. Then via inequalities
(69) and (71) there exist constants C2, C4 > 0 such that for each n

0 (11.11 + I1.11)= 2(11.11 = + IIr. =)
<_ 2C:rn-+1 + 2C4r’-’- (77)

For each r > a define

r(X) r1/2(7-a+l)fr(X) for x > a.

Via inequality (77) we have for each n

7-a+l 2 ’z-, .2(7-a+1)

Since 7-a + < 0, the above inequality implies that {rn}n%l is a

’0-bounded sequence. Via the 0-compactness of/}0, {/},}n%1 has a

convergent subsequence. WLOG, we assume {/},}nl converges, say
to some Y0. Now, via inequality (76), properties of br,, and Lemma 2.8,
there exists a constant C > 0 such that for each n

Hence, II.ll (P/C) 1/2 > 0 for each n.

By an argument similar to the one used in the proofofTheorem 3.1 (ii),
we conclude that Y0 0 a.e. in [a, ). This contradiction implies that

lim [x+,x u-9aib(u) + b(u)] du O,
X--+OC X d X

(78)

for some e E (0, 1/2).
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Moreover, by repeating the above argument with bl and b3 replaced
by b2 and b4, respectively, and r replaced by r (as defined by (33)), we
conclude that

lim -1 [x+x uE-E[bE2(u) + b42(u)] du 0,
X---O No X

for some e E (0, 1/2). This equation along with Eq. (78) implies that (59)
holds.
Note that the proof of necessity shows that (59) holds for every

THEOREM 4.2 Let I=[a, oe)for some a>_ 1, b (-i4=1 b/E) 1/2, and
/- a < -1. Then thefollowing three statements are equivalent:

(i) flx " b2(x) dx <
(ii) BI is Jl-bounded;
(iii) /1 is -compact.

Proof We break the proof into two cases.

Case I a=0.
We consider the maximal operators, 1 and/)1, and the minimal

operators, 0 and /}0, associated with the following differential
expressions on the interval/:

z(x) (x-’r 0 -10

and

:z(x):(x-’ 0 )(bl b4)(Zl)0 x-’r b3 b2 z2

(i) = (iii)" Since - < and x > a > 1, we have

xb2(x) dx < 9[1" x-’rb2(x) dx.

Hence, (i) implies that/)0 is J0-compact via Theorem 4.1. Therefore,
D(o) C_ D(/)o).
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Via Eq. (3) we can write

D(’I) D(’0) @ S, (79)

where S has dimension four since is regular at a and limit circle at o.

CLAIM 4.2.1 S C_ D(/l).

Proof of Claim 4.2.1 Let zl and z2 be functions in C(1)(R) such that
zl(a) 1, supp(zl) [a- 1, a+ 1], z2(x) =0 for x<a, and z2(x) for
x > a + 1. We define

0 z(x)

and )0 22(X)

for x > a. Notice that these four vector-valued functions are linearly
independent. Since Zl has compact support,

IlZl = IIz=ll =
a+l

12x’lZl (x) dx,
da

which is finite since Z is continuous. Moreover,

faO [a+l faZ112411 = xlz.(x)l dx x’lz:(x)l9 dx + x" aN,
,a

which is finite since z2 is continuous and q,< -1. Thus, each Zi E 2w(I ),
with weights x.
We show that each Zi w(I), with weights x, so that each

Zi D(7l ). Since zl has compact support,

Moreover, since z(x) 0 on [a + 1, 0),
a+l

1123119 11’2411 = x-lz(x)l dx,

which is finite since z is continuous.
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Define S span{Z1, Z2, Z3, Z4}. We now prove that

D( 0) S,

i.e., we show that no linear combination of the Zi is in D(0). Suppose
to the contrary that there exist constants c,c2,c,c4 (not all zero)
such that

Z :-- clZ1 --t-- c2Z2 -t- c3Z3 --[-- c4Z4 E D(J’o).
Since J" is regular at a and Z E D(J’l), we have that Z D(70) if and
only ifZ(a) 0 and [Z, Y](x) 0 as x for every Y D(I), where
the Lagrange identity is defined by

[Y, ](x)= (Yl..2- Y2J31)(x)

for real vector-valued functions Yand (see [12, Theorem 3.12]). Since

zl(a) : 0, we must take Cl c2 0. Therefore, Z c3Z3 + c4Z4.
In order to satisfy the second condition of [12, Theorem 3.12], we

must have [Z, Za](x) 0 as x and [Z, Z4](x) 0 as x , where

[Z, Z3](x) c3[Z3, Z3](x) -- c4[Z4, Z3](x) c4[Z4, Z3](x)

and

Since

[Z, Z4] (x) c3[Z3, Z4](x) --1-- 4[Z4, Z4](x) 3[Z3, Z4](x).

lim [Z3,Za](x)=lim [(1) (0)x--, x-, 0
=1,

we must have c3 0. Similarly, C4--0. Hence, no linear combination of
the Zi is in D(J0).

Since Zl has compact support, II Z211 < . Moreover,
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and

II z41[ = + b](x)]lz2(x)l2 dx
a+l

x-’[b(x) + b](x)]lz2(x)l dx

+ x-’[b2(x) + b42(x)] dx,

which are finite by (i). Therefore, each Zi E D(l).
Equation (79) and Claim 4.2.1 imply that D(if’I)C_ D(/I). Via

Theorem 2.5/}1 is l-compact.
(iii) = (ii)" Since/1 is -compact, D() D(). Via Theorem 2.3
is -bounded.
(ii) (i): Since is -bounded, D() D(). Via Eq. (79)
S D(). Therefore, l]BZill < for each i, i.e.,

x-’rbg(x) dx < oc.

Case II a =/= O.
As in the proof of Corollary 3.2, we transform the differential

expressions ib and/ unitarily into T and B, respectively, where

0)(00 x-’ ) \y;)
and

By(x) 0
x-ab4x-b)(Yl)"

Replacing -), with -), a, b with x- b, and z with y in Case I, we have
that the following three statements are equivalent:

(i’) fI x- "-’b(x) dx <
(ii’) B1 is Tl-bounded;

(iii’) B is T-compact.

Since the transformation is unitary, (if) holds iff/}l is iPl-bounded, and
(iii’) holds iff/} is l-compact.
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