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In the center of our paper are two counterexamples showing the independence of the
concepts of global smoothness preservation and variation diminution for sequences of
approximation operators. Under certain additional assumptions it is shown that the
variation-diminishing property is the stronger one. It is also demonstrated, however, that
there are positive linear operators giving an optimal pointwise degree of approximation,
and which preserve global smoothness, monotonicity and convexity, but are not variation-
diminishing.
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1. INTRODUCTION

The preservation ofglobal smoothness has recently drawn some interest
in various fields ofmathematics. We refer to [4] and the references cited
there for a partial survey.
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In [2] it was shown that for the classical Bernstein operators
given forfE C[0, 1] and x E [0, 1] by

with pn,k(X) :- one has

l(Bnf; 6) <_ ;1 (f; 6) _< 2.1 (j 6), 0 _< 6 _< 1. (1)

Here wl is the first order modulus, and denotes its least concave
majorant.

If LipMa are the Lipschitz classes with respect to Wl, the left
inequality of (1) implies

Bn(LipMa C_ LiPMa O<a< 1.

This statement was recently supplemented by Zhou [19] who showed that

Bn(Lipa) C_ Lipa, 0 < a < 2.

The symbol Lipa stands for the Lipschitz classes with respect to the
(classical) second order modulus of smoothness WE. Zhou’s result was
recently modified in an interesting note ofAdell and P6rez-Palomares [1].

If inequalities and inclusions of the above type are valid, then (in
informal language) one speaks about global smoothness preservation.
This notion has not yet been formally defined, nor should it be, in our
opinion, at this early stage of the development.
On the other hand, in 1959 it was shown by Schoenberg [17] that the

Bernstein operators also have the so-called (strong) variation-diminish-
ing property. To be more specific, let us recall the following definition:
Let K be any interval of the real line, and let f: K- IR be an arbitrary
function. For an ordered sequence x0 < x <... < x of points in K, let
S[f(xk)] denote the number of sign changes in the finite sequence of
ordinatesf(xk), where zeroes are disregarded. The number ofchanges of
sign offin the interval Kis defined by

Sr[f sup S[f(xk)],

where the supremum is taken over all ordered finite sets {Xk}.
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Let I and J be two intervals, let U be a subspace of C(I), and suppose
that L" U C(J) is a linear operator reproducing constant functions.
The operator L is said to be strongly variation-diminishing (as an

operator from U into C(J)) if

Sj[Lf] <_ S[f] for all f e U.

Schoenberg then showed that

S[o,1][Bnf] <_ S[o,1][f],

a result usually referred to as the variation-diminishing property of
the Bernstein operators. This concept can be carried over to other
approximation operators in a straightforward manner.
Guided by a section in Farin’s thesis [6, p. 2-14] (’Bn as a smoothing

operator’) which essentially contains a global smoothness preservation
statement, as well as by the importance of the variation-diminishing
property in CAGD (cf., e.g., [7]), the question arose in several recent
discussions as to what the relationship between global smoothness
preservation and the variation-diminishing property might be.

It is the aim of the present note to show that both properties are
independent of each other in the sense that there are positive
approximation operators (which, moreover, reproduce constant func-
tions) having one of the two properties, but not the other. Nevertheless,
utilizing mild additional assumptions, it will be shown that the strong
variation-diminishing property implies the preservation of global
smoothness, so that, in this sense, the former is the stronger concept.
We will also discuss certain positive linear operators giving optimal
degrees of approximation, having good shape-preservation properties,
preserving global smoothness, but not being variation-diminishing in
the strong sense.

It should be emphasized that preservation of global smoothness and
the variation-diminishing property can be investigated for (almost) any
individual operator, without having other features in mind. However,
both properties appear to be ofinterest mainly as additional properties of
members of sequences of approximation operators. It is for this reason
that in the sequel we will focus on such operators, and in particular on
the case ofsequences ofoperators providing uniform approximation for
any functionfE C[0, 1].
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Before we proceed to present our counterexamples we recall the
following results from [2]. In their formulation, the notations

Ig(x) g(Y)l
Lip[0, 1] [,3 Lip/1, IglLip sup

M>0 Ix-yl>0 IX-- Yl

will be used.

THEOREM 1 Let L: C[0, 1]C[0, 1], LO, be a bounded linear
operator. IfL maps CI[0, 1] into Lip[0, 1], then one has

w(Zf’,t) < llLIl "l (f’, ClLl[), for all > O, fEC[0,1],

ifand only if

IZglLip _< c. IIg’ll for all g C [0, 1].

2. THE FIRST COUNTEREXAMPLE (AND ITS DEFICIENCIES)

First we show that the variation-diminishing property does not imply
global smoothness preservation.

Example Let Ln C[0, 1] C[0, 1] be defined by

Ln(f’, x) := Bn(f(t2); x/) f - "Pn,k(X/).
k=0

We observe that (Ln), e r is a sequence of positive linear approximation
operators which reproduce constants. Indeed, the approximation
property follows for example from a Korovkin-type argument using
the classical test functions (or more easily: from the approximation
property of Bn).
The variation-diminishing property of Ln can be verified as follows:

Let 0 < x0 < < Xm ( Then for (yj rn k=0,
we have

S({Ln(f;xj)}.:o S ak "Pn,k(Yj) <_ S({ak}k:O) <_ S[0,1](f).
k=0 k=0

Hence, Sto,1](Ln(f)) < St0,1](f).
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But L does not preserve global smoothness. This can be seen by
considering the functionfwithf(x) x. We have

Furthermore, a;(j 6) 6 and a; (LJ 6) 6(1 In) + x/-/n. Assume
now that the L preserve global smoothness. It follows that there exists
a positive constant c, such that 6(1 1/n) + x/-/n <_ c6, for all 6 [0, 1 ],
implying 1In _< x/(c + l/n), for all 6 [0, 1].
For 6 1/n4, the latter inequality becomes

which gives a contradiction.

Remark 2 Note that the sequence of operators (Ln)nr from the last
example does not map CI[o, 1] into Lip[O, 1]. Also the Ln do not
reproduce linear functions.

This leads us to following natural questions.

PROBLEM Suppose (Ln), r is a sequence ofpositive linear operators
mapping C1[0, 1] into Lip[0, 1], and having the variation-diminishing
property. Do the Ln then preserve global smoothness?

PROBLEM 2 Let (L)ner be a sequence of positive linear operators
having the variation-diminishingproperty, andsuch that Lnei ei, O, 1.
Is it true that the Ln preserve global smoothness?

3. PARTIAL ANSWERS TO PROBLEMS 1 AND 2

In the sequel we will give partial answers to the two problems indicated.
In particular the relationship between the variation-diminishing prop-
erty and the preservation of monotonicity and global smoothness will
be discussed.

LEMMA 3 If the operator L" C[0, 1] -- C[0, 1] is variation-diminishing,
then it preserves positivity and monotonicity.
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Proof The positivity is a consequence of the reproduction of con-
stants. Furthermore, iffis a monotone function, then for any constant
a we have

S[0,1] (L(f) a) < S[0,1 (L(f a)) < S[0,1] (f- a).

So, sincefis a continuous function, one has

S[o,1](f-a) < 1.

Thus the continuous L(f) changes sign at most once, showing it is
also monotone.

In the following we will prove several assertions concerning the
relationship between preservation of monotonicity and that of global
smoothness. Note that a related result was given by Della Vecchia and
Rata [5].
We denote by

A4 c Lip[0, 1] the set of all monotone functions on [0, 1],
A/[ + c A//the set of all increasing functions on [0, 1], and
A/[- c A4 the set of all decreasing functions on [0, 1].

The following two theorems provide a partial solution to Problem 1.

THEOREM 4 Let L: C[0, 1]--+ C[0, 1] be a positive linear operator
mapping C1[0, 1] into Lip[0, 1], and which reproduces constantfunctions.
IfL(Jl + f3 C1) C a/ + or L(JI + fq C1) C a/ --, then

1 (Lf; 6) < 1 (f;

for all E [0, 1] andfE C[0, 1], where the best constant c is ILel ILip.

Proof It suffices to show that IZglLip (__ C" IIg’ll, for all g ELip[0, 1]
(see Theorem and observe that IILII 1).
Assume first that L(A4 + fq C1) C AA +, and let g E C1[0, 1]. Then

hi (x) g(x) + x. IIg’ll
h2(x) g(x) x. IIg’ll



GLOBAL SMOOTHNESS PRESERVATION 97

Thus Lhl is an increasing function and Lh2 is decreasing. It follows that

Xl x2
(Lg)(x) (Lg)(x2)

Xl X2

(Le)(xl) (Le)(x2) >_ O,
Xl x2

Xl x2
(Lg)(xl) -(Lg)(x2)_ Ilg’[[ (Lel)(Xl) (Lel)(X2) <_ O,

Xl x2 Xl x2

for all x1, X2 f [0, with x X2.
The latter two inequalities imply IZglLip IlglllLelLip. Notice that

actually in the proof it is only required that Le E Lip[0,1]. Notice also
that for g--el one obtains equality in the latter inequality.
The case L(AA + N C1) C 3d can be treated similarly.

Under the additional assumption that L reproduces linear functions,
global smoothness preservation can be characterized as follows:

THEOREM 5 Let L" C[0, 1]- C[0, 1] be a positive linear operator
mapping CI[0, 1] into Lip[0, 1], and such that Lei =el, i= O, 1. Then, in
order to have

wl (Lf 6) _< a31(f;6), for all 6 e [0,1] andfe C[0, 1],

it is necessary and sufficient that

L(A//+ f"l C C J+. (2)

Proof IfL(3A + f’l C) c Ad +, from Theorem 4 we have

w (Lf; 6) < (f;

Because c II(Lel)’l[ 1, we have the desired inequality.

In order to prove necessity of (2), we will use the following:

LEMMA 6 (see Lupa [15 Theorem 1.1]) Let JCN be a compact
interval. We denote by M(J) the linear space of all functions f:J IR
which are bounded on J, endowed with the norm I]ll- supl.I. t now
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H" M(J1) M(J2) be a linear operator having the property: there exists
a positive number rn such that

(Heo)(x) > rn > O, x E J2.

H is a positive operator if and only if the operator 7-" M(J1) M(J2)
defined by 7-if= (1/H(eo))H(f), fE M(J1), satisfies 11711 1.

Proof of Theorem 5 (continued) We consider the linear operator
H: C[0, 1] C[0, 1] given by H(g) (L o I)’(g), where I(g)(x)
fg(t) dt. Since L preserves global smoothness, it follows
I[H(g)l] < Ilgll, which implies Ilnll <_ 1. But H(eo)= 1, so we obtain

From Lemma 6 it follows that H is a positive operator. Let now
g CI[0, 1], g’ > 0. We can write g(x) g(O) / f g’(t) dt, and thus
(Lg)’ H(g) > 0.

This completes the proof.

Our next result gives a partial answer to Problem 2. In contrast with
the previous statements, here it is only assumed that monotone func-
tions are mapped to monotone functions (which is true for any vari-
ation-diminishing operator, see Lemma 3).

THEOREM 7 Let L" C[0, 1]C[0, 1] be a positive linear operator
mapping CI[0, 1] into Lip[0, 1], and such that Lei=ei, i=0, 1. If
L(A4 f3 C[0, 1]) C t, then

Wl (Lf; 6) < if;1 (f; 6), for all 6 [0, 1] andf C[0, 1].

Proof First note that a positive linear operator L that reproduces linear
functions also interpolates at the endpoints. In fact, this follows from
the classical result of Mamedov [14] stating that for such operators
one has for allf C[0, 1] and all x E [0, 1] the inequality

IL(f; x) -f(x)l _< 2.Wl (f; L(I. -xl; x)).

Putting now x 0 one gets

IZ(f; O) -f(O) <_ 2 "Wl (f; L(el; 0)) 2 .Wl (f; ea (0))
2 "1 (f; 0) 0.

The same argument works for x 1.
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Now suppose thatfis an increasing, non-constant function. We will
show that Lfis also increasing. Assume the contrary. Then we have

f(1) (Lf)(1) _< (Lf)(x) <_ (Lf)(O) =f(O), for all x E [0, 11.

Hence f is a constant, which gives a contradiction. And so,
L(Ad + f3 C1) c A4 +. From Theorem 4 we can conclude that we have
global smoothness preservation with constant c 1.

COROLLARY 8 Any variation-diminishing operator L reproducing linear

functions and mapping Cinto Lip1 preserves global smoothness in the
sense that

Wl (Lf; 6) < a31 (f; 6) for all > O, for allf E C[0, 1].

4. THE SECOND COUNTEREXAMPLE
(AND ITS SHORTCOMINGS)

In this section, among others, we give an example of a sequence
of positive linear approximation operators which preserve global
smoothness but which are not variation-diminishing. In order to put
this counterexample into a more general framework, we will prove
the following theorem dealing with modifications of the Bernstein
polynomials.
To this end, consider the following Bernstein-type operators:

B, :C[0, 1] l’In, defined by

n

(B*nf)(x) Zf(x,n)Pn,(x),
k=O

fe C[O, 1].

with Xk, n e [0, 1].

THEOREM 9 Let n lI be fixed. The operator B, has the variation-

diminishing property on C[0, 1]/f and only if one of the following two

conditions holds:

0 <_ XO,n

_
Xl,n <_ <_ Xn,n

_
1, (3)
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or

>_ xo,. >_ x,n >_"" >_ x.,n >_ O. (4)

Proof Since n is fixed, we use during the proof the simpler notation

Xk instead of Xk, n. Assume first that relation (3) is verified. Then

S[o,][Bf] < S{f(xk)} < S[0,i][f]. The same is true if condition (4) is
satisfied.
Suppose now that B has the variation-diminishing property on

C[0, 1]. It follows that B, preserves monotonicity (see Lemma 3).

Case 1 Assume that (Bel )’ >_ O. Then

n-1

(S;el)t(x) n.(Xk+l xk)Pn-l,k(X) >_ O, X [0, 1]. (5)
k=0

Taking x- 0 in the latter inequality we obtain x > Xo, and for x it
follows that xn > x,_ . Furthermore, integrating (5) we get x, > Xo.
We denote

rain {i: xi+ < xi}.P
ie(1,2 ,n-2}

Under the assumption that p exists, we construct the function gp as
follows. Let x {x0,..., x,} be such that x < xp and (x, xp)
{Xo,..., x,} 0. Then, clearly, xv + _< x.
Consider the function gv" [0, 1] IR defined by

gp(x):= 2x-x-xe forx(X+XpXp-Xs 2 ,Xp

1, for x (Xp, 1].

Obviously gp E C[0, 1] is an increasing function.
We show that (Bgp)’(x)> O, x E[0, 1]. Otherwise, since B,gp is

monotone,

< (Bgp)(O)= gp(Xo)= O, xo <_ Xs,(Bgp)(X) 1,1, XO>Xs.

But (Bgp)(x) < 0 leads us to a contradiction, since (Bgp)(1) 1.
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The case (B,gp)(X) < for all x also leads to a contradiction, because

gp(Xn)"-(Bgp)(1) <_ (Bgp)(x) <_ 1,

which implies B;gp e0. But (Bgp)(X) <_ 1 pn,s(x) < 1, x e (0, 1).
Thus (B;gp)’(x) >_ O, x E [0, 1].
On the other hand one has

n-1

(B2gp)’(x) n --[gp(Xk+l gp(Xk)]Pn-l,k(X)
k=O

<_ n xP(1 -P +
P

=nxP[-( n-p 1) (1 --x)n-I-P-[

n-1 ]-1-1 ( k )xk(1--x)n-l-k
k=p+l

1 (n-k 1) Xk-p(1 --x)n-l-k]k=p+l

But

n- x/c_p( _x)n-l-l
k=p+l

k

_{n-l) at the point x=0. Itis a continuous function taking the value p
follows that there exists an interval of the form (0,e), e > 0 where

\ /

(B,gp)’ < 0, so we obtained a contradiction.

Case 2 The assumption that (B;,el)’ <_ 0 can be treated similarly.

In the sequel we present a concrete example of a sequence of positive
linear approximation operators which preserve global smoothness, but
which are not variation-diminishing.

Example Consider the (n + 1) x (n +.. 1)-matrix An (ai,j)o <_ i,j <_ n with

ai, for 1,2, al,2 a2,1 1, and ai,j 0 otherwise.
Define Ln" C[0, 1] C[0, 1] via

Ln(f x) := (Pn,o(x),pn, (x),... ,Pn,n(X))" An"
f(1n)
f(n’/n)
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Ln is positive with Ln(1)= 1. From the representation

( 1)pn,I(X)--f(2)pn,2(X)Ln(f X) Bn(f x) f\-

n )pn,9.(x),
we see that

o 0;I[L(f) fI[ < J[B(f) fI[ + 2 w f n

thus L(f)ffor n . Since

Z
k=3

we obtain for g C[0, 1] that

Hence L satisfies a global smoothness preservation property.
But the nodes ofL neither satisfy condition (3) nor (4) from Theorem

9, so L cannot be variation-diminisNng.

Remark 10 Elementary computation yields L,(e x) x +
((1 -)/n, thus the operators from our second counterexample
do not reproduce linear functions. Note also that they preserve global
smoothness with a constant c 2 only.

In a natural fashion, this leads to

PoN 3 Let (L) be a sequence of positive linear approximation
operators haing thefollowing properties:

(i) Le e, 0, 1;
(ii) L maps C[0, 1] into C[0, 11;

Under these conditions, do theLhae the ariation-diminishingproperty?
A negative answer to Problem 3 will be given in the following section.
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5. A NEGATIVE ANSWER TO PROBLEM 3

In the following we will carry out further investigations concerning the
shape preservation potential of operators introduced by Gavrea in 1996
(see [8]). The paper mentioned provided the first solution to a problem in
approximation theory which had been open for many years, namely
to find positive linear polynomial operators providing a DeVore-
Gopengauz inequality. An explicit statement of the problem can be
found in [12, Problem #1]. Further details will be given below.
As indicated in the title ofthis section, the outcome will be (essentially)

negative. As can be seen from Theorems 13 and 16 below, the operators

Hm+2 possess most of the shape preservation properties relevant to
CAGD. Nonetheless, they turn out not to be variation-diminishing for
(at least) large degrees.

Let D(a/be the generalized Durrmeyer operator

where

n (Pn,,f}(D(na)f)(x) EPn’k(X) (Pn,k; i-’k=O
f C[0, 1], x [0, 1],

(f,g) f(x)g(x) dw(x, a),

t(1 -t)
dw(t,a)=B(a+l,a+l), a>-l.

THEOREM 11 (Lupa [16, Lemma 4.2]) ForfE CS[0, 1], one has

(-1)S(-n)s (,+s) s)(D(nOf)(S)(x) (_-d--s(Dn_s )(x), (6)

where (a)o 1, (a)s a(a + 1)... (a + s 1) is the Pochhammer symbol.

Lupa [16] considered sequences of operators of the form

(2a(a+1)+(L)f)(x) 2)t;at;,n(D()f)(x), (7)
k=0

where ak, are real numbers, a,. # 0.
The sequence of polynomials (p) defined by pn(x) =0 at;,nx is

called generator sequence of the operators (L)).
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Lupa [16, Theorem 5.2] showed that (L(na))nN is a sequence of
positive linear operators, provided pn(x) > O, x E [0, 1]. Furthermore, if
one also has (pn, 1) 1, then L(n)e0 e0.

In [8] Gavrea introduced the sequence of operators (Lm)mz r, with

Zm :C[0, 1]-- IXm given by

(Lmf) (x) f(O)(1 x)m + xmf(1
m-1 fool+ (m- 1)ZPm,k(X Pm-2,k-l(t)f(t)dt.
k=l

Now take a polynomial emEIXm, em(x)--Ekm=Oakxk, also called
generator below, which satisfies the following conditions"

Pm(x) >_ O, x [O, 1],

oo
Pm(x)dx 1,

Ptm(X O, x [0, 11.

(8)

In [8] Gavrea provided the essential idea to construct the operators
Hm+ 2 C [0, 1-Im + 2, given by

m
ak (Lk+2 f)(x).(Bin+2 f)(x) k +k=0

While Gavrea’s original approximants are in /-I2m+l only, it was
shown in [9,10] that their degree can be reduced to m / 2 by using a

slightly modified construction. The operators Hm+2 are linear and
positive, they reproduce linear functions, and they satisfy the following
DeVore-Gopengauz inequality:

(9)

The following result was communicated to us by Jia-ding Cao (Fudan
University, Shanghai).

THEOREM 12 Letfbe an absolutely continuousfunction on [0, 1]. Then

(Ln+lf)’(x) (Dnf’)(x). (10)
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Proof It is well-known that

p’n+l,i(x) (n / 1)[Pn,i-l(X) --Pn,i(x)],

So we obtain

l<i<n.

n /01(Ln+lf)’(x) n Z(n + 1)[Pn,i-l(X) -Pn,i(x)] Pn-l,i-l(t)f(t) dt
i=1

(n + 1)f(0)(1 x)n + (n + 1)f(1)xn
n-1

n(n + 1) yPn,i(x) foo Pn-l,i(t)f(t)dt
i=0

n

jo-n(n+ 1) pn,i(x) p-,i-l(t)f(t)dt
i=1

(n + 1)f(0)(1 x)n + (n + 1)f(1)xn
n-1

n(n / 1) ZPn,i(X fO [Pn-l,i(t) Pn-l,i-1 (t)]f(t) dt
i=1

+ n(n / 1)(1 x)n f(t)(1 t)n-1 dt- n(n / 1)xn

f(t)tn-1 dt (n + 1)f(0)(1 x)n + (n + 1)f(1)xn

n-1

-(n + 1) yPn,i(X) fO f(t)Pn’i(t)dt
i=1

/ n(n + 1)(1 x)n f(t)(1 t)n-1 dt- n(n / 1)xn

x f(t)tn-1 dt- (n / 1)f(0)(1 x)n / (n + 1)f(1)xn

n-1

jo(n + 1)’p,i(x) f’(t)p,i(t) dt
i=1

[1(1 x)n + (n + 1)pn,o(x)(n / 1)f(t)(1 t)n
o

x f’(t)pn,O(t)dt- (n + 1)f(t)t" x" + (n + 1)pn,n(X)
0

x f’(t)p,.(t)dt- (n + 1)f(O)(1-x)n + (n + 1)f(1)x"

(Dnf)(x).
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THEOREM 13 The operator Hm+ 2 preserves the monotonicity and the
convexity ofthefunctionf.

Proof It suffices to prove the theorem for f absolutely continuous,
withf’ > 0. From Theorem 12 it follows

m m
ak (Dk+ f’) (x) E ak(Hm+Ef)’(x) Ek +k=0 k=0

m+l k+ 1E ak-,
k(k + 1----- (D:f’)(x)"k=l

k/2
k + k + 2

(Dk+lf’)(x)

By Lupa’ observation, in order to prove the theorem it is enough to show
that the polynomial

m+l k+ lxkqm+l (X) :-" E ak-1 k
k=l

is positive on [0, 1]. But

m k + 2 xk+l fO
x

qm+l (X) E ak xPm(x) / Pm(t) dt,
k=O

k + 1

where Pm is the positive generator polynomial, and hence qm + 1(X) 0
for x E [0, 1].
From Theorem 12 we also obtain forfwithf’ absolutely continuous,

that

m
ak k + 1 (D()f,,)(x)(Hm+2f)"(x) Ek + k + 3

k=O
m

ak (4)k (2)k (D)f,,)(x).Ek + 3 (2)k (4)kk=O

For finishing the proof it suffices to show that

m
ak (4), xkqm(X) :-- Ek + 3 (2)kk=0
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is positive on [0, 1]. We have

m 4.5... (k / 3)qm(x) ak (k / 3). 2.3... (k + 1)k=0

xPn(x / Pm(x) >0,- ak(k / 2)x
k=0

for xE [0, 1].

Thus the theorem is proved.

We recall here that a functionf is called i-convex, > 1, iffE C[a, b]
and all ith forward differences

A f(t) (-1)i-k f(t + kh), 0 <_ h <_ (b a)/i, [a,b ih]
k=O

are non-negative. Also, the functionfis said to be O-convex if it is non-
negative on [a, b]. Furthermore, an operator L C[0, 1] C[0, 1] pre-
serves the convexity of order k, if for every functionfconvex of order
k, one has Lfconvex of order k.

THEOREM 14 Let Pm(x) ’km=o akxk be the generator polynomialfor
nm+ 2, thus satisfying conditions (8). If Pm is convex up to the order r,
then nm + 2 preserves the convexity up to the order r / 1.

Proof It suffices to prove the theorem for the casef C + 1[0, 1].
Let 2 < s < r + be a fixed natural number. Then one has
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In order to show that (Hm+ 2f)(s) _> 0, provided f() > 0, it suffices to
prove that the polynomial

(s-1)!( k+ 1)rn S- (2S),_s+2 xk_S+2qm-s+2(X) ak (k + 1)(k + 3)... (k + s + 1) (S)k_s+2k=s-2

is positive on [0, 1]. We have

qm-s+2(X)
m

Z akx-s+2k(k- 1)... (k- s+ 3). 2s(2s+ 1)... (k+s/ 1)
k=s-2 (k 4- 3)... (k + s + 1) s(s + 1)... (k 4- 1)
m

Z akxk-s+2 k(k 1)... (k s + 3)(k + 2)(s 1)!
k=s-2 (2s 1)!

LEMMA 15 Let L C[0, 1] -- 1-In be a positive linear operator having the
variation-diminishing property and which interpolates at one of the
endpoints. Ifdegree Lei i, O, 1,..., n, then L preserves the convexity

oforders O, 1,..., n.

Proof In [11] we showed that an operator satisfying the conditions of
the lemma transforms a function convex oforderkinto a function convex
oforder k, or into one concave oforder k. In the sequel we will show that
such an operator transforms convex functions of order k into convex
functions of order k.

LetfE C[0, 1] be a function convex of order k, 0 < k < n fixed. From
[11, Theorem 7], it follows that for any choice of points x, Xl,..., Xk
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the divided difference [X, X1,X2, ,Xk; Lf] has constant sign. Let
xl, x2,..., x be fixed and distinct points in the range (0, 1).

Since Le, O, 1,..., k 1, form a basis in IIg_ 1, there exist constants
c, i=O, 1,... ,k-1, such that the Lagrange interpolator of Lf can
be written as

k-1

Lk-1 (Xl,X2,... ,Xk; Lf) ciLei.
i=0

We have

(Lf (x) c,(Le,) (x) L f- c,e, (x)
i=0 i=0

(11)

(See, e.g. [13, p. 248].)
Put g :--f- YfiZ_t] ciei. Then L(g; x) (x xl) (x Xk)

[x, Xl, x2, xk; Lf] is a polynomial of degree not greater than n, the
polynomial factor [x, xl, x2, xk; Lf] ofwhich has constant sign, i.e., it
is > 0 or < 0. This implies that Lg changes its sign in the k points
xl,..., xk and nowhere else. Since L is variation-diminishing, it follows
that g changes its sign in at least k points.

Let Yl, Y2, Yk be distinct points where g changes its sign. Then

k-1, ciei Lk-1 (Yl, Y2,..., Yk;f).
i=0

Thus we have

g(t) =f(t) Lk-l(Yl,... ,y:; f)(t)
(t--yl)"’(t--yk)" [t, yl,y2,...,yk;f], (12)

which again follows from the error representation for Lagrange
interpolation. Hence

(Lg)(x)=L((el Yl)"" (el yg). [el,Yl,Y2,... ,y,;f])(x), x E [0, 1].
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Assuming further that L interpolates each function at the endpoint 1,
from the latter relation one obtains

(Lg)(1) L((e -Yl)"" (el y) [e, y, y2, y; f]) (1)
(1 -y)... (1 -y). [1,yl,y:z,...,y:;f].

On the other hand, one has (see (11))

(Lg)(1) (1 Xl)..-(1 Xk)" [1,Xl,X2,...,xg;Lf].

Since [1,yl, Y2, Yk;f] >_ O, we obtain that [1, Xl, x2,... ,Xk; Lf] >_ O.
Thus the divided differences offand of Lfagree in sign everywhere,

and the proof is complete for the case in which L interpolates at 1.
The case (Lf)(O)=f(0) can be treated similarly.

The following considerations provide a solution to Problem 3.

THEOREM 16 Let Hm+ 2, rn N, be given as above. Then thefollowing
statements hold:

(i) Hm+ 2 preserves global smoothness.
(ii) Hm+2fCIIm+2,for allf C[0, 1].
(iii) Hm + 2 ei ei, for O, 1.
(iv) Form >_ Mo, Hm+ 2 does not have the variation-diminishingproperty.

Proof (i) Our earlier observations (and Theorem 13, in particular)
show that Hm+ 2 is an operator satisfying the conditions of Theorem 5.
Thus we have

01 (Hm+2J t)

_
1 (J t), for all [0, 1] and fa C[0, 1].

(ii) This was mentioned above already as an immediate consequence
of the definition ofHm+.

(iii) The two inequalities in question are an immediate consequence
of inequality (9).

(iv) Suppose that Hm+z has the variation-diminishing property.
Under this assumption, we will show that degree Hm+e=i,
i-- 0, 1,..., m + 2. It suffices to show that/-/’m+ transforms polynomials
ofdegree in polynomials ofdegree 1. From the proofofTheorem 13
we have

m+l k+(nm+2f) t(x) E ak-1 k(k + 1--- (Dkft)(x)"k=l
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Hence (am+2f)’= r(O) ,e, where r()
-’m+lJ, ’m+l are the operators con-

sidered by Lupa [16] and having the generator polynomial

m+l k+ 1
qm+l (x) E ak- k xk’

k=l

since fd qm+l(x)dx 1. It follows from [16, Lemma 5.2] that we can
write

m+l ((Hm+2f) ’(x) E"YO)Ok’m+l f’, (X),
k=O

where qa(), k=0, 1, 2, ...,m/ are the Legendre polynomials of
degree k related to the interval [0, 1] and such that (o/(1) 1, and

f [() (x)] dx

Pk,m+l qm+l (x) (x) dx, k 0, 1,2,...,m / 1.

Hence we have

m+l

(k0) qO(k0)(Hm+2f)(x) E ")’(kO)pk’m+l f’, (t) dt +f(O).
k=O

The latter representation ensures thatnm+ 2IIk C_ IIk, k O, 1,..., m / 2.
We will show in the sequel that degree Hm+2 ei is exactly i, i=

0,1,...,m/2. This is equivalent to showing that Pk, m+lO,
k=0, 1,...,m/ 1.
We have Po,m+ 1, Pl,m+ > O, fl2,m+ > O. Since

Pm+l,m+l qm+l (x)(m)+, (x) dx

am (m + 2) xm+ (0)
m+--i-" ,,m+l (X) dx,

and am # 0, it follows that Pm+ 1,m + # O.
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We assume there exists 3 _< _< m, such that p,m + --0. Then we also
show that p+ 1,m + 0.
To that end, consider the polynomial P(x)= f (o)Wi+l(t)dt-

fl)(t)dt IIi+2. One has P(0)=P(1)=0 and P’(1)=0. Hence P
changes its sign in at most i- points in the interval (0, 1).
On the other hand, one has

x
(0) (t) dr.

But it is well known that

(o)i+1 (X) (--1)i+l[xi+l i+1] (i+1)

(i + 1)[ (1 x)

So we have

(--1)i+1 [xi+l(1--x)i+l] (i)
(Hm+2P)(x) Pi+l,m+l (i +’1)!

--Pi+l,m+l x(1 x)" I’I) (X),

where

j/1,1) (x) (--1) [xi+I x)i+
(i)

x(1 -:(i+ 1)!

is the Jacobi polynomial of degree i, relative to the interval [0, 1]. It is
known that 1,1) has distinct roots in the range (0, 1).
Now, if pi + 1,m + :/: 0, then nm+2P would change sign times in the

interval (0, 1), which contradicts the variation-diminishing property of
nm+2, so that Pi+l,m+l=0. Now the fact that Pi,m+l=O implies
Pi+ 1,m+l =0, and hence Pm+ 1,m+l "--0, which is a contradiction. It
follows that degree Hm+ zei i, O, 1,..., rn + 2.
Thus Hm+z satisfies all the conditions of [11, Theorem 7]. From

Lemma 15 it follows that Hm+ 2 preserves the convexity of order i, for
i=0, 1,...,m+2.

This latter conclusion, together with (ii) and (iii) shows that Hm+ 2

satisfies the conditions in a statement of Berens and DeVore [3, p. 214].
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From this we conclude that

x(1 x)
m+2

Bin+2(("- x)2; x) Ore+2(("- x)2; x)
x(1 -x)<c.

rn2
for allx[O, 1],

where the last inequality is again following from (9). Since the constant
c is independent of m, this cannot be true for rn > M0. This yields a
contradiction to our assumption that Hm+ 2 has the variation-diminish-
ing property.
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