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1 INTRODUCTION

Given a matrix of distinct nodes 2" {xi}i"=o c_ [0, + o), consider the
Baltzs-Shepard operator relative to the matrix 2" defined by

s.(x; x) :-- s.( x) ETa=0 I xl-=f() s>2, (1)

forf C([O, +)).
We recall that for s an even integer, Sn is a positive rational operator

of interpolatory type, of interest in approximation theory and in many
applications (see, e.g., [1,2,4-7,9-12]).

* Corresponding author. E-mail: szabados@math-inst.hu. Research ofthis author sup-
ported by Hungarian National Foundation for Scientific Research, Grant No. TO17425.
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Recently the authors in [7] investigated the approximation behaviour
of the operator (1), when f is a continuous and bounded function on
the semiaxis and they proved direct and converse results.

In this paper we want to investigate the more general weighted case
when the functionfmay be unbounded on the semiaxis.

In [11] Mastroianni and Szabados studied the weighted convergence
of Sn operator with exponential-type weights in a similar situation (the
real line) and they obtained only direct results for particular meshes.
Here first we show that, unlike for polynomials, for Shepard operators

the weighted convergence with exponential weights is not guaranteed in
general (Proposition 2.1). Therefore here we consider weights ofrational
type, i.e., functions having an algebraic growth rate at +o. For such
functions we give weighted uniform approximation estimates by the
operators Sn, involving a weighted modulus ofsmoothness related to the
distribution mesh (Theorems 2.1 and 2.2). We also give converse results
(Theorem 2.2). Our results are based on new weighted Markov-
Bernstein inequalities for Sn (Lemmas 3.2 and 3.3). We also show that
our results are sharp in some sense (see remarks to Theorems 2.1 and 2.2
and Proposition 3.1). Finally we remark that similar results are not
possible for polynomials.

2 MAIN RESULTS

Letting

w(x)=(l+x)-, /3>0 (2)

we consider functionsfcontinuous on [0,+o) such that

w(x) f(x) o, x --, +o. (3)

Then we construct the Baltzs-Shepard operator S, given in (1) on the
nodes

k-O,...,n, -)’> 1. (4)Xk n’r/2

Here we want to study the weighted uniform convergence of S,,(f)
to f, with weight w given by (2), i.e., the convergence behaviour of
w(x)lf(x) S,,(f; x) l, for x > 0.
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First we remark that it is not restrictive to consider weights oftype (2)
for weighted approximation by S based on the nodes (4), since for
exponential-type weights the convergence is not guaranteed in general.

Indeed, putting []wf[[--SUpx_>0 w(x)[f(x)[, we have

PROPOSITION 2.1 Let Sn be the operator given by (1). If w(x)=
exp(-x), f(x) exp(x/ and xk k/x/r, k 0,..., n, then

lim sup wan (f)II (5)
n----[--O

We also remark that we can get weighted convergence of S with
exponential weights, provided that we modify slightly the mesh like in
[11], but in such case the study of direct and converse results is rather
complicated (cf. [11]).

In the following C denotes a positive constant which may assume
different values in different formulas. Moreover if u and # are two
quantities depending on some parameters, we write u # if [u/#[ +/- C,
with C independent of the parameters.

Let

w(f t)w sup [[Wmhfll (6)
0<h<t

be the weighted modulus of smoothness offwith step function

c(x) x1-1/7, 7 -> (7)

(cf. [8]). Then we can give the following weighted uniform error estimate.

THEOREM 2.1 Let Sn be the operator defined by (1) and (4). Iffsatisfies
(3), thenfor s > (/37 +4)/(7 + 1)

f"/ If(t)[ dtJ.Ilw[f s,(f)]l[ < C (f’, 1/V/-)W+n(7+l)/2 ao O(t) (8)

Remarks From Theorem 2.1 we deduce the weighted uniform con-
vergence of the Shepard operator based on the nodes given by (4), if
s > (/37 + 4)/(7 + 1).
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From (8) it follows that our error estimates are strongly influenced
by the mesh distribution (see the presence of the function b and the
exponent 7 on the right-hand side of (8)).

Concerning the sharpness of Theorem 2.1, we remark that the
appearance of the integral on the right-hand side of (8) is necessary.
Indeed let fo(x) + x and w(x) (1 + x)- /’r, 0 < e < 1. Then
Theorem 2.1 gives

(9)

Now we show that

C
sup w(x)IJ (x) Sn (fo; x)[ >_

nel2,x_>O

i.e., (9) is sharp. In fact if x 2n"y/2, then

Moreover if we assume something more on the integral on the right-
hand side of (8), then we can state a direct and converse result.

Indeed, putting

KO(f t)w inf (llw(f- h)ll + tllwh’ll),
hc([o,+))

(o)

the weighted K-functional offwith step function b, we have

THEOREM 2.2 Let

s _> (fl-y + 4)/(’), + 1). (11)
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Iffsatisfies (3) and

If(t) dt O(w-1 (x))(t)
’v’x >0, (12)

then

Moreover if

s > (,),(/3 + 1)+ 3)/(0’ + 1)

(3)

(14)

and

then

x [f(t)l O(w/(z)_(x)), Vx > 0, 0 < c < (15)
(t)

IIw[f S,(f)]ll O(n-a : wO(f; t)w O(ta) (16)

Remarks First we remark that the above results are not possible for
polynomials.
Note that fromTheorem 2.1, if(12) holds true, the first term dominates

on the right-hand side of (8), i.e., we have (13).
Furthermore from (13) it follows that, if f satisfies (12) and

w(x)lf(x)l-u(x)v(x), where u(x) is a good function on [0, +) (for
example u E C2[0, + oc)) and v(x) < Cx1/’r, x < a, a > 0, then the error
is not greater that Cn-1/2. We remark that such result is not possible
for polynomials.
Moreover (13) cannot be improved because of (16).
In a sense, the equivalence relation (16) characterizes the class of

functions satisfying (15) and having a given behaviour near 0 and on

[0, + cx) by the order of approximation by the operator Sn.
Finally from the proof of (13) we can also get the following pointwise

weighted error estimate for x E [x0, xn]:

w(x)lf(x)- S,(32x)1 < Cw(32 (x)’
]w"
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3 PROOF OF THE MAIN RESULTS

Proof of Proposition 2.1 Assume n=m(m + 1), with rn a positive
integer and let x 1. Then denote by xj, 0 < j < n, a closest knot to x.

Consequently

v/--j > C v/m(m + 1) m C
11 (17)

with C > 0 an absolute constant.
Since

n n+l

k=0 I1 Xkl
<

11 xjls’

we deduce

w(1)lS( 1)1 =exp(-1)=oll (k/x/)l-exp(v/k/x/)
7,=011 -(k/v)l-

> exp(- 1) exp(n1/4) l1 (j/v/-)Is
(v/-- 1) n+l

Hence by (17) it follows that

exp(n1/4)w(1)lSn(f’, 1)1 >_ C
(V/-_ 1) (v/-)Sn,

which is unbounded for n +o, that is we have the assertion.

The following lemma will be useful in the sequel. It establishes the
boundedness of Shepard operator in the weighted norm.

LEMMA 3.1 /jr

s >_ (/33, + 2)/(’), + 1), (18)

thenfor everyfunctionfdefined on [0, /) we have

IIwS.(f)ll <_ CIIwfll _< cIl fll (19)

with C apositive constant independent offand n.
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Note that Lemma 3.1 does not need the Assumption (3).

Proof Because of the interpolatory property of Sn at Xk, k 0,..., n,
we may assume x :/= Xk, k 0,..., n. We distinguish two cases.

Case1 X > Xn.
Then w(x) < w(xk), for every k 0,..., n, therefore

w(x) EZ--o_Ix xl-lf(x)l_
E-o Ix xl

< Ilwfllw(x)n--o Ix- xl-w(x)-ELo Ix xl -’

EL0 Ix- xl-< wfll < wfll.E=o Ix xl-
Case 2 Xo < x < Xn.

Let xj =j’r/n’r/2, 0 < j < n, denote the closest knot to x.
Then

nS,r/9, nST/-n

> ----~ ) 1)sIx x Ix x [(+ -1’ (-k=0

(20)

Therefore from (20)

w(x) ISn (a x)l < Ilwfllw(x) ELo_ .-Ix xl-w(x)-1

E=o Ix xl
nST/2J(7-1)’ n7/2

j7 k’l
<_ CIIwfll n-;47/ (n7/9. +j7)3 =o

k#j

CIIwfll

(n7/2 + k’r)
n 7/2

j(7-1)s (n7/2 +
(n/2 +jT)3 k=0 J- kl(J47-1) + ks(7-1))

Now we distinguish four cases.

Case a 0 < k < 2j.
Then

j(7-)s 9.j (nT/2 + kT)
(n’r/2 +jT)3 o J- klS(js(7-1) + ks(7-1))

2j

0(1)._< c217-1k=0



248 B. DELLA VECCHIA et al.

Case b j < and 2j < k < 2v/-.
Then

Case c j < and 2x/- < k < n.

Then

j(--l)s (n./2 + k,,/)r
(n’r/2 +j,r)3 (k _j)s(js(,,/-1) + ks(,-l))k=2x/

j(-l)s Cn(S_3)7/2_s/2 nSC n37/2 ks-3 k(s-3)"
k=2 k=2

Now, if s > 3, then

T < Cn(s-)’r/2-s/2 n
nl-s 0(1)n(S_),r/2

On the other hand, if s < fl, it follows that

T <_ Cn(s-3)’/2-s/2 Z k"/-s"/
k=2x/

<_ Cn(S-)7/2-S/2n(-s)’r+l Cn’//2-s’r/2+l-s/2 0(|),

if (18) holds true.

Case d j> v/- and 2j < k < n.
Then
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Now, if s >/3, then

U < Cj(’-1)s-7
n

C
n<- )7 <-

On the other hand, if s </3, it follows that

0(1).

U <_ Cj (’r-1)s-’/3 n
n(S_3), <- n(’r- 1)s/2-7/2

Cn-’r/2-/+’r/+ 0(1),
n(S-).r

if (18) holds true. So finally we get

IIwS (f)ll <_ CIIwfll,

that is the assertion.

We remark that condition (18) in Lemma 3.1 is sharp in some sense.
Indeed we have the following:

PROPOSITION 3.1 Let Xk, k =0,... ,n, be the knots given by (4). If
s < (/3 + 2)/(’ + 1), then

lim sup
,-,+ WSn(-)"-’--O0. (21)

Proof Let n m(m + 1) and put x 1. Then, ifxj denotes a closest knot
to 1, then, from (17) it follows that

Im/(m + 1)/ -Jll1- x[
n’r/2 fr > C

n./2
m’/Zm’/2-1 _m"-1 C> C

n’rl2
C n’rl2 > --" (22)

Now, recalling that a"r be > C(a b)a"- 1, if a > b and "y _> from (22)
we get

n

1
<

n/ k[k=O k=O
k#j

+ Cn/2

v
<-CnS/2 + Cn’rS/2 Z=0 IV klS(v/-; (’r-1)s
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Therefore

Thus

n

Cn’S/2+
v+

<CnS/2 -+- Cn.rS/2, CnS/2". Ix/- kl(/fi)

C
7,=011 Xkl- n/2

which is unbounded, if s < (/3,), -+- 2)/(-), + 1).

(23)

3.1 Proof of Theorem 2.1

Obviously we assume x - Xk, k 0,..., n. We recall that [7]

Ix- xl _<cO(x)

Ix- Xkl > Cc(x) IJ- k._..__, J =fi kn

Ix- xl- _< Ix- xl,
k=l

with xj, 0 < j < n, a closest knot to x and b(x) given by (7).

(24)

(25)

(26)
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We distinguish two cases.

Case 1 Xo < x < xn. Then from (1)

w(x)lf(x) S(j x)l < w(x) ,=0 Ix xgl-lf(x_-ff(xg)15
ELo Ix- x

w(x) 2=0 Ix xgl-lg(O) g(k/v/-)l
ELo Ix- xl -’

with g(O)=f(0") and x 0".
Hence if g# is bounded on [0, n], with #(0) w(O ") w(x), letting

Ilta, b be the usual supremum norm on [a, b], we get

w(x)lf(x) S,,(f; x)l
E=O X --Xk[-slfko/x/ l(t) -1 dt

cIIf’wlltxo,l w(x) EL0 Ix- xl-
(27)

Hence it remains to estimate

w(x) ET,=o Ix xl -’

ELo Ix xl- k/x/

(t)-1 dt

Ifk/ < O, then #(t) > #(0), for all E [0, k/vcn], therefore

and working as usual (see, e.g., [4-7,12]) by (24)-(26)

-"1w(x) <_ Ix xl I,S dt C< (28)
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If 0 _< k/V, then

ELo Ix xl-
w(x) x>_x Ix xl-w(x)- (k/v o)

27,-0 Ix- xl-’

Now, proceeding case for case as in Lemma 3.1, we get from (11)

Therefore from (27)-(29), if x

w(x)lf(x) Sn(f; x)l <_
C[I f’bwll [xo,x.]

Hence for every h such that wh’O is bounded on [Xo, Xn], we obtain

[[w[f- Sn(f)]llto, [[w[f- h][lIo,l + [Iw[h S,,(h)][lto,x.l
/ IlwSn(f h)lltxo,x.l.

(29)

(30)

(31)

By (30)

IIw[h- S(h)]llt0,l -<

On the other hand, if x E [Xo, xn], from Lemma 3.1 we get

IlwS.(f h)lltxo,x.l CIIw[f h]llto,x.l.

(32)

(33)

Hence from (31)-(33)

IIw[f- Sn(f)ll[[xo,x.] < CIIw[f h]ll[xo,x.] / C
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and taking the infimum on h

(l)[[w[f-&(f)]ll[0,x] < CK J w,tx0,]
< CK (J---n) (34)

w

where KC’(f 1/x/-)w,[xo,xn] is the weighted K-functional off relative to
the interval [Xo, xn]. Since [8]

( t)w ( t)w,

from (34) we deduce

]lw[f &(f)]ll[o,l <- cco (f; -)
w

Case 2 x > x,,.
From the monotonicity of the limit (3), it follows that

w(x)[f(x) Sn(f’, x)l __< w(x)lf(x)l + w(x)l&(f;x)l

< w(nlE)lf(nl.)l + w(x){ +
x<xl2

Ix- xl-*lf(x)lx ELo Ix xl-
:= w(n’/2)lf(n/2)l + YI -JI- Z=.

Now by (3) and Lemma 3.1

YI < W(X) Exk>X/2 [IX Xkl-W(Xk)lf(Xk)l/W(Xk)]
ELo Ix- xl-

< W n -sE=0 Ix- xl

< w()f)w(x) ELo Ix xl-

(35)

(36)
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On the other hand, since

Ix- x -> x
k=0

we have

2 < Cw(x) 1-- If(xk)[
H X

Xk<X/2

Ak<_ Cw(x) If(x)l _/
Xk<X/2 Xk-l’

with Ak xk xk-1 >_ CXk;I/’r/x/ by (25).
Hence

C V" If(x)lW(X) . 1/7E2 < xlk_Xk<X/2

C 1 f"/: If(t)l
n/2o 1-1/

dt

C f
n/2

n/2+1/2 0 (t)
dt.

From the monotonicity of (3) we get

[n/lf(t)ln/2+1/2 dO (t)
dt >_

c
n3/2+1/2

fn/2/2 If(t)l dt
n/3/2+1/2 Jn/2/41

fn/2/2 w(t)lf(t)l dt
n’r/2+l/2 dn.n/4

! w(t)O(t)

X [n’ff2/2 1

Jn.r/2/4 w(t)O(t)
dt

cw( ) )

(37)

(38)
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From (35), (36), (38) and the last inequality we obtain

w(x)lf(x) S(j x)[ <
C If(t)[

n"/2+1/2 .to b(t)
dt

and hence the assertion.

The following lemmas are useful to prove Theorem 2.2. In particular
they are interesting in themselves because they establish some weighted
Markov-Bernstein type inequalities for the Shepard operator (Lemmas
3.2 and 3.3) (cf. [7] and [4]) for analogous results for the operator Sn in
the unweighted case).

LEMMA 3.2 Let (18) hold true. Then

wOS(f)I[ < Cyril wfl[,
with dp given by (7) and C independent offand n.

Proof Since S( Xk) O, k 0,..., n, we assume x Xk, k 0,..., n.
We distinguish two cases.

Case1 x < x.
Working as in [4] we get

[’X--xkl-S-llf(xk)’w(x)(x)lS(x) <Cw(x)() .- - Ix xl-(Ek:l x Xkl
jI l-lf()ljI 1--+

(E:0 Ix xl-S)2

Ix xjl-lf(xj)l -s-1+
(E:0 x x-) + x x

+ Ix- xl-:lf(x)l Ix- x+l--+ (EL0 ix xl-)

+ Ix- xl--llf(x)[ Ix
; (L0 ix xl-’)

:=hl +A2+A3+A4+As+
where again x2, 0 N j N n, denotes a closest knot to x.
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Since w(x) w(xj), easily we deduce from (24)-(26)

and

and

.it4 ’ C(x)llwfll v ,#. lx
(x) ELo Ix xl-s

CIIwfll.
By Lemma 3.1 and (24)-(26), if (18) holds true

2 < C(x)llwfllw(x)
kj Ix xkl-*w-(Xk) kj Ix Xkl-

(x) E=o Ix xl-=o Ix xl-
4 Cll will v/-,

1 <_ Cw(x)(x)llfll

_< Cllwfll
7=o Ix- xl- (x)

, Ix xl-*w- (x)
.’4-6 < Cw(x)O(x)llwfll -- --=o Ix- xl (x)

_< Cll will v’.
Moreover working as in Lemma 3.1
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Case2 X > Xn.
Now w(x) < w(x), k= 0,... ,n, hence w(x)[f(x)[ <_ [[wf[[ and work-

ing as in [7] we get

W(X)(x)IS’n(f’,x)I <_

LEMMA 3.3 Let (14) hold true. Iffsatisfies (3), then

fn/ [f(t)lIlwS’n(f)ll < C Ilw/’ll / n3/2 ao O(t)

with 49 given by (7) and C independent offand n.

Remark Note that if (15) holds true, then Lemma 3.3 gives

IlwdpSn(f)l] <_ C{ Ilwbf’ll + n-/2 }.
Proof We assume x =/: Xk, k 0,..., n. Since

S’n(f’, X) Z Ak(X)[f(Xk) --f(x)] Ak(X f’(t) dt
k=0 k=0

with

it follows

Xkl -sA(x) E=o I- xl-’

n

w(x)(x)lS’(f,x)l IA’k(X)lw(x)(x)
k=0

Xk 1

w(t)c(t)
dt

Now we distinguish three cases.

Case l xk < X < Xn.
Then w(t) >_ w(x), Vt [Xk, x] and

111 Z(wO)(x)lA’(x)l w(t)qb(t)
dt

Xk<X

<_ y IAk(X)Iqb(x) - dr.
Xk<X

(39)
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Now since (see, e.g., [4] or [7])

fb(x) - dt <_ Clx

from (39) we obtain

c I(x)l Ix- xl,
Xk<X

Then working as in [4,7] we get

I(x)l Ix- xl c
Xk<X

and consequently

E<C.

Case2 xk > x.
Then w(t) >_ w(xk), therefore

and by (40)

w(x) Ix- xlz= I(x)l w(x)
Xk>X

Now since w(x) w(xj), with xj the closest knot to x, then

w(x) IA(x)lw(x)-llx xl
Xk>X

< Cw(x)I2Ix- xl-w(x)-EIx- xl-s

(ELo Ix
k#j x Xkl--S/lw(xk)-1Ek#j x Xkl -s-1+

(E=0 1X Xkl-S) 2

w(x)- Ix x[-E Ix xl-+
(2=01x x/l-s) 2

(40)

(41)
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w(xj) -11X j Ek%j x XklX
-s+ -s-

/
(E=O [X- Xkl-S) 2

Ew(x)- Ix xl-+ Ix 1--’

:= B1 q- B. + B3 q- B4 nt- B5 + B6.

By Lemma 3.1, B1 <_ C, B6 _< C and since w(x]) w(x) then B3 _< C.
Moreover

B4 Clx Nils+

_
Ix xk[ -s-1

k#j

(x)S+v’n (V/-)s+l_< C _,/ < C.
0(x)+ Ik-jl+1-

On the other hand by Lemma 3.1, if (14) holds true,

B5 < w(x)
,k:/:j x Xlcl-S+lw(xk) -1 -,k#j x xl-+lx- xl

F_,e Ix xl-+

< Cki Ix- xl-+l Ix- Nil --l

(27,-0 Ix- xl-’)

(2L-o Ix- xl-’)

and working as in [4,7]

Bs_C.

Finally by Lemma 3.1, working as in [4,7]

B2 < w(x)
,kCj x xkl-S+lw(x)- -,kCj X xkl -s+ X xkl--(EL0 Ix- xl-’)
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Case 3
Here

X>Xn.

Now

,>xl). x,<<l ET=o Ix- xl-
:= E1 +E2.

Since Ix Xkl > Cc/)(x)/x/, k n, by the monotonicity of the limit (3)
and Lemma 3.1 it follows that
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On the otherhand, by (37), working as in theproofofTheorem 2.1, Case 2

Moreover

w(x)d(x). Ix- xl--lf(x)l
EL0 Ix- xl-’

and we can work as in the estimate of El.
On the other hand, since w(x) < w(x,), then

E3 < w(n"/2) If(n’#2)l IX Xnl -s-1 EkCn x Xkl -s

(ELo Ix- xl-’) a

and working as in [7]

E3 < Cv/-fiw(n/2)lf(n/2)[.
Moreover

Xkl-Slf(xk)[ Y]k=0n-1 IX Xk
F. <_ w(x)e(x) .Ex>x/2+Ex<x/2lx

(EL0 Ix- xl-)
:= P/+ ’.

Now by Lemma 3.1

n-1 -s-1E=o Ix- 1x
EL0 Ix- xl-

w(x) E,>x/a Ix- xl-‘w(x)-ET=o Ix- xl-
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V/ n-1 -sEo Ix- xl
C/x) Lo Ix- xl-

On the other hand

and working as in the estimate of Y2, we get

C [n./: If(t)2" <- n’ff2x/-o O(t)
dt.

Moreover, working as in the proof of Lemma 3.2

n-1

E4 < w(n/2)lf(n/2)l(x)lx x,l Ix xl--k=O

< Cx/-w(n’/2)lf(n/2)l.
Finally

n-1

Es < w(x)(x)lx x,,l*-’ Ix xl-*lf(x)l
k=O

and working as above

+ nz’/ o (t)
dt
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Now from the monotonicity of the limit (3),

dt

we get the assertion.

3.2 Proof of Theorem 2.2

From Theorem 2.1, under the Assumptions (11) and (12), it follows that

,,w, s,,,,,
_
{0() /)w

-(-5) (-;n)w w

that is (13).
Moreover if (15) holds true and we(f, t)w Ct% then

IIw[f-S(f)]II Cn-/2.

On the other hand from the definition of (f)w, we obtain for
h C([0, +)), Ilwh’ll < + and h satisfying (3) and (15)

() Ilw[f- &(f)]ll + IIwS(f)ll
w

IIw[f- &(f)]ll +{llwS(f- h)ll + IIwS2(h)ll}.

Now, by using Lemma 3.2 and the remark to Lemma 3.3, if(14) and (15)
hold tree, we get

K < IIw[f- Sk(f)][[

+ v IIw[f-h]ll +llwh’ll /
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Since it is easy to see that

inf
heC([O,+))
Ilwgll</o

satisfying (3) and (15)

IIw[f- h]ll +llwCh’ll cg
w

we deduce

g _< IIw[f- Sk(f)]ll + C- - + k-/2.
w w

Now if IIw[f- S(f)]l[- O(n- s/v), 0 < a < 1, then

K <_ Ck-a/: q- C--w w

and from a well-known lemma by Berens and Lorentz (see, e.g., [3] or
Lemma 9.34, p. 699 in [10]), (16) follows.
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