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Weprove an inequality ofthe form fen a(lxl)7,- (dx) _> fen a(lxl)T,_ (dx), where Q is a
bounded domain in R" with smooth boundary, B is a ball centered in the origin having the
samemeasure as f. Fromthis we derive inequalities comparinga weighted $obolevnorm of
a given functionwiththenorm ofits symmetricdecreasingrearrangement. Furthermore, we
use the inequality to obtain comparison results for elliptic boundary value problems.
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1 INTRODUCTION

Consider a boundary integral of the type

pa(Q) "= f0f a(x) 7-[n_l(dx), (1)

where ais a given nonnegative function on R" and f is a smooth open set.
It can be seen as a weighted perimeter of . The classical isoperimetric
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theorem in Euclidean space says that, if a 1, then

_<

where is the ball centered at the origin having the same Lebesgue
measure of fl (see [27]). By employing the so-called method oflevel sets
one can infer a lot of further functional inequalities from the
isoperimetric theorem, thus comparing underlying problems with
simpler one-dimensional ones. The literature for this theme is large.
As an orientation we refer to the monographies [5,15,23] and to the
articles [1,12,26].

Recently Rakotoson and Simon [24,25] studied the problem of
minimizing Pa(fl) over the class of open sets with given,fixed measure.
We are interested in the question, for which general type of weights a

(2) might hold. In Section 2 we prove inequality (2) for radial weights
a =a([x[) satisfying some further conditions. In Section 3 using the
method of level sets, we show integral inequalities comparing some
weighted Sobolev norm of a function with a corresponding norm of its
symmetric decreasing rearrangement. In Section 4 an extension ofone of
these inequalities to BV-spaces leads to a general version ofour weighted
isoperimetric inequality for Caccioppoli sets. We also include a
discussion of the equality case in the inequality. We mention that
weighted norm inequalities which are similar to ours, are known for the
so-called starlike rearrangements (see [6,7,16,18,19]) and for the Steiner
symmetrization (see [9]). As an application ofthe weighted isoperimetric
inequalitiy (2), in Section 5 we derive a comparison result for elliptic
PDE. To be more specific, let us consider the problem

Lu -(aijuxy)xi f in Ft,
u =0 on O, (3)

where

(i) f is an open bounded subset ofRn,
(ii) agj are real valued measurable functions on f which satisfy

aij(x)ij >_  (Ixl)l l= Rn, for a.e. x E f,

with (Ixl) 0 on f,
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(iii) fand ,- in suitable Lebesgue spaces which guarantee the existence
of a weak solution.

Assuming that the weighted isoperimetric inequality (2) holds with
a v/ (Ixl), we prove that u < v, where v is the solution of a problem
whose data are radially symmetric. Here u denotes the Schwarz
symmetrization of u (see Section 3 for definition). Results in this order
of ideas are contained, for example, in [17,28] when the operator L is
uniformly elliptic and in [2]. Such result allows us to estimate any Orlicz
norm of u by simply evaluating the norm of v.

2 THE SMOOTH CASE

For any measurable set Ewith finite Lebesgue measure let E denote the
ball BR with center at the origin and m(E)= m(BR). Here and in what
follows m(E) denotes the Lebesgue measure of E.
Throughout the paper we will assume that a: [0, +o[ [0, +o[

satisfies

a(t), (t > 0), is nondecreasing and (4)
(a(zl/n) --a(O))z1-(l/n) (z >_ 0), is convex. (5)

Frequently we will write

al (t) := a(t) a(O), (t > 0).

Remark 2.1 Note that (5) is satisfied, for instance, in the cases

a(t) , (t >_ O), forp_>l,

or, more generally, if a(t) (t > 0), is nondecreasing and convex.
For n > 2 we shall use n-dimensional polar coordinates (r, 01,...,

0n_ 1), to represent any point x (Xl,..., xn) E Rn (compare [16]):

X[ r,

X1 r COS01,

xk r sin 01 sin 02... sin 0k-1 cos 0k
x r sin 01 sin 02... sin 0,_,

for k 2,...,n- 1,
(6)
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where r > O, 0 <_ Ok < 7r for k 1,..., n 2, and -Tr <_ 0n- <_ zr. Let 0
denote the vector of the angular coordinates (01,... ,0n_ 1) and T the
(n 1)-dimensional hypercube [0, 7r]n- 2 x [-7r, zr].
There are functions h, hm E C(T) satisfying

h(O) > 0, hm(O) > 0 a.e. in T(m=l,...,n-1),

such that, if E is any smooth (n- 1)-dimensional hypersurface with
representation

" { (r, O)" r p(O), 0 E To},

where To is an open subset of Twith Lipschitz boundary and p C (70),
then

a(Ixl) 7"n-1 (dx) a(p) + 0
-2Z -m hm pn-lh dO.

m=l

(7)
Note that

7-/n-1 (nl) nun fT h(O) dO, (8)

where wn /2[F(n/2 + 1)]- is the measure of the n-dimensional unit
ball.

THEOREM 2.1 Let f be a bounded open set with Lipschitz boundary.
Then

a(lxl) 7-t._ (dx)>_ fosq a(lxl)7-t._ (dx)

nwln/na((w;lm(f)) 1/n) (m(f)),-,/n (9)

Proof To show inequality in (9), we divide the proof into three steps.

Step 1 Let n > 2 and suppose that

0f is piecewise affin and

{(r, 0): r > 0} 91 0f is a discrete set for every 0 T. (10)
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Let us observe that, to show (9), it is sufficient to prove the following
inequality:

I> II, (11)

where

I fOa al (Ixl) ’n-1 (dx),

/ti := f0fl" al(Ixl) ’n-1 (dx).

Indeed, (11) and the isoperimetric inequality (Appendix 2) yield

a(Ixl) 7"ln-1 (dx) I+ a(0) fo 7-/n-1 (dx)

> I + a(0)foa 7"/n-1 (dx)

Z, a(Ixl) ’n-1 (dx).

In view ofthe assumption (10), we have the following representations:

OFt { (r, O)" r rij(O), 0 Ti, j 1, 2ki, 1,...,1},

a {(/, 0)" /’i,2t-1 (0) r ri,2(O), 0 i, (12)

where the sets Ti (i 1,...,/), are open, pairwise disjoint subsets of T
with Lipschitz boundary,

leij cl(f’i), (j 1,...,2ki),
ri, l(O) <... < ri,2ki(O), for 0 Ti,

=0 ifO Ft
ri’l >0 if0Vt,

(i=1,...,l).

(13)
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Using (7) and (12), we compute

2ki

fTi
n-1 Orij 2

I Z al (rij) + (rij)-2 m hm
i=1 j=l m=l

(rij)n-lh dO. (14)

By setting

ZiJ :-- (?,/j)n, (j 1,...,2ki, 1,...,l), (15)

we obtain from (13) and (14)

2ki

fTiI> i Z al((Zij)(1/n))(zij)l-(1/n)hdO
"= j=l

>- ’: Ji al ((2i,2ki)(1/n))(Zi,2ki)l-(1/n)h dO I1. (16)

Let 9t BR, (R > 0). By using (18), (15) and (12), we see that

2ki

fTim(B) 6OnRn (1 In) ZZ Zij(- 1)Jh dO,
i=1 j=l

and hence, by (13),

R (na;n) -1 ZZ 2ij(-1)Jh dO
i=1 j=l

<_ (nWn) -1 zi,2kh dO =: R1. (17)

Furthermore, we have by (4) and (17)

I nwnal (R)Rn-1 <_ nwnal (R1)R-1 (18)
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Now, in view of the assumption (5), we may apply Jensen’s inequality
(see Appendix 1) to obtain from (16) and (17)

x (nWn) -1 zi,2kih dO

nwnal (R1)R-1

Together with (16) and (18), this proves (11) in the case under
consideration.

Step 2 Let n and suppose that

k

t J(X2n_l,X2n) where Xl <’’" < X2k. (19)
n=l

As in the previous case, we prove that I> I . Then we compute

2k

I= Z al (Ixel) (20)
i=1

and

I 2al Xi(--1)i
i=1

By (19) we have that

(21)

2k-1

X2k Xl Z Xi(--1)i-1 O.
i=2

In view of (20), (21) and (5) this means that

I >_ al (Ix2kl) + al (IXl I)

> 2al(1/2 ([X2k[ + Ixl)) I.
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Step 3 Let 09t be Lipschitz. We can find a sequence of sets {fk}
satisfying (19) if n 1, respectively (10) if n > 2, and such that

lim m((fk\f)t3 (f\fk)) 0,
ko

By previous steps, the inequality (9) holds for fk. Since a(Ixl) is
continuous, this means that

lim a(ll) ’/n-1 (dx)
ko

> k--,olim k)a(Ixl)7-/n-1 (dx)= 3fa(Ixl) "]’/n-1 (dx).

Remark 2.2 The proof of Theorem 2.1 much simplifies if 2 is starlike
with respect to the origin. We leave it to the reader to confirm that the
assumption (4) is superfluous in this case.

3 WEIGHTED SOBOLEV INEQUALITIES

We recall some definitions and basic properties (see [15,26]).
Let u" Rn R be a measurable function which decays at infinity, i.e.

m(x: lu(x)l > t} is finite for every positive t. The map

#u(t) m(x: lu(x)l > t), (t 0),

is called the distribution function of u; it is a decreasing and right-
continuous in [0, +o).
The function u* defined by

u*(s) inf(t > O: #u(t) < s), (s > O),

is called the decreasing rearrangement of u; it is a decreasing and right-
continuous function on [0, +o). Furthermore it satisfies the following
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properties:

#u(U* () <_ w >_ o,
#u(U* (s)-) >_ s Vs [0, m(supp u)],

(22)
b- a m{x R": u*(a) >_ [u(x)[ > u*(b)}

if 0 _< a < b < m(supp u);

in other words, u* is an inverse function of #u. The function u defined
by

u(x) -u*(lxln), (x E Rn),
is called the Schwarz symmetrization of u. It is nonnegative, radial and
radially decreasing; moreover u and u are equidistributed, i.e.

m{x: lu(x)l > t} m{x: un(x) > t} Vt > 0. (23)

The mapping u---, u is a contraction in LP(R) for _<p <
(compare [15]), i.e.

if u, v E LP(R"), then [[u v[lz(,) < [[u- v[lz(l,). (24)

Now we prove the following theorem:

THnOIM 3.1 Let G’[0, +oe[ [0, +oe[ be nondecreasing and convex
with G(O)= 0 and let u Rn R be Lipschitz continuous and decays at

infinity, i.e. re{x: [u(x)[ > t} < oefor every > O. Then

.. (a(Ixl)lW(x)l) ax . (a(lxl)lVu"(x)l) ax, (2)

provided the left integral in (25) converges.

Proof The proof is divided in three steps.

Step I We claim that for evew s (0, m(supp u)),

fx (a(Ixl) IVu(x)I) xds I,()1>,*()}

(dx a(Ixl)lVu(x)ldx) (26)
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where suppu denotes the support of the function u. Let 0<s <
s + h < m(supp u). Then Jensen’s inequality (Appendix 1)) gives

h u*(s/h)>lu(x)l>u*(s)}
G(a(Ixl)lVu(x)l) dx

u*(s+h)lu(x)l>u*(s))

Sending h --* 0, and by taking into account (22), we obtain (26).

Step 2 We claim that for every s E (0, m(supp u)),

ix du*d
a(Ixl)lVu(x)l dx > --nwl,lnsl-llna(wllnsll") ds"ds lu(x)l>u* (s))

(27)

Let 0 < s < s + h < m(supp u). Then we have

!f a(Ixl)lVu(x)l dx
h u*(s)>_lu(x)l>u*(s/h))

dt
h au*(s+h) lu(x)l=t}

a(Ixl) ’n-1 (dx)

(by the coarea formula (Appendix 3))

fu*(s)
nwln/ntu(t)l-1/na(wl/n#u(t)l/n)dt>- - (by Theorem 2.1)

> - (u* (s) u* (s + h))nWn/n inf
tE[u*(s+h),u*(s)]

lZu( t) l-1/na(wl/n#u t) 1/n).

Passing to the limit h 0, this yields (27).
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Step 3 We have that

G(a(Ixl)lVu(x)l) dx

ds O(a(Ixl) lX7u(x) l)

(by the coarea formula)

> ds G
lu(x)l>u*(s)}

a(Ixl)lVu(x)l (by (26))

f0 (-> dsG nwln/nsl-(1/n)a(w;1/ns1/n)du*
ds J" (by (27))

But since u* is radially decreasing, this last expression is equal to

G(a(Ixl)lVu(x)l) dx.

By specializing G(t)= p in Theorem 3.1, we get the following

COROLLARY 3.1 Let u E wl’V(Rn)for somep [1, +o). Then

aP(Ixl)lVu(x)lp dx >_ f. aP(Ixl)lVu(x)lp dx, (28)

provided the left integral in (28) converges.

Proof If u is Lipschitz continuous and decays at infinity, then (28)
follows from Theorem 3.1.

In the general case we choose a sequence {Uk} C C (Rn) such that

Uk ---* u in WI’p(In).

By (24) we have that

(Uk) U in LP(Rn), (29)
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Since IIXT(uk)nll./  ) <_ IIXT(uk) ll /  /, the functions (ug) are equi-
bounded in WI’p(Rn). Together with (29) this implies that for a
subsequence {(ue) },

(Uk,) u weakly in WI’p(Rn).
In view of the weak lower semi-continuity of the integral in (28) we

obtain

aP(lxl)lVu(x)lp dx < liinf f aP(lxl)lV(u,)(x)lp dx
k J

< lim f aP(lxl)lVuk(x)lPdx, aP(lxl)lVu(x)lp dx.

Remark 3.1 We did not use assumption (4) in the proof of Theorem
3.1. In view of Remark 2.2, the results of this section remain true, if a
satisfies (5) but not (4), and if the level sets of u are starlike with respect
to the origin, i.e.

Ve(t) := u(te), (t 0), is nonincreasing for every e Rn. (30)

4 THE GENERAL CASE

Our aim is to generalize Theorem 2.1 to Caccioppoli sets. The theory of
these sets is imbedded in the framework of spaces BV(f),-where f
is an open set of Rn. Recall that any measurable set E c f satisfying
IIDllv) < +, is called a Caccioppoli set, and the quantity

is called the perimeter ofE (in the sense of De Giorgi). As an extension
of this definition, for any function u E BV(Rn ) we set

fa(U)’=sup{f.u(x)div(a([x[)qo(x))dx,
qo E Cg(Rn, Rn), I1 _< 1 },



A WEIGHTED ISOPERIMETRIC INEQUALITY 227

and for any Caccioppoli set E we call the quantity

pa(E) :-- fa(XE)

the weighted perimeter of E (with weight a) (see also [3,24,25]). Note
that fa is a nonnegative, convex and weakly lower semi-continuous
functional on BV(Rn), and, since

fa(U) < sup{a(lx])" x c suppu}llOul[s(i.) Vu c BV(R"),

fa(U) is at least finite if supp u is bounded. Furthermore,

if u C WI’I(Rn) and fa(u) < +, then

fa(u) [" a(Ixl)lVu(x)l dx. (3)

LEMMA 4.1 IfE is a bounded open set with Lipschitz boundary, then

pa(E)-- f0 a(lxl) 7"/n-1 (dx). (32)

Proof It is well-known thatp(E fq U) 7"[n- I(O(E fq U)) for every open
set U (see [14]). Since a(lx]) is continuous, this yields (32).

LEMMA 4.2 Let {Uk} C WI’I(Rn), u E BV(R"),

Uk U in Ll(Rn)

and

lim IlOull  ( =/. (33)
k---cx3

Then

lim f a(Ixl)lVu(x)l dx =fa(u). (34)
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Proof (33) implies

lim IlVUkl[Ll(U --IlDull(v/ for every open set U,
k--*o

(compare [14]). Since a(Ixl) is continuous, this yields (34).

THF.OP,F.M 4.1 Let u E BV(Rn) andfa(U) < +oc. Then

fa(U) >_fa(). (35)

Proof We choose a sequence {uk} C WI’I(Rn), such that (33) is satisfied.
From (24) we see that

(uk) u in L (Rn). (36)
Since

117(u)nll.,// 117ull,(/, (k= ,2,...),

the functions (u) are equibounded in WI’(Rn). It follows that for a
subsequence {(u,) },

(uk,) u weakly in BV(Rn).
Since the functionalfa is weakly lower semi-continuous, this implies

fa(U ) < liminffa((U/e)). (37)

But by (31) and Corollary 3.1 we have that

fa((U) n) IlalV(u)nlll,( IlalVulll.,( fa(U).

Together with (36) and (37) this concludes the proof of the Theorem.

By choosing u=x.E in (35), we obtain a generalized form of
Theorem 2.1.

THEOrtEM 4.2 (Weighted isoperimetric inequality) Let E be a Cacciop-
poli set in IIn. Then

pa(E) >_ pa(E)
ncoln/na((w-lm(E))l/n)(m(E)) 1-(1/n) (38)
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Next we analyze the case of equality in (38). We need two auxiliary
lemmata.

LEMMA 4.3
Then

Let A, B be Caccioppolisets withpa(A) < cx2 andpa(B) < cx2.

pa(A f’) B) + pa(A U B) <_ pa(A) -+" pa(B). (39)

Proof If A and B are bounded, open sets with Lipschitz boundary,
then (39) follows by Lemma 4.1.

In the general case we find sequences {Ak} and {Bk} ofbounded, open
sets with Lipschitz boundary, and such that

lim m((A\A) tA (A\A)) O,
k--*o

and

lim m((Bk\B) U (B\Bk)) O,
kc

lim 7-/,-1 (OAk) p(A)
k.--o

lim ’ln-1 (OBk) p(B),
k---oo

(compare [14]). Since a(lxl) is continuous, this yields

lim pa(hk) lim f a(Ixl) 7n-1 (dx) pa(A)
k--o k----o dOAk

and

lim pa(Bk) lim f a([x]) 7-/,,_1 (dx) p,,(B).
ko ko JOB

By the weak lower semi-continuity ofp we infer that

pa(A) + pa(B) lim (pa(ak) + pa(Bk))
kc

> lim inf pa(Ak N Bk) + lim inf pa(Ak t2 Bk)
ko kc

>_ pa(A fq B) +pa(A t_J B).
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LEMMA 4.4 Let g’[0, +cxz[ [0, +o[ be a convexfunction. Then

g(c s) + g(/3 + s) > g(tx) + g(/3) for 0 < s < c </3. (40)

Proof First suppose that g is differentiable. We set

qo(t) := g(c t) + g(/3 + t) g(tx) g(/3), (0 < < c).

Then 4(0)= 0 and, by convexity,

qo’(t) -g’(a t) + g’(/3 + t) >_ 0 for 0 < < a.

This yields (40).
In the general case we can argue by approximation.

THEOREM 4.3 Let a(t) > Ofor > 0 and,for some Caccioppoli set E,

pa(E) --pa(E).

Then E is equivalent to a ball. Furthermore, ifeither
(i) n and a(t) is strictly convex, or

(ii) n > 2 and a(t) is strictly increasing (t > 0),
then E & equivalent to E

(41)

(42)

(43)

Proof The proof is divided into five steps.

Step 1 Suppose that for some 6 > 0,

m(E N B26) m(B26), or

m(E fq B2) 0.
(44)

By setting

fi(t) { 0

a(t) -a(6)
if0<t<6

if6<t,

we obtain by (41) and (44),

a(6)p(E) + p(E) pa(E) pa(E) a(6)p(E) +p(E). (45)
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Furthermore, since satisfies (4) and (5), we have that

p() <_ p().
This implies, together with (45) and the isoperimetric inequality

(Appendix 2), that

p() p().

By once more applying the isoperimetric theorem, we infer that Emust
be equivalent to a ball.

Step 2 Next suppose that a(0) > 0. We have that

a(O)p(E) + Pal (E) pa(E) pa(EI) a(O)p(E) + Pal (E),

and since al satisfies (5), we may argue as in step to infer that E is
equivalent to a ball.

Step 3 Now suppose that a(0)= 0, and that (44) is not satisfied. Then

0 < m(E f’l B) < m(B) V6 > O.

We choose e > 0 such that EtAB is not equivalent to a ball. The
function

g(z) a(z/n)z/n-, (z > 0),

is convex by (5). In view of Lemma 4.4 this yields

g(m(E)) + g(m(Be)) < g(m(EfqBe)) + g(m(EU Be)).

On the other hand, we have that

nWn/(g(m(E B,)) + g(m(E B)))

=pa((ENBe) ) +pa((EUBe) )
< pa(E n Be) + pa(E Id Be) (by Theorem 4.2)
< pa(E) +pa(Be) (by Lemma 4.3)

pa(E) + pa(Be) (by (41))

na)ln/n(g(m(E)) + g(m(Be))).
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Hence we must have

pa((E C1 Be)) -1- pa((EtA Be)l) pa(E N Be) + pa(EtA Be),
which means that

pa((EI.A Be) ) --pa(EtA Be),

by Theorem 4.2. In view of step we infer that EtA B is equivalent to a
ball, a contradiction.
Thus we have proved that E is equivalent to a ball.

Step 4 Now suppose (42).
Since the sets E and E are equivalent to intervals (-R + s, +R/ s)

and (-R, +R), respectively (R > 0, s E R), we compute

a(l-R + s[) + a(lR + s[) pa(E) pa(E) 2a(R).

On the other hand, if Isl > 0, (42) yields

a(l-R + s[) / a(lR / s[) a(R + Isl) / a(-R + Isl) > 2a(R).

Hence s 0, i.e. E is equivalent to E

Step 5 Finally assume (43).
The sets E and E are equivalent to balls BR(xo) and BR, respectively

(R > 0, x0 E R’). We fix a coordinate system x (x1, x/) (x R’- 1), such
that Xo (s, 0,..., 0), s Ix01. Then we compute

s,(xo)

a(lxl)7-tn-1 (dx)

=l<n(a({’x"9+(s-v/R2-lx"2)2} 1/2)
{ + I’l(g I’1)-)/ ’. (46)

Assume that s Ix01 > R. Then the term [... in (46) increases strictly as
s increases. In view of Theorem 2.1 this means that pa(Bg)>pa(BR),
a contradiction. Hence we must have Ix01 _< R, that is Bg(xo) is starlike
with respect to the origin. Following step of the proof ofTheorem 2.1
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we compute

I / a (Ixl)n-1 (dx) (47)
JoB(xo)

al (7") + 7
.-2 Z -m hm rn-lh dO, (48)

m=l

where - (0), (0 6 T), is a representation for OB(xo), and

I := [ a ([xl)-l(dx) nnal (R)Rn-1. (49)
dOB

Note that (43) means that a(t) > 0 for > 0.
Since

nwnRn h dO,

we obtain, using (47), (49), (5) and Jensen’s inequality,

I [a2()-h dO

nwna (R)Rn- I,
where the first in equality is strict when Ix0[ # 0. This again means that E
is equivalent to E
The theorem is proved.

5 COMPARISON RESULTS FOR PDE

Let us consider the following Dirichlet problem:

Lu -(aijux) f in ft, (50)u=O on 09t,

where

(i) 9t is an open bounded subset ofR,
(ii) ae are real valued measurable functions on ft which satisfy

aij(x)ij >_  (Ixl)l l= R", for a.e. x E a,
where u is a nonnegative measurable function on f such that
u E Ll(f), u- E Lt(f) for some > 1 if n >_ 2 and u- LI(,-) if
n=l,
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(iii) fE Lq(f]), with q such that 1/q 1/2 1/(20 + 1/n if n > 2 and

fE Ll(f) ifn 1.

A solution of the problem (50) is a function u W’2(u, fl) which
verifies the following condition:

aijuxsqox, d.x,= fqodx Vqo C(fl). (51)

The assumptions (i)-(iii) guarantee the existence of such a solution
(see [21,29]).
From Theorem 4.2 we derive the following comparison result:

THEOREM 5.1 Let u be the solution of (50). Furthermore let w

Wlo’2 (u, f# be the solution ofthefollowingproblem:

-(u(lxl)wxi)xi =/# in fl#,
w 0 on Of#,

(52)

IfX/), (t >_ 0), verifies the assumptions (4) and (5) then we have:

u#(x) < w(x) for a.e. x a#. (53)
Furthermore,for every q ]0, 2], it results:

u(Ixl)qllvulq dx < j u(Ixl)qllXTwlq dx. (54)

Proof Let [0, ess sup lul[ and h > 0. We choose as test function in (51)

sign u

qoh
u --. sign u

h
0

if lul > + h,

if < lul t+ h,

otherwise.

Then we get

h lul<_t+h
aijUx, Uxs dx fsign u dx + - f(u sign u) dx.

Jlul>t+h lul<t+h

We denote by Wo’P(v, 9t), _<p < o the weighted Sobolev space, that is the closure of
C(ft) under the norm f. v(x)lVu(x)lp dx)1/p.
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Using (ii), Hardy’s inequality and letting h go to zero, we have
(see also [2]):

/,ud
(Ixl)lVul2dx < -- I>tdt I>t

ai(X)UxUx dx

--i[>tf(x)dx<-f"(Of*(a)d’o (55)

Moreover, by the Cauchy-Schwarz inequality, we have

d/u V(IxI)IVul dxdt I>t

( 12 )1/2d
,(Ixl)lXZul2 dx (-#’u(t)) 1/2 (56)

On the other hand, from coarea formula (see Appendix 3) we obtain

d /u X/’u(Ixl)[Vul dx / V/u(Ixl)-i (dx).
dt ]>t I--t

(57)

Now Theorem 4.2 gives

v/(Ixl)’?n-1 (dx) _< fu V/(IxI)/n-1 (dx),

that is,

(,#u_(t)I/nnwln/n#u(t 1-1In Siul=t x/,,’(Ixl) 7"/n-1 (dx). (58)

On combining (55)-(58), we obtain

(,,_mi".’n.oinz,(t)2_2i,<f"’(t)f,(r)d"
flu(t)

v
t wlnIn ) ,0

(59)
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Let us consider problem (52). Obviously, since w(x)= w#(x), the
arguments leading to (59) proceed in the same way except that equalities
now replace inequalities in the details. Thus, in place of (59), we obtain
the equality

a,w(t) , n/n jn n ]’l’w(t)2-2/n
,0

(or) dtr, (60)

where #w is the distribution function of w. Setting

F() fof* (r) dr
u()d/n/wln/n)n2wZnAZ-Z/n

(59) and (60) give:

#u(t)F(#u(t)) < lZw(t)F(#w(t)). (61)

Let/be a primitive ofF. Then, integrating (61) between 0 and t, we get

If f0, then dF/d) F(A)> 0 for all A>0. Hence F is strictly
increasing and"

Uu(t) <_ Uw(t).

This yields (53). Furthermore, we have by H61der’s inequality:

d fl. u(Ixl)q/lulqdx
dt I>

(fud  (Ixl)lX7ul dx (-#tu(t)) l-q/2-< -Using (55), we derive from this:

flu (/#u(t)f,d u(lxl)q/21vulq dx < (s) ds (-]tu(t))l-q/2
dt I>t J0
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Integrating this between 0 and +o yields:

)
9/2

foo+ fUu(t)f*(s)ds (-d#(t))u(lxl)q/2[Vulq dx < "#’(t) so

from which we obtain, by (59)"

(lxl)q/2lu[q dx

+o
f, (r) dr ds,nqafln/noO sl-1/ng/,.(s1/n/coln/n

and (54) follows.

Remark 5.1 Alvino and Trombetti [2] obtained another comparison
result for the solution ofproblem (50). They proved the inequality

u# < v, (62)

where v is the solution of the Dirichlet problem

-((Ixl)v,), =f#
v=O

in f#, (63)
on Of#,

and  (Ixl) is a function defined on [0, I l], such that

u"(t) 1 flu 1
(s) ds (x) dx

i>
for a.e. C [0, ess sup lull,

According to Lemma 2.1 in [2], the function 1/ is a weak limit of a
sequence of functions having the same rearrangement as Iv. Let us
observe that, since depends on u, in (62) u# is compared with the
solution of a problem which depends on u. In Theorem 5.1 the problem
(51) does not depend on u but further assumptions on v are requested.
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Remark 5.2 Theorem 5.1 can be extended to nonlinear elliptic pro-
blems of the type:

-div(A(x, u, Vu)) f in fl,
u 0 on 0f, (64)

where
(i) A" f x R x RnRn is a Caratheodory function such that

 (Ixl)l lp

where uELS(f), s> and 1/u E Lt(f), t> 1, l<p<(n(t- 1))/
(t-n).

(ii) fE La(Vt), with q such that 1/q ((p- 1)/p)(1 l/t)+ (l/n).

Let us denote by u E W’P(u,f) a solution of (64) and by z

Wlo’p (u, fl#) the solution of the following problem:

-div((Ixl)lVzlp-2Vz) -f# in f#,
z 0 on Of#.

If (u(t)) 1/p (t > 0), verifies the assumptions (4) and (5), we have

u#(x) < z(x) for a.e. x E f#.
Arguing as in Theorem 3.1 in [8], we can prove that problem (52) is the

unique problem such that equality holds in (53). More precisely we have

THEOREM 5.2 Let u and w the solutions of (50) and (52) respectively.
If u# w a.e. in 9t, then f f# + Xo, f--f#(. +Xo) and aij(x + Xo)Xj
u(lxl)xifor some Xo R".

APPENDIX

We recall some well known theorems.

(1) Jensen’s inequality (see e.g. [20])
Let EC Rn be measurable with finite measure, letf, h be integrable on E,
h > 0, and let G" R [0, +o[ be convex. Then

fe O(f(x))h(x) dx
fF h(x) dx \ fFh(x) dx ]" (65)
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(2) Isoperimetric theorem in Rn (see e.g. [27])
IfEC Rn is measurable with finite measure, then

7-[.n-1 (OE) > nwlnln(m(E)) 1-(1In). (66)

Furthermore, if (66) is valid with equality sign, then E is equivalent
to a ball.

(3) Coareaformula (see e.g. [13])
If u is Lipschitz continuous andfis integrable, then

f(x)lVu(x)l dx dt f(x) 7-[,n-1 (dx).
11": lu(x)l-t)

(67)
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