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We prove an inequality of the form [0 a(|x)H,,— 1 (d%) > [s5a(|x|YH, _ 1 (dx), where Qisa
bounded domain in R” with smooth boundary, Bis a ball centered in the origin having the
same measure as §2. From this we derive inequalities comparing a weighted Sobolev norm of
a given function with the norm of its symmetric decreasing rearrangement. Furthermore, we
use the inequality to obtain comparison results for elliptic boundary value problems.
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1 INTRODUCTION
Consider a boundary integral of the type

PelQ) = /m a(x) Hy_1(dx), (1)

where ais a given nonnegative function on R” and 2 is a smooth open set.
It can be seen as a weighted perimeter of (2. The classical isoperimetric
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theorem in Euclidean space says that, if a= 1, then

Pa(?¥) < pa(D), ©

where Q* is the ball centered at the origin having the same Lebesgue
measure of €2 (see [27]). By employing the so-called method of level sets
one can infer a lot of further functional inequalities from the
isoperimetric theorem, thus comparing underlying problems with
simpler — one-dimensional — ones. The literature for this theme is large.
As an orientation we refer to the monographies [5,15,23] and to the
articles [1,12,26].

Recently Rakotoson and Simon' [24,25] studied the problem of
minimizing p,(2) over the class of open sets with given, fixed measure.

We are interested in the question, for which general type of weights a
(2) might hold. In Section 2 we prove inequality (2) for radial weights
a=qa(|x|) satisfying some further conditions. In Section 3 using the
method of level sets, we show integral inequalities comparing some
weighted Sobolev norm of a function with a corresponding norm of its
symmetric decreasing rearrangement. In Section 4 an extension of one of
these inequalities to BV-spaces leads to a general version of our weighted
isoperimetric inequality for Caccioppoli sets. We also include a
discussion of the equality case in the inequality. We mention that
weighted norm inequalities which are similar to ours, are known for the
so-called starlike rearrangements (see [6,7,16,18,19]) and for the Steiner
symmetrization (see [9]). As an application of the weighted isoperimetric
inequalitiy (2), in Section 5 we derive a comparison result for elliptic
PDE. To be more specific, let us consider the problem

Lu= "(aijux,-)x,. =f inQ, 3)
u=0 on 09,

where

(i) Q2 is an open bounded subset of R",
(ii) a; are real valued measurable functions on §2 which satisfy

ai(x)€& > v(|x])|E] VE€R”, forae x €,

with v(jx]) >0 on ©,
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(iii) fand v~ ' in suitable Lebesgue spaces which guarantee the existence
of a weak solution.

Assuming that the weighted isoperimetric inequality (2) holds with
a = /v([x]), we prove that u* <v, where v is the solution of a problem
whose data are radially symmetric. Here u* denotes the Schwarz
symmetrization of u (see Section 3 for definition). Results in this order
of ideas are contained, for example, in [17,28] when the operator L is
uniformly elliptic and in [2]. Such result allows us to estimate any Orlicz
norm of u by simply evaluating the norm of v.

2 THE SMOOTH CASE

For any measurable set E with finite Lebesgue measure let £ * denote the
ball Br with center at the origin and m(E)=m(Bg). Here and in what
follows m(E) denotes the Lebesgue measure of E.
Throughout the paper we will assume that a: [0, +oo[ — [0, +oo[
satisfies
a(t), (t>0), isnondecreasing and (4)
(a(z'/™) — a(0))z'~/" (z > 0), is convex. (5)
Frequently we will write

ai(t) == a(t) — a(0), (1>0).
Remark 2.1 Note that (5) is satisfied, for instance, in the cases

a(t)=1%, (120), forp>1,

or, more generally, if a(¢) (¢ > 0), is nondecreasing and convex.
For n>2 we shall use n-dimensional polar coordinates (r,6,,...,
6,_1), to represent any point x =(xy, . .., X,) € R” (compare [16]):

|x| =7,
X1 = r cosfy,
(6)

X =rsinfsinf---sinfy_jcosfy fork=2,...,n—1,

Xp, = rsinf;sinf, - --sinf,_1,
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where r>0, 0< @y <mfork=1,...,n—2,and —7<6,_<m Let 0
denote the vector of the angular coordinates (6, ...,0,_1) and T the
(n — 1)-dimensional hypercube [0, 7]" =2 x [ —, ].

There are functions 4, h,,, € C(T') satisfying

h(@) >0, hu,()>0 ae.in T(m=1,...,n—1),

such that, if X is any smooth (n— 1)-dimensional hypersurface with
representation

¥ {(r,0): r=p(8), 0 € Tp},

where T, is an open subset of T'with Lipschitz boundaryand p € C'(Ty),
then

n—1 1/2
/E a(|x]) Ha_1(dx) = /T 0 a(p){l D> (;f,;)zhm} 7 1hdb.
)

Note that
Ho1(By) = oy = / 1(6) d6, ®)
T

where w, = 7"*[['(n/2+ 1)] ~! is the measure of the n-dimensional unit
ball.

THEOREM 2.1 Let Q be a bounded open set with Lipschitz boundary.
Then

/ a(|x]) Hor (dx) > / a(|x]) Ha1(dx)
a0 o
= nwl"a((w; 'm(@)"") (m(@)' " (9)

Proof To show inequality in (9), we divide the proof into three steps.

Step 1 Let n>2 and suppose that

00 is piecewise affin and

{(r,0): r>0}NOQ is a discrete set for every 0 € T.  (10)
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Let us observe that, to show (9), it is sufficient to prove the following
inequality:

1>, (11)

where

I:= /m ai(|x]) Hp-1 (dx),

I= /am a1 (|x]) Hn-1 (dx).

Indeed, (11) and the isoperimetric inequality (Appendix 2) yield

/ a(|x]) Hor(dx) = I+ a(0) / Hper (d)
0N N
> I' + a(0) /am Hy—1 (dx)

- / a(|x]) Hot (dx).
ont

In view of the assumption (10), we have the following representations:

BQ={(I‘,0)! r=r,-,~(0), 6¢c T,,]= 1,...,2k,‘, i= 1,...,1},

Q= {(r, 0) r,-,2,€_1(0) <r< ri’zn(a), e Ti, (12)

Ii=1,...,k,', i=1,...,l},

where the sets 7; (i=1,...,[), are open, pairwise disjoint subsets of T
with Lipschitz boundary,

rj € CY(T), (j=1,...,2k),
rif(6) <--- <rip(6), forbeT (13)
=0 if0eq
il{ . (i=1,...,1).
>0 if0¢gQ,
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Using (7) and (12), we compute

1

2%; . 1/2
’=ZZ/ al(ry){l+ ry)"ZZ(a”) m} (ry)"""h d6. (14)

=1 j=1
By setting

gi=0g)", (=1,....2k, i=1,...,]), (15)
we obtain from (13) and (14)

]

2k.
EDIDY /M)erwm

l
>3 [ a((za) V) (o) " hdO = . (16)
=1 JTi

Let QF = Bg, (R > 0). By using (18), (15) and (12), we see that

1

2%; .
m(Br) = wn R = (1/m) 35 /T 25(~1Yhdd,

=1 j=1

and hence, by (13),

‘ 1/n
Qm)ZZ[mmwﬁ

i=1 j=1

1/n

< <(nwn)—1§l: /T zi,z,cihdo> — R, (17)
i=1 i

Furthermore, we have by (4) and (17)

I* = nw,a (R) R < nw,a; (R)RY. (18)
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Now, in view of the assumption (5), we may apply Jensen’s inequality
(see Appendix 1) to obtain from (16) and (17)

I 1/n
I > nwya nwy, -1 /zi hdf
[ 5 o]
; 1=(1/n)
-1
X | (nwy zio,hdb
(a3, f )

= nwaa1 (R RY.

Together with (16) and (18), this proves (11) in the case under
consideration.

Step 2 Let n=1 and suppose that
k
Q= U(xzn_l,xzn) where x; < -+ < x. (19)

k=1

As in the previous case, we prove that 1> I'*. Then we compute

2%k
I= 2_1: ai(|xi) (20)
and

If =2a <1§x,~(—1)"). (21)
2
By (19) we have that
2%k-1
Xk —X12 ) xi(-1)7' >0

i=2

In view of (20), (21) and (5) this means that

1> ay(|x2e]) + a1 (Jx1])
> 2a1(3 (Ixa| + |xa])) > I*.
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Step 3 Let 00 be Lipschitz. We can find a sequence of sets {{2;}
satisfying (19) if n =1, respectively (10) if n > 2, and such that

Jim m((Q\Q) U (%)) =0,

klim Hn—] (Qk) = 'Hn_l(ﬂ).

By previous steps, the inequality (9) holds for €. Since a(|x|) is
continuous, this means that

b s(@x) = fim [ a(i) 701 0

> tim [ a(|x]) Ho(dx) = /Q alf)) Hoor(d).

k—o0 (Qk)u

Remark 2.2 The proof of Theorem 2.1 much simplifies if  is starlike
with respect to the origin. We leave it to the reader to confirm that the
assumption (4) is superfluous in this case.

3 WEIGHTED SOBOLEV INEQUALITIES

We recall some definitions and basic properties (see [15,26]).
Let u: R” — R be a measurable function which decays at infinity, i.e.
m{x: |u(x)| > t} is finite for every positive ¢. The map

pu(t) = m{x: |u(x)| > 2}, (120),

is called the distribution function of u; it is a decreasing and right-
continuous in [0, +00).
The function »* defined by

u*(s) =inf{z > 0: u,(r) <s}, (s=>0),

is called the decreasing rearrangement of u; it is a decreasing and right-
continuous function on [0, +oc). Furthermore it satisfies the following
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properties:

(U (s)) <s Vs>0,
pu(u*(s)—) > s Vs e [0,m(supp u)],
b—a=m{xeR" u(a) > |u(x)| > u*(b)}
if 0 < a < b < m(suppu);

(22)

in other words, »* is an inverse function of y,. The function u®, defined
by

W (x) = u*(walxl"), (x €R"),

is called the Schwarz symmetrization of u. It is nonnegative, radial and
radially decreasing; moreover u and u* are equidistributed, i.e.

m{x: |u(x)| > t} = m{x: v¥(x) >t} Vt>O0. (23)

The mapping u+—— u* is a contraction in [F(R") for 1 <p< +oo
(compare [15]), i.e.

if u,v € L”(R"), then |ju* — Vﬂ”u(n") < lu =l - (24)

Now we prove the following theorem:

THEOREM 3.1 Let G:[0, +oo[ — [0, +-00[ be nondecreasing and convex
with G(0) =0 and let u : R* — R be Lipschitz continuous and decays at
infinity, i.e. m{x: |u(x)| > t} < oo for every t >0. Then

| Gaivu@nax> [ calnvainds @)
provided the left integral in (25) converges.

Proof The proofis divided in three steps.
Step 1 We claim that for every s € (0, m(supp u)),

d
Sl Ga(ivum) s
{x: [u(x)|>w* ()}

> G(_d_ / allx)Vu()| dx>’ 29
ds Jix: u@)>e (9}



224 M.F. BETTA et al.

where suppu denotes the support of the function u. Let 0<s<
s+ h <m(supp u). Then Jensen’s inequality (Appendix 1)) gives

1

h o w0t (s+1) 2 fu(x)|>u* (5)}

> G(l / a(|x]) | V()| dx).
h {x: w*(s+h)>|u(x)|>u (s)}

Sending & — 0, and by taking into account (22), we obtain (26).

G(a(|x))|Vu(x)]) dx

Step 2 We claim that for every s € (0, m(supp u)),

i/ a(|x])| Vu(x)|dx > ~nwl/*s1= 1" a(w; /st /m) du”
ds J e ol ) ds
(27)

Let 0 <s< s+ h <m(supp u). Then we have

1
: al(x) V()| dx
{2 w* ()= |u(x)|>u*(s+h)}

1 r¥®
=2 / dt / a(|x]) Ho_1 (dx)
w*(s+h) {x: |u(x)|=t}

(by the coarea formula (Appendix 3))

1 46
> —/ (1) a(w " (1)) de - (by Theorem 2.1)
w*(s-+h)

>— (W (s) —u(s+m)nw/”  inf p () V" a(w (6",

teu* (s+h),u*(s)]

| =

Passing to the limit 2 — 0, this yields (27).
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Step 3 We have that

[ Glatishivueo) ax

+00 d

- ds—{ / G(a(IxI)IVu(x)l)dX}
0 ds | Jix: p@)>e )}

(by the coarea formula)

400
> [ ds G(i / a(|x|>|w<x)|dx) (by (26)
0 ds Jix: ux)l>ut(s)}

+o00 *
> ds G(—nw,l,/"s]”(1/”)a(w;1/"sl/”) %) (by (27))
0

But since u* is radially decreasing, this last expression is equal to

| Gtaivuip ax.

By specializing G(¢) = ¢” in Theorem 3.1, we get the following

COROLLARY 3.1 Let uc W"P(R") for some p €[1,+00). Then
/ (X)) Vu(x)P dx > / SV )P dx,  (28)
R R

provided the left integral in (28) converges.

Proof 1If u is Lipschitz continuous and decays at infinity, then (28)
follows from Theorem 3.1.

In the general case we choose a sequence {ux} C Cg°(R") such that
w, — u in WHP(R™).

By (24) we have that

()t — ut in IP(RY), (29)
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Since ||V ()" || pEy < < IV @)l (rr)> the functions (we)? are equi-
bounded in W' p(R") Together with (29) this implies that for a
subsequence {(ux)*},

(u)* — ut  weakly in WHP(R™).
In view of the weak lower semi-continuity of the integral in (28) we
obtain

[ ar DIV P ax <timint [ a9 P d
R’ ~oo Jgr
< Jim / a? (|x)) [ Vit (x)P dx
—00 R’l
- / a? (1)) [Vu(x)P dx.
Rn

Remark 3.1 We did not use assumption (4) in the proof of Theorem
3.1. In view of Remark 2.2, the results of this section remain true, if a
satisfies (5) but not (4), and if the level sets of u are starlike with respect
to the origin, i.e.

ve(?) := u(te), (t+>0), is nonincreasing for every e € R". (30)

4 THE GENERAL CASE

Our aim is to generalize Theorem 2.1 to Caccioppoli sets. The theory of
these sets is imbedded in the framework of spaces BV({2), where Q2
is an open set of R”. Recall that any measurable set EC Q satisfying
IDxEll By < +00, is called a Caccioppoli set, and the quantity

P(E) = ||Dx&| gymr

is called the perimeter of E (in the sense of De Giorgi). As an extension
of this definition, for any function u € BV(R" ) we set

fawy=sup { [ wiva(t)o(o)

¢ € C°(R%,R"), || < 1},



A WEIGHTED ISOPERIMETRIC INEQUALITY 227

and for any Caccioppoli set E we call the quantity
Pa(E) = fa(xE)
the weighted perimeter of E (with weight a) (see also [3,24,25]). Note
that f, is a nonnegative, convex and weakly lower semi-continuous
functional on BV(R"), and, since
fulu) < supfa(lx]): x € suppu}||Dullpymey Vu € BV(R?),

[f.(u) is at least finite if supp « is bounded. Furthermore,

if u € WH(R™) and f, () < 400, then

1) = [ a(lx)(Vu(x) dx. (31)
LEMMA 4.1 If E is a bounded open set with Lipschitz boundary, then
po(E) = [ aljx)) Mo (6) (32)

Proof Ttiswell-knownthatp(ENU)=H,_1(0(ENU))forevery open
set U (see [14]). Since a(|x|) is continuous, this yields (32).

LEMMA 4.2 Let {y;} C W"'(R"), uc BV(R"),
wy — u in L/(R")
and
leIg “vuk”L'(R") = ||D“||BV(R")- (33)

Then

jim [ a(x)IVue(] dx = (o). (349
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Proof (33) implies

im (|Vue| gy = [|Dull gy for every open set U,
k—o0

(compare [14]). Since a(|x|) is continuous, this yields (34).
THEOREM 4.1 Let uc BV(R"™) andf(u*) < +oc. Then
fa(w) > fa(u?). (35)

Proof Wechoosea sequence {u;} C W"!(R"), such that (33) s satisfied.
From (24) we see that

(u)* — ot in L'(R"). (36)
Since

IV @) gy < Vil (k= 1,2,..),

the functions (u)* are equibounded in W"!(R"). It follows that for a
subsequence {(ux)*},

(up)¥ — u' weakly in BV(R").
Since the functional £}, is weakly lower semi-continuous, this implies

Ja(ut) < lim inffo((me) ). (37)
—00
But by (31) and Corollary 3.1 we have that

Ja((ue)*) = 11al ¥ () *lll o ey < Nl Vil 2 gy = FaCose)-
Together with (36) and (37) this concludes the proof of the Theorem.

By choosing u=xg in (35), we obtain a generalized form of
Theorem 2.1.

THEOREM 4.2 (Weighted isoperimetric inequality) Let E be a Cacciop-
poliset inR”. Then

pa(E) > Pa(Eu)
= nw}/"a((wy 'm(E)) ") (m(E))' /" (38)
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Next we analyze the case of equality in (38). We need two auxiliary
lemmata.

LEMMA 4.3  Let A, B be Caccioppoli sets with p,(A4) < oo andp(B) < 0c.
Then

Pa(AN B) +pa(4U B) < pa(A4) + pa(B). (39)
Proof 1If A and B are bounded, open sets with Lipschitz boundary,
then (39) follows by Lemma 4.1.

In the general case we find sequences {4} and {B;} of bounded, open
sets with Lipschitz boundary, and such that

Jim m((4\4) U (4\44) = 0,
Jim m((B\B) U (B\By)) =0,
klglgo Hp-1(04x) = p(4)
and
Jlim ,,1(9By) = p(B),
(compare [14]). Since a(|x|) is continuous, this yields
Jim pa) = fim [ (i) Ho-1(dx) = pu(4)
and

lim pa(By) = lim / a(|x]) Hor (dx) = pa(B).
k—o0 k—o00 9B,

By the weak lower semi-continuity of p, we infer that
Pa(4) + pa(B) = lim (pa(Ak) + pa(Bx))
> liminf pa(Ak n Bk) + liminf pa(Ak U Bk)
k—o0 k—o0

> pa(A N B) + pa(4 U B).
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LEMMA 4.4 Let g:[0,+oo[ — [0, +oc[ be a convex function. Then

gla—s)+g(B+s) >gla)+g(B) for0<s<a<p

Proof First suppose that g is differentiable. We set

o(t) =gla—1)+g(B+1) —gla)—g(B), (0<L1<La).

Then ¢(0) =0 and, by convexity,
() =—-ga-—t)+gB+1)>0 for0<r<o

This yields (40).
In the general case we can argue by approximation.

(40)

THEOREM 4.3  Let a(f) > 0 for t > 0 and, for some Caccioppoli set E,

Po(E) = I’a(E”)-
Then E is equivalent to a ball. Furthermore, if either

(i) n=1 and a(t) is strictly convex, or

(#)) n>2 and a(t) is strictly increasing (¢ > 0),
then E is equivalent to E*.
Proof The proof is divided into five steps.

Step I Suppose that for some § >0,

m(E N Bys) = m(Bys), or

m(Eﬂ Bz&) =0.
By setting
_ 0 f0<t<é
a(t):= .
{a(t) —a(b) fé<t,
we obtain by (41) and (44),

a(8)p(E) + pa(E) = pa(E) = pa(E*) = a(8)p(E*) + pa(EY).

(41)

(42)
(43)

(45)
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Furthermore, since 4 satisfies (4) and (5), we have that

pa(E) < pa(E").
This implies, together with (45) and the isoperimetric inequality
(Appendix 2), that

p(E) = p(EY).

By once more applying the isoperimetric theorem, we infer that Emust
be equivalent to a ball.

Step 2 Next suppose that a(0) > 0. We have that

a(0)p(E) + pay (E) = pa(E) = pa(E*) = a(0)p(E*) + pa (EY),

and since a, satisfies (5), we may argue as in step 1 to infer that E is
equivalent to a ball.

Step 3 Now suppose that a(0) =0, and that (44) is not satisfied. Then
0 < m(EN Bs) <m(Bs) Vé>0.

We choose € >0 such that EU B, is not equivalent to a ball. The
function

g(2) := a(z'™)zV"1, (2> 0),
is convex by (5). In view of Lemma 4.4 this yields

g(m(E)) + g(m(B;)) < g(m(EN Be)) + g(m(E U By)).
On the other hand, we have that
nw,/"(g(m(E N B.)) + g(m(EU B.)))
= Pa((ENB.)*) + pa((EU B.)")
< pa(ENB.)+p,(EUB,) (by Theorem 4.2)
< Pa(E) + pa(B:) (by Lemma 4.3)
= pa(E*) + pa(B:) (by (41))
= nw)/"(g(m(E)) + g(m(B.)))-
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Hence we must have
Pa((EN B)*) + po((EU B:)*) = pa(EN B.) + pa(EU Be),
which means that
Pa((EUB.)) = pu(EU By),

by Theorem 4.2. In view of step 1 we infer that EU B, is equivalent to a
ball, a contradiction.
Thus we have proved that E is equivalent to a ball.

Step 4 Now suppose (42).
Since the sets E and E* are equivalent to intervals (—R +s, +R + 5)
and (—R, +R), respectively (R > 0, s € R), we compute

a(|=R +5|) + a(|R + 5|) = pa(E) = pa(E*) = 2a(R).
On the other hand, if |s| > 0, (42) yields
a(|-R+s]) +a(|R+s]) = a(R+ |s]) + a(—R + |s[) > 2a(R).
Hence s =0, i.e. Eis equivalent to E L3

Step 5 Finally assume (43).

The sets E and E* are equivalent to balls Bg(xo) and B, respectively
(R >0, xo € R"). We fix a coordinate system x = (x;, x') (X' € R" ™ 1), such
that xo=(s,0, ...,0), s=|xo|. Then we compute

/aak(xo) a(ld))H-1(d)
- /m “({I#h (s_ \/m)z}l/z)
+a(bﬁf+<y+v§;ja%52yﬂ)]

AL+ PR~ )Y dx. (46)

Assume that s =|xo| > R. Then the term [ .. .] in (46) increases strictly as
s increases. In view of Theorem 2.1 this means that p,(Br) > pu(Br),
a contradiction. Hence we must have |xo| < R, that is Bg(xo) is starlike
with respect to the origin. Following step 1 of the proof of Theorem 2.1
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we compute
I— / ay(|x[yH" (dx) 47)
dBr(xo)
=1/ 5.\ 2 1/2
= / al('r){l—t—'r"2 <—) h,,,} 7'hde, (48)
T m=1 80”!

where 7 =71(0), (6 € T), is a representation for dBg(x), and
= / a1 (1)) Hor (d) = nespar (R)R™. (49)
8B
Note that (43) means that a,(¢#) >0 for 1 > 0.
Since
nw,R" = / 7"h d6,
I
we obtain, using (47), (49), (5) and Jensen’s inequality,
1> / a(T)™"'h do
T
> nw,a (R)R*! = I,

where the first in equality is strict when |xo| 7 0. This again means that E
is equivalent to E*.
The theorem is proved.

5 COMPARISON RESULTS FOR PDE

Let us consider the following Dirichlet problem:

Lu = —(ayuy), =f inQ,
{u =0 o on 911, (50)

where
(i)  is an open bounded subset of R”,
(i) a; are real valued measurable functions on  which satisfy
a(x)&€ > v(x)) €] VEER”, forae x €,

where v is a nonnegative measurable function on §2 such that
ve LX), v~ e L) for some >1if n>2 and v~ ' L'(Q) if
n=1,
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(i) f€ LYRY), with ¢ such that 1/g=1/2—1/2f)+1/n if n>2 and
feL'Q)ifn=1.

A solution of the problem (50) is a function u € W, (v, Q)! which
verifies the following condition:

/ ity s, dx = / fedx vy e CP(Q). (51)
O Q

The assumptions (i)—(iii) guarantee the existence of such a solution
(see [21,29]).
From Theorem 4.2 we derive the following comparison result:

THEOREM 5.1 Let u be the solution of (50). Furthermore let w €
W(l,’z(u, O#) be the solution of the following problem:

{—(v(lxnwxi)x,. =r* 0, (52

w=0 on O0F,
If \/v(t), (t > 0), verifies the assumptions (4) and (5) then we have:

u?(x) < w(x) for a.e. x € QF. (53)
Furthermore, for every q €10, 2], it results:

/ W(|x) 72|Vl dx < / w(|x) 72 Iw]? dx. (54)
Q o

Proof Lette(0,esssup |ul[and A >0. Wechooseastest functionin (51)

sign u if lu| >t+h,
on = % if 1< |ul <t+h,
0 otherwise.
Then we get
1 : 1 .
7 il lh; X = Sfsignudx +— Slu— tsignu) dx.
h t<|u|<t+-h |u|>t+h h t<|u|<t+h

tWe denote by W(',”’ (v, ), 1 < p < oo the weighted Sobolev space, that is the closure of
C§°(£2) under the norm ( fq v(x)|Vu(x)? dx)'7?.
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Using (ii), Hardy’s inequality and letting 4 go to zero, we have
(see also [2]):

- v(|x)|Vul"dx < —— a;i(X)uy uy, dx
dt ‘u|>t (I |)| | = dt |u|>t l]( ) Xi *Xj

pu(0)
= flx)dx < /0 f*(o)da.  (55)

u|>¢

Moreover, by the Cauchy—Schwarz inequality, we have

d
-2 / VAPVl dx
[u|>t

d 2 2 1) 1/2
<(-g [ bmaar) o s

On the other hand, from coarea formula (see Appendix 3) we obtain

d
_ a/|;‘|>, VV(|x])|Vu|dx = / V(|x]) Hu-1 (dx). (57)

|uf=2

Now Theorem 4.2 gives

/,,# VB He (@) < /I ) Haor (dx),

uj=t

that is,

(““(3,, )nwl/" L0 < / VU(x]) Hoor (dx). (58)
On combining (55)—(58), we obtain

1/n
'"p/l(t) (Nu(gn ) " ()22 < / f*(o)do. (59)
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Let us consider problem (52). Obviously, since w(x)=w"(x), the
arguments leading to (59) proceed in the same way except that equalities
now replace inequalities in the details. Thus, in place of (59), we obtain
the equality

1 () 2Un. (2-2/n / ()
———v| — |nw t = *(0) do, 60
iy (2) ( wi/ (D) 0 /7@ (60)

where u,, is the distribution function of w. Setting

Jo /(o) do
FO\) = e /n/(;},/”)nzwg,\z-z/n’ X €0, 9],
(59) and (60) give:
o (O F (i (1)) < i, () F (i (1)) (61)

Let Fbe a primitive of F. Then, integrating (61) between 0 and ¢, we get

Flpa(1)) < Fluw(t).

If f#0, then dF/d\ = F(\) > 0 for all A>0. Hence F is strictly
increasing and:

pu(t) < o (2).

This yields (53). Furthermore, we have by Holder’s inequality:

_d / V(|x)7|Vulf dx
de |u|>t

d q/2 , _
< (“a /| y u(lxI)IVul2dx> (— (1),

Using (55), we derive from this:

u(1) /2
- [ e < ([ @ as)” oo
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Integrating this between 0 and +oo yields:

+o00 1 i (2) 9/2
14 /2 u —_— Ky —_
[ v ax < [ (—w) 0 f(S)d> (~du(0)

from which we obtain, by (59):

/ w(1x]) 72 Vul? dx
Q

ds,

il e

fr(rydr
niwi" Jo gl-1/n (sl/n/wl/" )
and (54) follows.

Remark 5.1 Alvino and Trombetti [2] obtained another comparison
result for the solution of problem (50). They proved the inequality

ut <, (62)

where v is the solution of the Dirichlet problem

—(@(|x)vx)y, =f* in QF,
{ v=0 on 00#, (63)

and #(|x|) is a function defined on [0, |2|], such that

(1) | 1
/ =(s)ds = / —(x)dx for a.e. t € [0,ess sup |u|[.
0 v u]>2 V

According to Lemma 2.1 in [2], the function 1/7 is a weak limit of a
sequence of functions having the same rearrangement as 1/v. Let us
observe that, since # depends on u, in (62) u* is compared with the
solution of a problem which depends on . In Theorem 5.1 the problem
(51) does not depend on u but further assumptions on v are requested.
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Remark 5.2 Theorem 5.1 can be extended to nonlinear elliptic pro-
blems of the type:

—div(4(x,u,Vu)) =f in Q,
{ u=0 on 01, (64)
where

(i) 4:92 xR x R"— R”is a Caratheodory function such that

A(x,5,6)€ = v(|x]) ¢l
where v€ L’(Q), s>1 and 1/v € L'(Q), t>1, 1<p<(n(t—1))/
(t —n).
(i) f€ L), with g such that 1/q = ((p — 1)/p)(1 — 1/1) + (1/n).

Let us denote by u € W(l)"’ (v,92) a solution of (64) and by z €
Wy (v, 0#) the solution of the following problem:

{ —div(u(]x])|VzP2Vz) = f# in QF,
z=0 on O0*.

If (u(2))'”? (t > 0), verifies the assumptions (4) and (5), we have

u*(x) < z(x) for ae. x € OF.
Arguing asin Theorem 3.1 in [8], we can prove that problem (52) is the
unique problem such that equality holds in (53). More precisely we have

THEOREM 5.2 Let u and w the solutions of (50) and (52) respectively.
If ' =w ae. in Q, then Q=0+ xo, f=1*(- +x0) and a;i(x + Xxo)x;=
(| x|)x; for some xy, €R”.

APPENDIX

We recall some well known theorems.

(1) Jensen’s inequality (see e.g. [20])
Let E C R” be measurable with finite measure, let £, 4 be integrable on E,
h>0,and let G:R — [0, +oo[ be convex. Then

S GUUAG) dx ([ f0x)h(x) dx
Jh(x) dx ZG( Jeh() dx )

(65)
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(2) Isoperimetric theorem in R" (see e.g. [27])
If E C R” is measurable with finite measure, then

Hy1(OE) > nwl/"(m(E))' =/, (66)

Furthermore, if (66) is valid with equality sign, then E is equivalent
to a ball.

(3) Coarea formula (see e.g. [13])
If u is Lipschitz continuous and f'is integrable, then

/R 00|V dx = /0 di /{xem oy P @ (@

Acknowledgment

The second author wants to thank the University of Naples for a visiting
appointment.

References

[1] A. Alvino, P.-L. Lions and G. Trombetti: On optimization problems with prescribed
rearrangements. Nonlin. Analysis T.M.A. 13 (1989), 185-220.

[2] A.Alvino and G. Trombetti: Sulle migliori costanti di maggiorazione per una classe di
equazioni ellittiche degeneri. Ricerche Mat. 27 (1978), 413-428.

[3] A. Amar and G. Bellettini: A notion of total variation depending on a metric with
discontinuous cofficient. Ann. Inst. Henri Poincar’e 11 (1994), 91-133.

[4] A. Baernstein II: A unified approach to symmetrization. in: Partial Differential
Eguations of Elliptic Type, Eds. A. Alvino et al., Symposia matematica 35, Cambridge
Univ. Press 1995, 47-91.

[5] C. Bandle: Isoperimetric Inequalities and Applications. Pitman, London 1980.

[6] C. Bandle and M. Marcus: Radial averaging transformations with various metrics.
Pac. J. Math. 46 (1973), 337-348.

[7] C. Bandle and M. Marcus: Radial averaging transformations and generalized
capacities. Math. Z. 145 (1975), 11-17.

[8] M.F. Betta and A. Mercaldo: Uniqueness results for optimization problems with
prescribed rearrangement. Potential Anal. 5 (1996), 183—205.

[91 F. Brock: Weighted Dirichlet-type inequalities for Steiner symmetrization.
Calc. Var. 8 (1999), 15-25.

[10] J.E. Brothers and W.P. Ziemer: Minimal rearrangements of Sobolev function.
J. reine angew. Math. 384 (1988), 153-179.

[11] A. Cianchi, D.E. Edmunds and P. Gurka: On weighted Poincaré inequalities. Math.
Nachr. 180 (1996), 15-41.

[12] V.N.Dubinin: Symmetrization in geometric theory of functions of complex variables.
(in Russian), Uspehi Mat. Nauk 49 (1994), 3—76; translation in: Russian Math. Surveys
49:1(1994), 1-79.



240 M.F. BETTA et al.

[13] H. Federer: Geometric Measure Theory. Grundlehren der Mathematischen
Wissenschaften, Vol. 153, Springer-Verlag, New York, 1969.

[14) E. Giusti: Minimal Surfaces and Functions of Bounded Variation. Birkhduser-Verlag,
Boston, 1984.

[15] B. Kawohl: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in
Math., Vol. 1150, Springer-Verlag, Berlin, 1985.

[16] B.Kawohl: On starshaped rearrangement and applications. Trans. Amer. Math. Soc.,
296(1) (1986), 377-386.

[17] P.L. Lions: Quelques remarques sur la symétrisation de Schwarz. in: Nonlinear Partial
Differential Equations and their Application, Collége de France, Seminar n. 1, Pitman,
London, 1980, 308-319.

[18] M.Marcus: Transformations of domains in the plane and applications in the theory of
functions. Pac. J. Math. 14 (1964), 613—626.

[19] M. Marcus: Radial averaging of domains, estimates for Dirichlet integrals and
applications. J. Anal. Math. 27 (1974), 47-93.

[20] D.S. Mitrinovic, J.E. Pecaric and A.M. Fink: Classical and New Inequalities in
Analysis. Kluwer Academic Publishers, 1993.

[21] M.K.W.Murthyand G. Stampacchia: Boundary value problems for some degenerate
elliptic operators. Ann. Mat. Pura Appl. 80 (1968), 1-122.

[22] A.Kufner and B. Opic: Hardy-type Inequalities. Pitman Research Notes in Math. 219,
Longman Scientific & Technical, Harlow, 1990.

[23] G.Polyaand G. Szegé: Isoperimetricinequalities in mathematical physics. Ann. Math.
Stud. 27 (1952), Princeton Univ. Press.

[24] J.M. Rakotoson and B. Simon: Relative rearrangement on a measure space.
Application to the regularity of weighted monotone rearrangement, Part 1. Appl.
Math. Lett. 6 (1993), 75-78.

[25] J.M. Rakotoson and B. Simon: Relative rearrangement on a measure space.
Application to the regularity of weighted monotone rearrangement, Part 2. Appl.
Math. Lett. 6 (1993), 79-82.

[26] G. Talenti: Inequalities in rearrangement invariant function spaces. in: Nonlinear
Analysis, Function Spaces and Applications, Vol. 5, Proceedings of the Spring School
held in Prague, May 1994, Eds. M. Krbec et al., Prometheus Publishers, 1995.

[27] G. Talenti: The Standard Isoperimetric Theorem. Handbook of Convex Geometry,
Volume A, (P.M. Gruber and J.M. Wills, Eds.), North-Holland, Amsterdam, 1993,
pp. 73-124.

[28] G. Talenti: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa 3
(1976), 697-718.

[29] N. Trudinger: Linear elliptic operators with measurable coefficients. 4nn. Scuola
Norm. Sup. Pisa 27 (1973), 265-308.



