
.L oflnequal. & Appl., 1999, Vol. 4, pp. 183-213
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1999 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishers imprint.

Printed in Singapore.

A Conjecture of Schoenberg

M.G. DE BRUIN a,., K.G. IVANOV b and A. SHARMAc

a Faculty of Information Technology and Systems, Department of Technical
Mathematics and Informatics, Delft University of Technology, P.O. Box 5031,
2600 GA Delft, The Netherlands; b lnstitute of Mathematics, Bulgarian Academy
of Sciences, P.O. Box 373, 1090 Sofia, Bulgaria; c Department of Mathematical
Sciences, University ofAlberta, Edmonton, Alberta, Canada T6G 2G1

(Received 16 October 1998; Revised 12 November1998)

For an arbitrary polynomial P,(z) I-I(z zj) with the sum of all zeros equal to zero,
zj 0, the quadratic mean radius is defined by

R(P.) Izl
\’"

Schoenberg conjectured that the quadratic mean radii ofP, and P, satisfy

n-2
R(e’.) <_ Vn--CS_ (e.),

where equality holds if and only if the zeros all lie on a straight line through the origin in
the complex plane (this includes the simple case when a zeros are real) and proved this
conjecture for n 3 and for polynomials ofthe fo +ak-.

It is the pose of ts paper to prove the conjecture for three other classes of poly-
nomials. One of these classes reduces for a special choice of the parameters to a previous
extension due to the second and third authors.
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1 INTRODUCTION

Let Pn(z) zn al zn-1 -+- a2zn-2 +...-F (--1)nan I]7(Z Zj) be a
given polynomial with real or complex coefficients. In 1986, Schoenberg
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[1] considered polynomials Pn(z) with al " zj --0 and defined the
quadratic mean radius of the polynomial Pn(z) and set

R(en) := Izl2

He observed that the quadratic mean radius ofP and Pn’ are related by a
simple inequality and offered the

CONJECTURE For monicpolynomials ofdegree n with the sum ofallzeros
equal to zero, one has

R(Pn) <_ 1R(Pn)’
with equality ifandonly ifallzeros zj ofPn(z) lie on straight line through the
origin.

Denoting the zeros of Pn(Z) by wj (1 <j < n- 1), the conjecture turns
after squaring into the equivalent form

n n-1n 2
izl2 iw12 >_ o. (1)

n
j=l j=l

As Schoenberg already noted, the case of a polynomial with real roots
only is simple: those polynomials satisfy

levi 2 4 al
2 2a2 -2a2,

j=l j=l

while the roots of the derivative satisfy

Iwl
9 w al -2

n- 2a2 -2
n- 2a2

j=l j=l
n n n

showing that (1) turns into an equality. Schoenberg proved the
conjecture for n 3 and for polynomials of the form z + akz-k which
he called ’binomial’ polynomials. Schoenberg’s proof (connected with
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van den Berg [3], Marsden [6]) is very elegant but does not seem to extend
to polynomials of higher degree.

Ivanov and Sharma [2] have shown that the conjecture (1) is true when

Pn(z) (z z1)ml(z- z2)mz(z- z3)m3 with Z mjzj O. (2)
j=l

They also prove the conjecture when Pn(z) is a biquadratic of the form

P4(z) (z2 2az + b)(z2 + 2az + c). (3)

We will show that for several other classes ofpolynomials the conjecture
of Schoenberg is true.
The layout ofthe paper is as follows. In Section 2 the main results will

be formulated, including the fact that the conjecture holds for a class of
polynomials not having the sum of all zeros equal to zero. This then
necessitates the reformulation of the conjecture, or equivalently (1), to
that situation; this will be done in Section 3. Finally in Section 4 the
proofs will be given.
For general information concerning methods in the realm ofinequal-

ities see a.o. Beckenbach and Bellman [4], Kazarinoff [5] and Mitrinovic
and Dragoslav [7].

2 MAIN RESULTS

First a theoretical result:

THEOREM If the conjecture, equivalently formula (1), holds for a
polynomialP(z) andrn > 2 is an integer, then it also holdsfor Q(z) P(z)m.
Now we give several classes ofpolynomials for which (1) can actually be
proved.

THEOREM 2 The Schoenberg conjecture holdsfor thefollowing types of
polynomials:

(A) For a, c E C, k, ml, m2 N the class

Pn(z) (? ak)m’ (zk ck)m=; n k(ml + mE), k >_ 1. (4)
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(B) For n E 1 the class

en(z) (Z + 1)n+l Zn+l. (5)

(C) For a,b,c, dEC, ml,m2N\{0} the class

Pn(z) (z2 + 2az + b)ml (z2 + 2cz + d)m2, n 2(ml + m2), (6)
where a and c are related by

(ml -+- 2m2)a -+- (2ml + m2)c O. (7)

For a 0 (then (7) implies c 0 too) the Schoenberg conjecture is true.
For a 0 (consequently c 0 too) the number r is given by

ml + 2m2 (8)
2ml / m2

Then Schoenbergs’ conjecture is true under the extra condition

23 3x/ 23 + 3x/< r < (9)
22 22

Remarks
1. The polynomials in (4) for k 1, those in (5) and those in (6) for
a,cO, necessitate the reformulation of the conjecture because
the sum of the roots of the polynomial is not necessarily equal to
zero, this will be done in Section 3.

2. Polynomials in (6) in case of ml m2 satisfy a -c; thus the result
by Ivanov and Sharma [2] is found again. Obviously 1/2 < r < 2.

3. The choice for the condition (7) is for sake of convenience: this will
become clear from the proofin Section 4.

3 REFORMULATION FOR _zj 0

Already Ivanov and Sharma [2] considered this possibility (their
Remark 2). Let a polynomial Pn(z) of degree n with roots zj (1 < j < n)
be given and assume

:--- zj=/=O. (10)
nj=l
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Introducing Pn by

n(Z) := e.(z + ),

and the roots j, resp. kj of/Sn, resp./3 by

(11)

j zj- (1 <j < n), vj wj-,f (1 <j < n-1), (12)

it is obvious that the sum of the roots of/Sn is equal to zero and
Schoenbergs’ conjecture leads to

n
Izj gl2

n-l
j=l Iwj gl2 > O. (13)

Using lu- gl lul z -4-Il ,- u-, (13) can be written out and
after collecting the terms with I12 and using -]j=-i #j -)-11 wj-

(n 1)g/n, we find the equivalent of the Schoenberg conjecture in the
form

n--1n 2
levi= + I12 ’ Iwl= 0, (14)

n
j=l j=l

with equality ifand only ifthe zeros ofP, are on a straight line through

Remark Note that (14) reduces to (1) when t? 0.

4 PROOFS

In this section full proofs of the main results will be given. Although
Theorem 2 makes it possible to deduce several special cases from
polynomials ofthe form (2), this constitutes only a minor simplification.

4.1 Proof of Theorem I

For the polynomial Pn(z)--1-I(z-zj) we have

H-1 (Z Wj) and formula (1) holds:

n n-1

[2n 2 y_ lzl Y lw >_o.
n

j=l j=l

(1/n)Pn(Z)

(15)
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The zeros ofQ(z) P(z)m are again Z1,... Z,n, with multiplicity rn each
and those of Q’(z)=mP(z)m- 1P’(z) are Zl,...,zn, with multiplicity
rn each and Wl,. .,wn 1.

The expression on the left hand side of(1) can now be calculated for Q"

mn 2
mlzl2 (m 1)lzl2 + Iwmn

j=l j=l j=l

mn 2_ (m 1) Iz l
j=l j=l

n n-1n 2 lz12 lwlZ,
n

j=l j=l

and this is the same expression as in (15).

4.2 Proof of Theorem 2A

For the class of polynomials given by

Pn(z) (zk ak)m’ (zk ck)m2, n k(ml + m2), k _> 1,

we have to consider the cases k and k > 2 seperately. Whether a c
or not is immaterial for the proof.
For k the weighted sum of the roots (compare (10) in Section 3) is

mla + m2c

which might well be different from zero. Using the equivalent form (14),
we have to prove

m1+m2--2( )mllal2+m2lcl2 +
ml +m2

mla -+- m2c
ml +m2

>_ (ml- 1)lalu + (m2 1)lcl 9 + m2a + mlc

ml +mE

Writing out the absolute values (using Iz + wl2 Izl2 + Iwl2 + Zw + z),
this turns into an exact equality in accordance with the conjecture as



A CONJECTURE OF SCHOENBERG 189

the roots a and c are trivially located on a straight line through in the
complex plane.,

Turning to k >_ 2, we can use (1) as the sum of the roots is zero (the
coefficient ofzn- is zero!) and we have to show

2/k

(16)

For k 2 formula (16) can be simplified to give

c2m21al + ml ll2 _> [ml + mal,
and this is true because of the triangle inequality. That same triangle
inequality implies that the only possibility to have an equality sign lies in
having mlc2 and m2a2 along the same half line through the origin.
But then mlc

2
tm2a

2 for a real with > 0: this shows that the roots
of the polynomial can be given by +a, +av/m2t/ml, showing that they
are on a straight line through the origin.

Finally we consider the case k > 3. If a 0, (16) can be written as

m2 ) 2/k

ml m2
Icl=" (17)

For c 0 the conjecture is trivially satisfied (then all zeros are located at
the origin) and for c # 0 the inequality (17) turns out to be strict as can
be seen from (1 x) ax / R with R 1/2a(a 1)(1 ) 2 < 0 for
0<x<l,0<a<l.
Now the case a # 0 remains; let also c # 0 (otherwise change the roles

ofa and c and apply the method ofproofof(17) again). Put x Ic/al >_
(if x < 1, interchange a and c), then (16) is equivalent to

n \ ml/m2 ,I
x>l.

Observe that

f(1) 2ml-/1

while k > 3.

2m2 2
1=1- >-

n 3’
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Furthermore

f’(x) 2x 2m2 ml (m2 + mixk. xk_2

n ml + m’------ k i --or equivalently

n ml q- m2 (ml + m:z)xk,]

Since (m2+mlxk)/((ml-+-m2)xk) is decreasing as x increases, the
functionf’(x) is increasing. While

f’(1) 2m2 (1--) >0,
ml +m2

we see that f’(x)>_ 0 for x _> 1. So f(x) is an increasing function of x
and asf(1) > 1/2, the inequality (16) is proved.

It is of course obvious that for k >_ 3 and a, c - 0 the zeros can never
all be on the same line through the origin.

4.3 Proof of Theorem 2B

We now consider the polynomials

Pn(z)=(z+l)n+l-zn+l, n>2,

where the weighted sum ofthe roots follows easily: -1/2. As the roots
can be given by

2k e27rik/(n+l)
(1 <_ k N n),

and those of Pn’ by

Wk e2k/n- (l<k<n-1),
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the conjecture takes the form

n-2 n-1

n
k=l 4sin2(kTr/(n + 1)) +-1 4sin2(kTr/n) >- 0. (18)

Writing sin2(kTr/(n / 1)) (1 cos(krr/(n + 1)))(1 + cos(kTr/(n / 1))), we
find

n

Z sin2(kTr/(n + 1))
(f(1) -f(-1)),

k=l

wherefcan be given in terms of Tchebycheff polynomials of the second
kind:

f(x) sin(n + 1)0
with x cos 0.

sin 0

Nowfis an odd function and using

Un(1)=n+l, Un,(1) n(n + 1)(n / 2)
3

we find

k=l sin2(kTr/(n / 1))
n(n + 2)

and (18) turns into an equality. Moreover, as the zeros Zk of Pn can be
seen as the pre-images of the roots of unity (k=e2k’i/(’+ 1), (1 <k < n)
under the mapping (=(z + 1)/z, they are all on the straight line
(Re z -1/2) going through g, proving the conjecture in full.

4.4 Proof of Theorem 2C

The prooffor polynomials as in (6) turns out to be rather intricate. First
of all the simplest case a c 0 is looked at.
The polynomial reduces to

en(z) (22 / b)ml (22 / d)m2,
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and using any pair of complex numbers , 6 with /2__. -b, 62= -d,
the conjecture follows from Theorem 2A.
For the sequel we can now assume a, c 0; indeed a and c are either

both zero or they are both different from zero in view of condition (7).

4.4.1 Reformulation as a Minimizing Problem

In this section the Schoenberg conjecture for class (6) will be refor-
mulated in terms of a problem minimizing a function of two complex
variables.
We consider the polynomial P:z,(z) of degree 2n, where

Pn(Z) (Z2 + 2az + b)m’(z2 + 2cz + d)mE, n ml + m2.

Then

2n

Izjl2 2m, (lal2 + a= bl) + 2m=(Icl2 + c2 dl).
j=l

Now Pn(Z) 2(z2 + 2az + b)m’-I (z2 -+- 2cz + d)m2-1 a(z), where

a(z) nz + {(ml + 2m2)a -t- (2ml + mE)c}z2

+ (2nac + md+ m.b)z + mad+ mcb.

Here we see the use for the condition (7)

(ml -t- 2m2)a q- (2ml -i- m2)c 0,

leading to a simplification for Q:

Q(z) nz + (2nac + md+ m2b)z + mlad + m2cb.

The zeros 1,2,(M3 of Q(z) can then be given explicitly using the
primitive root of unity c exp(27ri/3):

wj uaj + va2j, j 1,2, 3.

Then

I1 3(lul2 + Iv12).
j=l
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Also u, v are related by the relations

U3 @ V3 mlad + m2cb
uv

2nac + mid+ m2b (19)
n 3n

Because we used condition (7), the reformulation (14) of the conjecture
has to be used as the sum of the zeros is 2(mla + m2c). It is directly clear
that P2n satisfies (7) and has sum of zeros equal to zero, if and only if
a=c=0 (in case ml :/:m2) or ml =m2 and c=-a. Now the first
mentioned case has been treated already at the beginning of Section
4.4 and the second case follows from application of Theorem to the
polynomial given in (3) and treated by Ivanov and Sharma [2].

According to (14) the conjecture of Schoenberg reduces to:

2n 2 2 Imla + m2c

2n {2ml(lal +la2-bl)+2m2(Icl2+lc2-dl) )+1 n

> [2(ml 1)(lal2 -+-la2 bl) / 2(m2 1)(Icl2 / Ic2 -dl)
/ 31ul2 / 3lvl2].

On simplifying the above, we get

2ml 12 C2 Imla+m2cl
22m2 (lal2 / la2 bl) + (Ic +1 d[) +

n n n

3(lul2 / Ivl 2) > 0. (20)

From (19), we solve for b and d in terms of a, c and u, v: thus we have

_n(u3 + v3) _+. 3nuva + 2na2c
b (21)ml(c--a)

and

d
-n(u3 "k- v3) -[- 3nuvc + 2nac2

ml(a--c) (22)

Write r (ml + 2m2)/(2ml -k- m2), using (7) we have then c -at, and
this leads to

c2 d
(u3 -[- v3 r3 a3 d- 3uvra)

3mla/(2ml + m2) (23)
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a2 b
(u3 + 13 / a3 3uva)
3m2a/(2ml / m2) (24)

Without loss of generality we can take a= (this could have been
achieved beforehand by scaling the variable z), leading to the following
form for the polynomial:

P2n(Z) (z2 + 2z + b)m’ (z2 2rz / d)m2, ml + 2m2
r (25)

2ml + m2

Now the left hand side of (20) reduces to

( 2ml+m2
1 ) (2(ml --m2). 2

2mEn + 3m2
[u3 / / 1-3uvl /

\ /m2 /

2ml { 2ml / m2 v3 r3/ r2 / [U + / 3ruv[ 3(lu[ 2 / Ivl2)n 3ml

2m2 2mlr2 2 [ v3--/ / u3+ +l-3uv
n n r+l

ml m2 3 r 3ruv 3(lul2 / iv12)+4 21-2 +[u3+ +

Put ( u + v, W u v and w 3WE. Then

4(u + v + 3uv) 4(u+ v+ 1)(u2 + v2 + 1 uv- u- v)
(ff + 1)((ff- 2) + 3W2)
( + 1)(((- 2)2 + w), (26)

and

4(u + v r3 + 3ruv) 4(u + v- r)(u2 + v2 + r2 uv + ru + rv)
(ff r) (( + 2r)2 + w). (27)

We now define

8m2 8mlG(,) :- (lal2 / la2 bl) / (Icl2 / Ic2 dl)
n n

+ 4lmla / m2c]
2

2).-12(lul2
/ Ivln
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Since

m2 2m + m2 m 2ml + m2
n 3m2 r + n 3ml

we can write

G(ff, w) 2 4(r2 r + 1) 31CI= -I1 + r+l

{lff + II I(ff 2)2 + w] + ]ff r [(ff + 2r)2 + wl)1 (28)

To prove Schoenbergs’ conjecture, written in the equivalent form (20),
we have to show that

G(,w) >_ O, (29)

with equality if and only if all zeros are on a straight line through

z.

4.4.2 The Case

First we consider the case that (E and introduce some notation.
Replace G(,w) by G(,w) (r / 1)G(,w)/2, we then have to prove
(29) for . Put

ff:=+ir/(C,r/); w:=pei (p_>O, O<qo<27r). (3O)

Since we have the following identities:

(r- )( + 2r)2 + (1 + )(- 2)2 (r + 1){4(r2 r + 1) 32},

and

(r- ) + (1 +) r+ 1,
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we can write

0(, w) (r- )( + 2r)2 + (1 + ()((- 2)2 ((r- ) + (1 + ))11

+ r l" I( + 2r)2 + wl + l1 / 1" I( 2)2 + wl
sgn(r )lr l( / 2r)2 + sgn(1 / )11 + 1(- 2)2

sgn(r- )lr- 1" I1- sgn(1 / )11 / 1"
+ r- {l" I(+ 2r)2 +wl + +1" I(- 2)2 +wl
Ir 1{1( / 2r)2 / l / sgn(r )(( / 2r)2

/ I1 / 1{1( 2)2 / 1 / sgn(1 / )(( 2)2

As I({ + 2r)2 + wl > I({ + 2r)2 -I11 and I( 2)2 + wl > I( 2)2 -Iwl I,
this immediately implies 0(, w) > 0.

Introducing

C := I( + 2r)2 + 1 + sgn(r ()(( + 2r)2 (31)

and

D := I( 2)2 + wl + sgn(1 + )((( 2)2 I1), (32)

it is also clear that G(, w) 0 can only happen in the following cases:

a. and [(2r 1)2 + w] I1 (2r 1),
b. r and I(r 2)2 + 1 I1- (r 2)2,
c. -1,rand C=D=0.

Writing-s/ it (s, E 1), it is a matter of straightforward calculus to
prove that the three cases mentioned above lead to the following
conditions on s, (where in each ofthem w turns out to be real too):

a. and s < -(2r 1)2, 0,
b. r and s _< -(r 2)2, O,
c. there are different intervals for (:

1. ( < and -( 2)2 < s _< -(+ 2r)2, O,
2. -1 < c _< r and s < (- 2)2, O,
3. r < < r and s _< -( + 202, O,
4. ( > r and -(( + 2r)2 <_ s <_ -( 2)2, O.
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The zeros of the polynomial e2n, see formula (25), can be given by

-l + x/1- b, r+ x/r2 d,

where a 1, c -r has been used.
Inserting the explicit expressions for b from (24) and r2- d from

(23), using also (, w E/, we find that the numbers under the square root
sign are real:

r2 d (( r){ (( + 2r)2 + co)}
12ml/(2ml + m2)

l-b= ((+1){((-2)2+
12m2/(2ml + m2

Moreover, the sign of these real numbers is given by

sgn(r2 d) sgn((- r)((( + 2r)2 + w),
sgn(1 b) -sgn(( + 1)((- 2)2 + w).

Carefully checking all possibilities for (, w given above, we conclude

r2-d>_O, 1-b >_0,

i.e. all zeros of P2,, are real and thus the conjecture is true.

4.4.3 The Case ( C\1R

Because of the definition of ( in (30), we see that C\IR =, r/- 0.
We introduce some notation:

P := I(- rl V/(- r)2 + r/2,

q := I(+ 1[ V/(+ 1)2 + r/2,

a + i/3 ( + 2r)2 => a ({ + 2r)2 r/2, /3 2r/({ + 2r),

7 + i6 := (- 2)2 => 7 ({- 2)2 r/2, 6 2r/({- 2),

A := I(( + 2r)2 +
B := I((- 2)2 +

(33)

(34)

(35)

(36)

(37)

(38)
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Then we have:

A2
=al

2 +a22,

B2 bl2 + b2,

al --ce sin +/3 cos , a2 p 4- a cos --b fl sin ,
(39)

bl -’7 sin + 6 cos , b2 p -b 9’ cos q- 6 sin

(40)

and G(ff, w) from (28) can be written as

G((,w) 214(r2 r + 1)+PAr+l+ qB_ 3(2 + r/E) p]. (41)

We have to show that infc G((, w)> 0 for fixed C.
The only possible points for which an infimum can occur are the cases:

(i) p=0,
(ii) p ,
(iii) OG/Oqo OG/Op 0 with

Case (i) When p Il--o, we have A 1+ 2rlz, B 1- 21, thus

0)=2 [4(rE r + 1) + Iff-rl" iff+2rl=+lff+ 11" 1ff-212
r+l

Since

1- rl" 1-+-2r12 + 1+ 1[. 1-212
>- I(- r)(( + 2r)2 (( + 1)(- 2)21

(r + 1)13ff2 -4(r2 r + 1)1

_> (r + 1)13121-4(r2 r + 1)l,
we see that G((, 0) > 0.
In case of equality we write

0 G(, 0) _> 214(rE -r + 1)+ 130 -4(rE -r + 1)1- 311] _> o,
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implying

13(2 4(r2 r + 1)l 3112 4(r2 r + 1). (43)

With the notation 3(2 gei, g > 0 (as we are in the situation of ),
formula (43) leads to

{gcosT--4(r2 r + 1)}2 + {gsinT-}2 {g-4(r2- r + 1)}2

which on simplification shows

8(r2 r + 1)g(1 cos 7-) O.

As g - 0, we must have cos r 1" 32 g E IR. But then

3(2 r/2) + 6ir/= g,

which is equivalent to the two equations r/=0 and 3(2- 2)__g.
As , we find r/-0 and consequently =0 and g=-3r/2<0:
a contradiction. Thus we have G((, 0) > 0.

Case (ii) As we have r/-7/: 0, then

Iff- rl + Iff+ 11 > r+

and thus

8r2-8r+8 2 { ](-2)2+wIol + I + 1r+l w

+ If rl
(( + 2r)2 + a;

6 Ill2

Hence

lim G(f,w)_ 2

I1-o Iwl r +---- {1 + 11 + If- rl) 2 > 0.

and so limllo G((, w) +c, showing that the infimum is not
attained for p .
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Case (iii) Before the partial derivatives of G((, w) with respect to p and
qo can be calculated explicitly, we have to consider the cases A 0 and
B 0. First assume A 0, then from (37) we see

w -( + 2r)2,

which implies for B from (38):

B I(- 2)2 ((+ 2r)21 4(r + 1)l(- 1 +

Inserting these into G, we find

a(c,a) 8[IC+ 11" IC+r-11- (2 +r2 + r+r 1)].

For {2+r/2+r{+r-1 <_0, we find

asr/ 0.
For 2+ 72+ r+ r- > 0 it is obvious that the sign of G can be

given by

sgn G sgn [l( + 112. Iff +r 11: (2 + r/2 + r +r 1)2]. (44)

Simplification of the right hand side of (44) leads to the form
(2 r)2T]2 0, as 1 # 0 and 1/2 < r < 2.

The case B 0, i.e. w -(( 2)2 and thus A I(( + 2r)2 (( 2)21,
can be treated in the same manner:

for 2 +/2 _}_/, r2 _< 0:

G >_ I- rl" If -+- r 11 > 0;

for {2 +2_ {+ r- r2 < 0:

sgn G sgn[I( rl2. Iff + r 112 (2 + r2 + r r2)2],

and the right hand side is equal to (2r- 1)2r12 > 0 since r/: 0 and
!<r<2.2
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Thus we can differentiate with respect to and r/to find the stationary
points. Putting cOG/Op OG/OT 0 yields the conditions

a2 b2p- + q-= r + l,

al bl
p+q=0.

(45)

We shall prove the following:

LEMMA IfA, B > 0, then (45) is equivalent to

rla2 e(r- )al, (46)

r/b -(1 + )b, (47)

sgn a2 sgn(r ) > O, (48)

with e +/-1.

sgn b2 sgn(1 / ) > 0, (49)

Proof From (46)-(49), we get

22__
r/a2 (r )2a12,
r/2b22 (1 / )2b12

so that using (33), (34), (39) and (40), we have

p2 r/2 + (r )2 (r )2 (al2 + ) (r ()2A2,
q2b22 r/2b2 + (1 + )2b22 (1 + )2(b12 + b22) (1 + )2B2.

Thus

pa2 (r- )A and qb2 + )B,
which yields the first equation in (45). From (46) and (50), we get

al al (r ) r/

P’-= a2 e

bl bl r/
2(1 4- )q--

which on adding leads to the second equation in (45).

(50)
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We now show that (45) implies (46)-(49). We rewrite (45) in the
following form:

a qb
p=r+l B (qb2 ___)or -if-= r+

Squaring and adding two of them, we get

p al p a q. b ) qb+ - --+(r+l -2(r+l)-+n2

or

b2 q2.p2 (r+ 1)2- 2(r + 1)q+ (51)

Similarly we also get

a2 p2.q2 (r + 1)2 2(r + 1)p + (52)

From the above (51) and (52), we obtain

b2 (r + 1) + q2 _p.
q- 2(r + 1) + 1,

a (r + 1) +p q
P- 2(r + 1)

r , (53)

since q2-p2 (2-+- r)(r + 1). As p,qO (while r/ 0), (53) implies
(48) and (49).

Squaring the equations in (53) and using (34), we obtain

qb {( + 1)2 + r/2}b2 ( + 1)2(bl + b),

which gives

/2b2 (q -( + 1)2)b ( + 1)2b.



A CONJECTURE OF SCHOENBERG 203

Similarly using (33):

p2a {( r) + rl2} (r )(a + a),

which yields

Thus

r/2a22 (r )2a12.

r/b2 (1 + )blel, r/a2 (r- )ale2, with El,e2 dzl. (54)

There are now three possibilities"

1. a2 0, b. # 0,
2. a20, b2---O,
3. a2, b2 0.

In the first and second case we have automatically r- 0 resp.
+ =0 as A, B 0. This shows that we can choose el -e2 without

loss of generality. Moreover, this also implies that a2--b2--0 is not

possible as this would imply r 1.
In the third case finally, we get from (54), (45), (53) and the fact that

r-,l +#0:

al bl a1___ b2r/O =p-+ q- p
(r_ )A e2 + q

(1 + )------e
+ ( + ). e(r-)"r-( +

le2 + rlel,

whence E1 --2.
This completes the proof of the lemma.

Using the above lemma, we can calculate/9 from the following equa-
tions, where we have inserted the values al, a2, bl, bE:

n(P + a cos o +/3 sin o) e(r )(-a sin o +/3 cos o),
r/(p + 7 cos qo + sin qo) -e(1 + )(-7 sin qo + cos q),

sgn(p + a cos qo +/3 sin qo)sgn(r ) > O,
sgn(p + 7 cos o + 6 sin o)sgn(1 + ) _> O.

(55)
(56)
(57)
(58)
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Subtracting (56) from (55) and simplifying, we obtain

[7(/3 6) + e{c(r ) -+- "),(1 + )}] sin go

[e{/3(r ) + 6(1 + )) r/(ce -y)] cos q. (59)

From the definitions of a, fl, % 6 in (35) and (36), we have

c-/=4(+r-1)(r+l), /3-6=4r/(r+l), ]
c + "y 2(2 + 2(r 1) + 2(r2 + 1) 2), /3 + 6 4r/(( + r- 1).

(6o)

Also

cer + "y (r -t- 1){2 r/2 + 4(r 1) -+- 4(r2 r -+- 1)),
/3r + 6 2r/(r + 1)( + 2r- 2).

Using the values in (60) and (61), we get from (59) the following:

(61)

e +1" [32 3r/2 4(r2 r / 1)] sin qo 6r/cos qo, (62)

e -1" [-3(2 5r/2 +4(r2 r -t- 1)] sinqo 2r/( + 4r- 4) cosqo.

(63)

The ease e 1. Put

[{3(9 3r/2 -4(rV-r + 1)}+(6r/)] /2.

Then q > 0 and q 0 if and only if

(64)

6 0 and 32 3r/2 -4(r2 r -+- 1) 0.

This can only happen if r/= 0 and 32 4(r2 r -+- 1) 0, but ( N,
thus r/ 0 and we have ff > 0.
From (62) we have

6(r/ (3(2 3r/2 -4(r2 r + 1))r
sino=r , cosqo= r=+/-l.

(65)
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From (55) and the values of sin qo, cos qo in (65), we can calculate p:

O" O"
/9+ [( + 2r)2 -r/2] (32 3r/2 -4(r2 r + 1)} + 2r/( + 2r) 6r/

r [_(( + 2r)2 r/2} 6r/

+ x +

A tedious calculation leads to

cr
[_3(2p + 12(r2 r+ 1){2 4(r2 r+ 1)r/2 24r(r-- 1){].

(67)

As p > 0, this implies that the sign of a is ruled by the sign of the quartic
in , between the square brackets.
To find the left hand side of (55), which actually is the left hand side

of (66), rewrite the fight hand side of (66):

p+ acos + sin qo

4(r {)[-3r{2 (8r2 2r -+- 2) 3rr/2 4(r r2 + r)] .
Because of (57), we see from the above that

er[-3r{2 (8r2 2r + 2){- 3rr/2 -4(r r2 -+- r)] _> 0.

From (56) we see similarly that

P + 3’ cos qo + 6 sin qo

4(1 + {)[-3{2 + (2r2 2r + 8){- 3r/2 -4(r2 2r + 1)] ,
and because of (58), we get

or[-3{2 + (2r2 2r + 8)- 3r/2 -4(r2 r + 1)] _> 0.

From (68) and (70), we can now obtain A and B. Indeed, we have

A2 =(p + a cos o +/3 sin o)2 + (-a sin o +/3 cos o)2

=(P + a cs q +/ sin q)2 (1+ (_--),

(68)

(69)

(70)

(71)
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so that, using (68), we get

A -----4cr [3r2 + (8r2 2r+2) + 3rr/2 + 4r(r2 r + 1)] v/(r )2 / r/2.

Similarly, using (70)

B [32 (2r2 2r + 8) + 3r/2 + 4(r2 r + 1)] (1 + )9. + r/2.

Since p v/(r- )2 / r/2, q V/(( / 1)2 / r/2, an elementary calcula-
tion yields:

pA + qB
r+l

-o" 2 2 24r(r---[12(2 + 7]2) 36(r2 r + 1) +

+ 28(r2 r + 1)r/2 / 16(r2 r + 1)2]. (72)

From (69)and (71), we see that if r 1, then

r(32 + 3r/2 + 4(r2- r + 1)}
(8r2 2r + 2)

and

32 / 3r/2 / 4(r -r / 1)
2r2 2r / 8

which is impossible since -(1/r)(8r2 2r + 2) < 0 < 2r2 2r + 8 and
also 32 + 3r/2 + 4(r2 r + 1) > 0. Therefore tr 1.

Using (67) and (72) with cr -1, we now obtain

(pA + qB)
r+l

7.]2)2p [9(2 + 24(r2 r + 1)2 + 24(r2 r + 1)r/2

+ 16(r2 r + 1)2]

[(32 3r/2 --4(r2 r / 1))2 / (67)2]
t2
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Hence we get

pA + qB
G((, w) 2 4(r2 r + 1) 3(2 + r/z) + r+l

214(r2 r + 1) 3( + r/z) + if] > 0,

because

ff V/{3(2 +r/2) -4(r2 -r+ 1)}2 +48(r2 -r + 1)r/2
> 13( 2 + 02) -4(r2 r + 1)l,

since r/ 0.

The ease e -1. In this case we have from (63)

[3(2 -+- 5r/2 4(r2 r -+- 1)] sin qa --2r/(( + 4r 4) cos qo. (73)

Put

[{32 + 5r/9 --4(r2 --r + 1)}2+{2r/( + 4r 4)}2] 1/2. (74)

Clearly _> 0 and 0 if and only if

32+5r/2-4(r2-r+l)=0, 2r/((+4r-4)=0,

which implies, because r/# 0, that ((, 7) has to be one of the points
satisfying

-4(r 1), 5r/2 -4(11r2 23r + 11). (75)
The ease 0. We first assume > 0, then (73) implies

sin qo 2r/(( + 4r 4), cos qo [32 -+- 5T]2 4(r2 r + 1)],

(76)

where cr 4-1. Using the values of sin qa and cos o from (76), we obtain
from (55)

p + acos +/3sin o
r

(-a sin p + fl cos qo)

4r(r- ) ., (77)



208 M.G. DE BRUIN et al.

where .T is defined by

.T [2 + 2r/2 + (7r- 2)2 + (8r2 -6r- 2)

+(3r + 2)r/2 + (4r -4r2 -4r)],
where the values of a,/3 from (35) have been inserted.

Again using sin q, cos qo from (76), we can calculate p from (77):

p [5(2 + r/2)2 (4r2 + 20r + 4)2 (4r2 + 36r + 4)2

+ 8(r- 1) 8(r2 r) + 8(r- 1)r/2 + 32r].
Similarly using (56) and (76), we obtain

1+p + ,), cos + 6 sin o (--y sin + 6 cos )

4or(1 + ) ,
with

[-23 2r/2{- (2r- 7){2 + (2r2 + 6r 8){
+(2r + 3)r/2 (4r2 + 4r 4)].

From (57) and (77) we see

(78)

(79)

(80)

(81)

’tr _< O, (82)

and from (58) and (80)

9tr < 0. (83)

Looking more closely at what happens if both inequalities turn into

equalities, it is simple to show

(.T" + )cr < O. (84)

Indeed, assuming ’cr cr O, recalling the definition ofal, a2, bl, b2 in

(39) and (40), formula (77) resp. (80) imply

r- 1-+-
a9. al=O, resp. b2=.b=O.
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/
we are still 4/working under the assumptions A a + a2 > 0 and

B v/b2 + b2 > 0, we must therefore have r 0 and + 0. This,
however leads to r 1" a contradiction with 1/2 < r < 2.
From (39) and the values of al, a2 as given in (77), we can calculate

..2
A2 16{ ({ r)2 + r/=}

and from (40) and the values of bl, b2 given in (80) we get

B2 16{(+ 1)2

Using p V/(( r)2 + r/2 from (33) and q V/(( + 1)2 + r/2 from (34)
and the inequalities (82), (83), this implies

_o r
)= (85)pA=4{({-r)2+r/9} qB=4{({+l

Thus

pA + qB
r+l

r
[_4{4 2492r/2 2Or/4 + 8(r- 1){ 24(r- 1)r/2g

+ 4(5r2 lr + 5){2 4(7r2 13r + 7)r/9
8r(r- 1)- 16(r4 2r + r2 2r + 1)]. (86)

Now (86) leads together with the value for p from (79) to the following
form of the conjecture

inf G(,w) 2{4(r2 r + 1) 3(2 + r/2) r} >_ O, (87)

because (pA + qB)/(r + 1) p (r/). (--OqI/2) --O’It.
In order to study the difference between 4(r2 r + 1) 3((2 + r/z) and
r on the left hand side of (87), we first calculate

2 [4(r2 r + 1) 3({2 + r/:z)]2
[3{2 + 5r/2 4(r2 r + 1)]2 + [2r/({ + 4r 4)]2

[4(rz r + 1) 3((2 + r/9.)12
16r/2[(2 + r/2 + 2(r 1)( + 3r 7r + 3] 16r/c((, r/), (88)
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where

c(, r/) := 2 + r/2 + 2(r 1) + 3r2 7r + 3, (89)

which can be written as

c(, 7) ( + r 1) + 72 (2r 1)(2 r). (90)

From the inequalities 1/2< r < 2 it is immediately clear that the sign
of c((, r/) describes the location ofthe points ((, r/) with respect to a circle
with center (1 r, 0) and radius v/(2r 1)(2 r).
We now distinguish two cases:

(i) c(, r/) _< 0,
(ii) c(, r/) > 0.

First we consider case (i):

( + r- 1)2 + /2 _< (2r- 1)(2 r). (91)

Then (88) shows

< 14(r2 r + 1) 3({2 + r/2)l, (92)

and the conjecture, i.e. (87), follows irrespective of the valuefor cr if we
can only show that the absolute value bars in (92) may be omitted. This
means, think of (91), that we have to prove

c(, r/) < 0 = 4(r2- r + 1) > 3(2 + r/2). (93)

An arbitrary point (, r/) satisfying (91) can be given as

=l-r+AcosO, =sinO, (94)

with

O_<A_<V/(2r-1)(2-r), O<_O<2rr. (95)
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Calculating the value of 3(2+ 72), using the values from (94), and
replacing A2 by its maximal value, we find the upper bound

3(2 + r/2) < 6(1 r)) cos 0 / 3(-r2 + 3r 1). (96)

In order to prove (93) in the case that c(, r/) < 0, it is sufficient to show

6(1 r)A cos 0 + 3(-r2 + 3r 1) < 4(r2 r + 1)

or

6(1 r)) cos 0 _< 7r2 13r / 7, (, 0) as in (95).

This is equivalent to

611 rl _< 7r2 13r / 7 for 0 < A _< V/(2r- 1)(2- r). (97)

From

(7r2- 3r/ 7)2- 36(1 r)2. (2r- 1)(r- 2) (llr2- 23r/ 11)2 _> 0

(97) follows immediately. Conclusion: we can drop the absolute value
bars in (92), showing G((, w) > 0 in the case c((, r/) < 0.

If, however, the infimum is equal to zero in this case, the fact that
0 < < 4(r2 r + 1) 3(2 + r/2) shows that we necessarily have

4(r2 r + 1) 3(2 + r/2), (98)

(99)

Indeed: 4(r2 r / 1) 3(2 / 72) 0 and > 0 rule out the possibility
r -1 when (87) is an equality!
But now (98), compare (88), leads to an equality sign in c(, r/) < 0, i.e.

( / r- 1)2 / r/2 (2r- 1)(2 r). (100)

Furthermore, (99) and (84) imply

" + (r + 1){52 + 10(r 1) + 5r/2 + 4(r2 r + 1)} < 0,



212 M.G. DE BRUIN et al.

which can be written as

5{(+ r- 1)2 + r/2} < r2 + 2r + 1.

Inserting the value (100) of the left hand side, (101) reduces to

-llr2 + 23r- ll < 0,

which contradicts the condition (9) on r. Thus G((, w) > 0.
Finally we consider case (ii) i.e. c(, 7) > 0:

( + r 1)2 + r/2 > (2r 1)(2 r).

(101)

(102)

Now (88) implies

> 14(r2 r + 1) 3((2 + r/2)l, (103)

and (87) can only be correct if we have tr= -1! Moreover, (103) shows
that we then automatically have inf G((, w) > 0.

Calculating the sum of" and from (78) and (81), this sum governs
the sign of or, we find

[5{2+r/2+2(r-1)+3r2-7r+3}
(llr2- 23r+ 11)] > 0, (104)

because of (102) and the condition (9) on r. Thus (84) implies cr -1
and the conjecture follows in the form infoG((,w)>0 from (103)
and (87).
The ease 0. From (75) we know that this case only occurs at two

distinct points (, r/) satisfying

4(1-r), r/2=-(llr2-23r+11). (105)

The range for r from (9) has to be written with strict inequalities

23 3gc 23+ 3x/
<r< , llr2-23r+11 <0, (106)

22 22

as r (23 -t- 3x/)/22 would lead to r/= 0.
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Return to the form of the conjecture as given in (87)

infG(ff, w) 2{4(r2 -r + 1) 3(2 + r/z) crO} _> 0. (107)

As G is clearly continuous as a function of (, r/), we can take the limit
in (107) for (, r/) 0 (0, r/0) with (0, 70) one ofthe solutions of (105).
The value of G then turns out to be

infG(ff0,w) -2 (llr2 23r + 11) 4r/2,

which is strictly greater than 0 when r satisfies (106).
This completes the proof for the polynomials (6).
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