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Let 0 <j< m _< n be integers. Denote by I1" the norm Ilfll f2 f2(x) exp(-x2) dx.
For various positive values ofA and B we establish Kolmogorofftype inequalities

ilfU) <
, Ill(m) + BIIfll

AOk + B#k

with certain constants Oke lZk, which hold for every fE 7rn (% denotes the space of real
algebraic polynomials of degree not exceeding n).
For the particular case j= and m= 2, we provide a complete characterisation of

the positive constants A and B, for which the corresponding Landau type polynomial
inequalities

IIf’ll < llf’ll + BIIfll
AOk + B#k

hold. In each case we determine the corresponding extremal polynomials for which equal-
ities are attained.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let [Ifll,[a,b]=SUpa<_x<_b[f(x)]. In 1913, Landau [4] proved that
[If’ [Io,0, <_ 4 for every fE C2[0, 1], for which [Ifl[o,[0,1] 1 and
[[f"][o,[0,1] =4. Kolmogoroff [3] proved, for sufficiently smooth func-
tions, inequalities of the form

Ilfv/II ,t0,11 < K(m,j)Ilflml ,,o,i0,1111flIIIj/m 1-(j/m)
,[O,ll (1)

with the best constant K(m,j) and determined the functions for which
inequality in (1) is attained. These extremal functions are perfect splines
and in none of the cases algebraic polynomials. On the other hand, the
classical A. Markov’s inequality [5]

IIp’ll,t-l,ll n211pllo,t-l,ll, P 7rn,

and its extension,

k-1

(2k- 1) fIll(n2 i=)llpll ,t- , l,
i=0

<k<n, pETrn,

given by V. Markov [6], are typical examples of inequalities connecting
norms of derivatives of different orders of polynomials.

These facts motivated some author [1,8] to look for polynomial
analogues of Landau’s and Kolmogoroff’s inequalities. In particular,
Varma [8] established a sharp Landau type inequality and in a recent
paper Bojanov and Varma [1] proved a Kolmogoroff type polynomial
inequality for the weighted norm Ilfll 2 f_ f2(x) exp(--x2) dx. The
extremal polynomials for which the inequalities in [8] and [1] reduce to
equalities are the classical Hermite polynomials H,,(x), orthogonal on
(-, cx) with respect to the weight function exp(-x2).

In this paper we suggest a somehow more systematic approach than
the one developed in [1], which allows us to establish the following
Kolomogoroff type weighted polynomial inequalities.

THEOREM
constants.

Letj < m < n be the positive integers and A and B positive
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(i) If

_’4<2-re(n-m)! j
(2)B n! m -j’

then

IIf//ll 9 < Allflmlll + nllfllg
(3)

A2m-J(n -j)![(n m)!] -1 -+- B2-J(n -j)!(n!)-1

for everyfE 7rn. Moreover, equality is attained ifand only iff(x) is a
constant multiple ofHn(x).

(ii) If
2-m j A j

(m + 1)! (m -j)
< < 2-m

m!(m -j)

then

Allf(m)ll + nllfll =IIf()ll=
A2m-J(m -j)! + B2-J(m-j)!(m!)-1

(4)

for every fE 7rn. Moreover, equality is attained if and only iff(x)
is a constant multiple ofrim(X).

(iii) If

A
2_m

j
B rn! (rn -j)’

then

IIf(/ll = allf(m)llz + nllfl[2 (5)
B2-J(m -j 1)![(m 1)!] -1

for every f 7rn. Moreover, equality is attained if and only iff(x)
is a constant multiple ofrim_ (X).

(iv) IfA/B 2-mj/((m-j)m!), then the inequalities (4) and (5) coincide
and they holdfor everyf 7rn. In this case equality is attained ifand
only iff(x) is any linear combination ofHm_l(X) andHm(x).



330 C.R.R. ALVES AND D.K. DIMITROV

As an immediate consequence of Theorem 1(i) we obtain

COROLLARY 1 Let

< (n-m)"
2rn-j(n j)!m"

Then the inequality

I[f(J)ll2< ollf(m)ll2+ {2J(n) .I_ (n) }j. o2m m! Ilfll 2j rn

holds for every fE 7r,. Moreover, equality is attained if and only iff(x)
is a constant multiple ofH,(x).

This is exactly the result of Bojanov and Varma [1] mentioned above.
In this casej and m 2 we provide a complete characterisation of

the positive constants A and B, forwhich the corresponding Landau type
polynomial inequalities hold.

THEOREM 2 Let A andB be positive constants.

(i) IfO < A/B < (4n(n 1))-1, then

ilf, 2 < A
If" 2 B 2

2A(n 1) + B(2n)- /
2A(n- 1) + B(2n)-1

[If

(6)

for everyfE 7rn. Moreover, equality is attained if and only iff(x)=
cHn(x), where c is a constant.

(ii) If (4k(k + 1))-1 < A/B < (4k(k 1))-1, where k 1t, 2 < k < n 1,
then

iif, l12 n
2A(k- 1) + B(2k) -1 IIf"l12 +

2A(k- 1)+ B(2k)-1 Ilfl12’
(7)

for everyf 7rn. Moreover, equality is attained ifand only iff(x)=
CHk(x), where c is a constant.
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(iii) If 1/8 < A/B < o, then

2A
f,, 9.I[f’[[ 2 <- -ff I[ 2 + 211fl (8)

for every fE rr,. Moreover, equality is attained ifand only iff(x)
cHl(x).

(iv) IfA/B (4k(k + 1))-1 for some integer k, then the inequalities

IIf’ll = < /
f"l

2A(k- 1)+ B(2k)-1
12

2A(k- 1) + B(2k)-’ Ilfl

(9)

and

ilf, < a 2

2Ak + B[2(k + 1)] -1 Ilf"ll
B

2Ak + B[2(k + 1)]-’ Ilfll=’
(0)

coincide and they holdfor everyfE 7rn. In this case equality in (9) and
(10) is attained ifand only iff(x) is any linear combination ofH,(x)
and H:+l(x).

Setting B 4n2A, in Theorem 3(i) we obtain the inequality

f"1:2 2n2 2IIf’l12 < 2(2n- 1)I[ + 2n- Ilfll f 71"n’

where equality is attained only for the polynomials f(x) that are
constant multiples of H,,(x). This is nothing but Varma’s result [8].

2. A PRELIMINARY RESULT

Our idea is to study, for any given integers j, re, n, 0 <j < rn < n, and
positive constants A and B, the extremal problem

min{A[[f(m)[12 + Bllf[[2" f E 7rn, f(x) y6 O}iif(/ll .
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where the objective function F(A,B,f)--(AIIfmll2+BIIfll2)/llfll2

depends on the parameters A and B. Denote by f, E 7rn the extremal
polynomial, that is, the polynomial for which the minimum ofF(A, B,f)
is attained. Thus we define

F(A,B) F(A,B,f,) min{F(A,B,f)" f E 7r,,, f(x) # 0).

Let the sequences {i}in=j, {Oi)in=m and {’Tk}=j be defined by

#i 2-j
(i-j)l (i-j)l

Oi 2m-J
i! (i--m)!’

7k Btk, k j, m -1,

"Yk AOk + Blzk, k m,.. n.

LEMMA For anygiven integersj < m < n andpositive constantsA andB

F(A, B) min "Yi :: ")/k.
j<i<n

(11)

Proof We need two basic properties of the Hermite polynomials Hn
(cf. (5.5.1) and (5.5.10) in [7]):

Hk(x)Hi(x) exp(-x2) dx X/2kk!6ik, (12)

where 6ik is the Kronecker delta, and

Ii(x 2iHi_l (X). (13)

In what follows a different normalisation ofthe Hermite polynomials
will be used. Set i(x) ciHi(x), where

ci= fori=0,...,j-1,

and

(i!)2)-1/2ci v/-2i+J
(i-j)!

for =j,...,n.
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Since {Hn} are orthogonal, the polynomials/0(x),..., n(X) form a
basis in 7rn. Then everyfE zrn can be uniquely represented as a linear com-
bination f(x)= ’nk=Oakk(X). Hence the orthogonality relation (12)
and the definition of the polynomials ffIi(x) yield

Ilfll 2 f aii(x) exp(-x2) dx Z #ia2i’
cx3 i=0 i=0

where i V/-2ii! for i= 0,... ,j-- and Z for i--j,..., n are defined
above.

Similarly, the relations (12), (13) and the definition ofi(x) imply

IIf()ll 2 aic
2 ai"

i=j i=j

In the same manner we obtain

IIf(m)ll
i=m

where Oi, m,..., n, are defined above.
Thus the problem formulated in the beginning of this section reduces

to the following one"

min B#ia2i + Z(AOi + B#i)a2i Z ai ao,. .,an
i=0 i=m i=j

Obviously the above minimum is attained for a0 aj_ --0,
that is,
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Let (aj,..., an). Therefore our problem reduces to determine the
minimum oftC, subject to t 1, where C is the diagonal matrix

diag(B#j,..., Bm-1, lOm + Blm, AOn "t" B]-zn).

By the Rayleigh-Ritz Theorem (cf. Theorem 4.2.2 on p. 176 in Horn and
Johnson [2]), F(A, B) is equal to the smallest eigenvalue of C, that is,

F(A, B) min{7.,..., 7,).

Moreover, if F(A,B)--9/k, the extremal polynomial f,(x), for which
F(A, B) F(A, B,f,), is a constant multiple of Hk(X).

3. PROOFS OF THE THEOREMS

Proof of Theorem 1 The sequence # is decreasing. Indeed,

]i i+1 2-j {k(i i!
(i-j + 1)!) (i-j)!j

(i + 1)!
2-j

(i + 1)!
O.

Then the smallest among the numbers B#j,..., Blzm_ is BlZm_ 1. Thus,
according to Lemma 1, we need to find the smallest 7v among 3’m,... ,’Yn
and to compare % with Bp,m_ 1.

Consider the monotonicity of the sequence {’Yk}=m- Since

"Yk+l "[k A(Ok+l Ok) -" O(l.l,k ]Ak+l ),

then (a) {’k}=m is increasing if A/B >_ (#k #k+l)/(Ok+l Ok) =: Sk
for k=m,...,n-1 and (b) {’Yk}=m is decreasing if A/B<_ Sk for
k-m,...,n- 1.

Straightforward calculations show that

Sk #k #k+l 2_m (k m + 1)!
0k+l Ok (k -b- 1)!

and then Sk+l/Sk (k m + 2)/(k + 2) < 1. This means that {Sk} is a
decreasing sequence. Hence, ifA/B > Sm, then, / is increasing and then

% ’m. Thus, in this case we have

F(A, B) min ’7: min{Tm-, 7m}.
j<k<n
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In order to compare ’)’m-- and "Ym, observe that "Ym- ( ")’m if(]Am-- ]Am)/
Om< A/B and /m-1 > "Ym otherwise. In view of the identity (]Am-1 -]Am)/
Om 2-mj/((m --j)m!) we can conclude:

(1) If A/B> Sm and A/B> 2-mj/((m-j)m!), then "Ym-1 < ")/m and
F(A B) ")’m_

(2) If Sm <_ A/B < 2-mj/((m -j)m!), then 7m-1 > "m and F(A, B) "Tin.

It is worth mentioning that the interval [Sm, 2-’j/((m-j)m!)] is not

empty because the inequality Sm < 2-mj/((m -j)m!) is equivalent to the
obvious one rn > 0.
The latter cases (1) and (2) correspond to the statements (iii) and (ii)

of Theorem 1.
The above observation (b) and the monotonicity ofS imply that the

sequence {’Yk)=m is decreasing provided A/B < S._1. Hence, in this case
we have F(A, B) min{’m_l, /.}. In order to compare "Ym- and -y., note
that 3’m- < "Y. if (]Am-1 ]A)/0. < A/B and "m- < "Y. otherwise.

In view of the identity

]Am-I ]An 2_m (n m)! [(m --j- 1)!n!- (n --j)!(m 1)!]
On (n-j)! (m- 1)!n!

we need a relation between the latter expression and A/B. On the other
hand, the inequality

(7)< (.) forj<m<n

yields

Sn-1 < 2-m
(n m)! [(m -j- 1)!n!- (n -j)!(m 1)!]
(n j)! (m 1)!n!

which means that (]Am-1 ]An)/On < an-1. If

A < s._
B-

and

A
2_m (n m)! [(m -j- 1)!n!- (n -j)!(m 1)!]

< (n-j)! (m- 1)!n!
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then ")/m-1 > "Yn and F(A,B)=7,,. This corresponds to the statement

(i) of the theorem.

Proof of Theorem 2
need to determine

Since j and m 2, Lemma shows that we

min(B#l,A02 + B#2,... ,AOn + B#n).

In order to this, we shall find the smallest among the numbers

A02 + B#2,..., AOn + B#n, say "y, and in each case we shall compare ,y
to B#I.

In what follows, up to the final observation in this proof, we shall
assume that 2mA + B 1. Then we have

"/k AOk + Btk (B/k + (1 B)(k 1))/2 for k 2,... ,n.

Define the function

g(x) (B/x + (1 B)(x- 1))/2 for 2 _< x _< n.

Since g(k)=7 for k 2,..., n, then our problem reduces to investigate
the behaviour ofg(x) when A and B belong to the segment 2mA + B- 1,
A,B>O. Note that 2g’(x)=-B/x2+(1-B)=0, if and only if x=
+(B/(1 B)) 1/2 and g"(x)= B/x3 > 0 for x > 0. Hence g(x) is convex on
the positive half-line and it attains its absolute minimum there at x-
(B/(1 B))1/. Thus, we can conclude that:

If v/B/(1 B) < 2, then "Ymin ")/2"

If v/B/(1 B) > n, then 7mi, 5’,.

If k<_v/B/(1-B)<k+I, where 2<_k<n-1, then q,=
min{Tk, 7k+l }.

In order to determine the smaller among 7k and 7g+1, observe that

k(k + 1)<B’:+ < 3’ if
k+k +

and "Yk+l "Yk otherwise. It is clear that "Yk--"Yk+l if and only if
B k(k + 1)/(k2 + k + 1).
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Set y:=(B/(1-B))l/2foranyB, O< B< 1.IfB=k(k+ 1)/(k2+k+ 1)
the point ofminimum ofg(x) is

Yk := v/k(k + 1).

Obviously k <Yk <k+ 1. Since the function g(x) is convex, then

"7 =’7k+1 if and only if yk < y < Y+I and this conclusion holds
for k 1,..., n 2. The latter inequality is itself equivalent to

k(k + <B<(k+l)(k+2)
k2 + k + 1 k2 + 3k + 3

Let us compare, in each of these cases, ’Tk+l to ’71 B/2.
For B E (0, 6/7), we need to compare ’71 and ’72. Since ’72-’71

(1 3B/2)/2, then ’71 < "7)’2 for0 < B < 2/3, ’71 "72 for B 2/3 and ’72 < ’71
for 2/3 < B < 6/7.

Let now k be any integer, such that 2 < k < n and let

(. _k(__k + 1)BE
\/2 +k+ (k+l)(kk2 + 3k ++if))= Ak"

Since

k
’Tk+l ’7 2(k + 1) ((k + 1) 2B(k + 2)) <_ 0

if and only if (k + 1)/(k + 2) < B and this latter inequality always holds
for B E A, then we have ’7k+1 < ’71 for every B E Ag.

Finally, we have ’Tn < ’71 for every

1)BE An_l
-n+l’

because %,-’71=(n-1)(n-B(n+l))/n<O is equivalent to n/
(n + 1) < B and obviously n/(n + 1) < n(n 1)/(n2 n / 1).

Recall that all considerations have been done under the restriction
2mA + B= 1. The restrictions B E A can be easily transformed into
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equivalent restrictions for A/B. We omit this detail. The result is:

If 1/8 < A/B < o, then 7min 71.
If (4(k + 1)(k + 2))-1 < A/B < (4k(k + 1))-1, then "/min ")’k+l, k=
1,...,n-2.
IfO<A/B< (4n(n- 1))-1, then 7min=Tn.

Our final observation is that we can remove the restriction
2"A / B 1. Indeed, we have proved inequalities of the form

Allf"l] + Bllfl]
AOk / BCzk

The quotient on the right-hand side is homogeneous with respect to A, B,
so this quotient has the same value for A, B and for dA, dB, whatever
the positive constant d is.
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