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Let ’(x) := Tn(x) be the transformed Chebyshev polynomial ofthe first kind, where
cos (Tr/2n). We show here that f. has the greatest uniform norm in [-1, 1] of its k-th
derivative (k > 2) among all algebraic polynomialsfofdegree notexceeding n, which vanish
at +1 and satisfy the inequality If(x)l <_ v/1 -e=x: at the points {-l cos((2j- 1)Tr/
2n 2)}"__-.
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1. INTRODUCTION AND STATEMENT OF RESULT

Let 7r. be the set ofall algebraic polynomials ofdegree at most n with real
coefficients. Throughout, I1"11 designates the uniform norm in [-1, 1],
Ilfll := sup=t-, ]lf(x)l. We shall use the customary notation T.(x)
cos n arccos x for the Chebyshev polynomial of the first kind, and we
denote by f its largest zero, i.e.,

COS.
2n

The transformed Chebyshev polynomial of the first kind

tn(X) rn(=) (1.1)

* E-mail: geno@fmi.uni.sofia.bg.

315



316 G. NIKOLOV

is known as being the extremal polynomial in the classical Schur
inequality [12], which is the analogue of the Markov inequality for
polynomials satisfying zero boundary conditions. Precisely, Schur’s
inequality asserts that T, has the greatest uniform norm of its first
derivative on [-1, 1] among allfE 7rn, satisfyingf(+l) 0 and [[f[I < 1.

In a recent paper Milev and Nikolov [5] have shown that the
extremality of Tn persists for higher order derivatives as well. Precisely,
Milev and Nikolov proved the following extension ofSchur’s inequality.

THEOREM A LetfE 7rn satisfyf(+ ) 0 and

[f(,-lcosJTr _<1 (j=l,...,n-1). (1.2)

Then

for k 2,... ,n. Moreover, equality in (1.3) is possible if and only if
f=+n.

This result is in the spirit of the famous refinement of Markov’s
inequality, found by Duffin and Schaeffer [3]. Namely, for the validity of
(1.3) it suffices to assume that If[ _< Tn not on the whole interval [-1, 1],
but only at the extremal points of Tn. For some related results the reader
may consult [1,2,13].

In [6] the author developed a technique for the derivation of
inequalities of Duffin and Schaeffer type. Unlike the classical case the
"checking" points are not necessarily assumed to be the extremal points
of the majorant (i.e., the extremal polynomial). This technique is
applied here to exhibit another extremal property of T,. Precisely, we
prove the following theorem.

THEORF.M 1.1 Letf 7r, (n > 2) satisfyf(-1)=f(1)=O andlet

If(x)l /1 2x2 for x - cos
(2j- 1)Tr
2n- 2

Then

(1.5)
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for k 2,... ,n. Moreover, equality in (1.5) is possible if and only if
f=4-’n.

The inequality (1.4) is fulfilled e.g., if the graph ofy =f(x) in [- 1, 1 is
contained into the interior ofthe ellipse 2x2 +y2 (but, evidently, this
is not necessary for (1.4) to hold). Thus, Theorem 1.1 may be regarded as
an inequality of Duffin-Schaeffer-Schur type for polynomials with
elliptic majorant. Without any claim for completeness, we mention that
inequalities for polynomials with curved majorants are obtained in
[7,9,10].

2. THE PROOF

There is nothing to prove when n 2, since in this case f= cTn and

Icl _< in view of (1.4). Therefore we assume in what follows that n > 3.
Instead ofdealing with Tn on the interval [- 1, 1] we prefer to study the

customary Chebyshev polynomial of the first kind Tn on the interval
[-G (]. Let x0 < Xl <’’" < Xn be the zeros of

(x) := (x2 )r._ (x).

Over the new basic interval [-G] the polynomials p ETrn under
consideration will be assumed to satisfy

p(xo) p(Xn) 0 (2.1)

and

Ip(xy)l _< V/1 -x (j-- 1,...,n-1). (2.2)

Notice that (2.1) and (2.2) are fulfilled forp= +Tn, the second one with
equality sign.
The proof of Theorem 1.1 relies on the pointwise inequality given by

the following theorem.

THEOREM 2.1 Let p 7r (n >_ 3) satisfy the conditions (2.1) and (2.2).
Thenfor each k { 1,..., n} andfor every x [-, ]

Ipf)(x)l S max(IZk)(x)l, IZ,k(x)l),
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where

Zn,k(X) :=
(n- 1)k

n+k-2 ) t.,.T(k_l)
n--2 2 Tn()l(x)_+_ n-1 (x)

(2.3)

Proof Let wv(x) := w(x)/(x xv), u 0,..., n. For any p E 7r, the
Lagrange interpolation formula yields

n

p(k) (x) p(xu) w(f)(x). (2.4)

In particular, for polynomials obeying the restrictions (2.1) and (2.2)
foula (2.4) yields

w)(x) (1 x. (2.5)
=1

An elegant result due to V. Markov asserts that, if two polynomials
have only real and simple zeros and they interlace, then the interlacing
property is inherited by the zeros oftheir derivatives (for a proof, see e.g.,
[11], Lemma 2.7.1). As is mentioned by Bojanov ([1], p. 39), for
polynomials of the same degree this result indicates that the zeros of
the derivative of a polynomial depend monotonically on the zeros ofthe
polynomial. We apply this observation to the polynomials. Since for
>jthe zeros ofw(x) are less than or equal to the corresponding zeros of

w2(x), the same relation remains valid for the zeros of ) and @k).
Therefore, the j-th zeros of the polynomials (k))i7 are located
between the j-th zero of k) and the yth zero of wk). Let {fli)j7 and

n-k+l
ili=2 be the zeros of k) and wk) respectively, arranged in

increasing order. Set al := , fin -k + := , then the above reasoning
implies that ifx [a, f12], then

sign{w(f (x)} is the same for all u E {1,... ,n- 1}. (2.6)

Further, we observe that the zeros ofw and Tn interlace, and

Tn(x,) (-1)n-’V/1 x sign{w(x,)}V/1 x2, u 1,... ,n 1.
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Therefore, putting p Tn in (2.4), for x E [aj, j] (j { 1,..., n k / ))
we obtain

Izk)(x)l (f>(x) V/1 _xl w>(x)_
I(x)l

_
(x) V/1 x2. (2.7)

Thus, we conclude on the basis of (2.5) and (2.7) that, for every p %
satisfying (2.1) and (2.2) we have

n-k+l

Ip(k)(x) <_ IZnk)(x)l for all x J [aj,/3j]. (2.8)
j=l

Theorem 2.1 will be proved if we succeed in showing that under the
same assumptions for p

n-k

[p(k)(x)l < IZn,k(X)l for all x U(j, oj+l). (2.9)
j=l

Forj= 2,... ,n thej-th zero of Tn is located between thej-th zero of

w and the j-th zero of w0, while the first zeros of T and w coincide as
well as the last zeros of T and w0. That is to say, the zeros of Tn
interlace with both the zeros ofw0 and w. Then, according to Markov’s
result every interval (/3j, aj+ 1) (j 1,..., n k) contains exactly one zero
of T. This implies

sign{Tn(k)(cj)} sign{Tn(k)(/3j)} (-1)n+l-k-j (j 1,... ,n k).
(2.10)

Further, we make use of the identity

,/.(k-l)n [XT(nk)l (x) + (n + k 2). n-1 (X)].(/()
to obtain the following relations between T, and Z,,k.

(nn(n-2)(1)k n + k- 2 )w(,,kz.s(x) )(x) x (x),

(nn(n-2)(1)k n + k- 2 )wk)Zn,k(X) "nt- T(nk)(x) X + (X).
n--2

(2.11)

(2.12)

Hence

for x=oj (j= 2,...,n-k+ 1),
for x =/3 (j 1,..., n- k).

(2.13)
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As it has been already mentioned, ifp E 7rn satisfies the assumptions of
Theorem 2.1, then Ip(kl _< T(nk l at the zeros of wk) and W(nk), and
consequently

Ip(kl(x)l <_ IZn,k(x)l for x aj+l and x =/3j (j 1,... ,n k).
(2.14)

Therefore, in view of (2.13) and (2.10), each of the polynomials
Z,,k +p(k and Z,,-p( has at least one zero in each of the intervals
[c9,/3j], j 2,..., n k. Moreover,

sign{ (Zn,k + p(k))(an-k+l)} -sign{ T(nk) (an-k+l)} -1,

while Zn, k(X)+p(k)(x) > 0 for x large enough, since these polynomials
have a positive leading coefficient. Therefore, each of the polynomials
Zn, k +/-p(k) has at least one zero located to the right of an-k + 1. Similar
reasonings show that Z,k +/-pqO must have also at least one zero
located to the left of/31.

Since the polynomials Z,,k+/-pqO are of exact degree n-k+ 1, we
conclude that each ofthem has maximal number ofzeros, and that these
zeros lie outside the set U)=-lk(j, Oj+l ). This means that Zn, k +/-p(k) do not
change the sign on this set, and then (2.9) follows by virtue of (2.14).
Theorem 2.1 is proved.

For the proofofTheorem 1.1 we need some auxiliary propositions. We
formulate as a lemma a special case of a well-known expansion property
ofultraspherical polynomials (see e.g., Szeg6 [14], Eq. (4.9.19), or Rivlin
11 ], p. 158, Remark 1).

LEMMA 2.1 For every k, N (n >_ k >_ l) there holds

n-k+l

T() (x) am(k, 1) T2) (x)
m-l

with nonnegative am(k, l).

Next, we denote by I1 II. the uniform norm in the interval [-, ], i.e.,

Ilgll max Ig(x)l.* x[-,]

The next lemma can be found in ([5], Lemma 2.4) (its proof follows
easily from Lemma 2.1).
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LEMMA 2.2 For every natural k, m, n (1 < k <_ m < n) there holds

Moreover, ifk <m and[x[ < , then ITCmk> (x)l < T<mk> ().
With the help of these two lemmas we prove

LEMMA 2.3 For every k c= {2,..., n}

IlZn,k[I. < Z<kl

Proof We write

Zn,k(X C[Un,k(X) Vn,k(X)] (2.15)

where

C
n(n- 2)
(n- 1)k’

and

Note that (n + k-2)2/(n- 2)- > 0 for all natural numbers k and
n > 3. Further, from (2.15) and Lemma 2.2 we obtain

IlZn,kl[. c[llUn,kll. + IlVn,kll.]

C[V,() + IlUn,ll.]

-Zn,() + C[Un,() + Ilun,ll.]

=Tk)({)-c(2+ k )kT(nk_l 1) () + C[U.,k() + IlUn,l[.]n--2

(2.16)
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(for the last equality we have used Eq. (2.12)). Clearly, Lemma 2.3 will be
proved ifwe succeed in showing that

Un,k() / Ilu,kll. < 2 + () (2.17)
n-2

We consider separately the cases k 2 and k > 3.

Case k 2 Using the differential equation for T,_ , we express u,,,2
as

Un,2(X (n 1):Tn_ (x) + xTtn_l (X).

This representation and Lemma 2.2 yield

Ilu.,=ll. _< (n- 1) 4-CTn_ ().

Consequently, we obtain

,() + I1,11 <- ( ) + sin + 2(L_ ().

After some simple manipulations we conclude that (2.17) will hold
with k 2 if

( )(n 1)(n- 2) + sin sin < 2ncos2.
The validity of this last inequality is easily verified.

Case k > 3 In this case we shall show that

Having established (2.18), we will obtain that (2.17) is equivalent to the
inequality

k (_)
n-2

which is obviously true. Thus, it remains to prove (2.18). For k 3 we
have

,() ( 1)r"n-1 (X) + 3xTI (x) ( 2)nT_ (x),

where for the last equality we have used the differential equation for
ultraspherical polynomials (note that T_ (n- 1)P). In view of
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Lemma 2.2, (2.18) holds for k=3. Moreover, since un,3 increases
monotonically to the right of , we conclude that

IlUm,3 II. Um,3 () for m 3,..., n. (2.19)

For k > 3 Lemma 2.1 implies

n-k+3
(k-l) ttTn_ (x)= Z bmT-l(X)

m=3

with nonnegative bm.

Finally, the application of Lemma 2.2 and (2.19) yields

":lv’T(k-1) (k- 3)x (k-l)Ilu,kll, 11(22 1) Tn()l (X) /"n-1 (x)

Z bmum,3(x) + (k- 3)’’r(k-1)..n_l (x)
m---3

n-k+3

<

_
bmllUm,li. / (k- 3)r(/()

=3

n-k+3

2 b.,(l + (- 3/r_(/= ..,(.
=3

Lemma 2.3 is proved.

Proof of Theorem 1.1 LetfE 7rn satisfy the assumptions of Theorem
1.1. Then p(x)=f(x/) will satisfy (2.1) and (2.2). Theorem 2.1 and
Lemma 2.3 imply that for every x E [-, ] and for k > 2

lp(x)l < max1Zn(g/(x)l, IZ,k(x)l) < IIz(kll.- z(k(). (2.20)

Turning back to the II’ll norm, we conclude thatf(x)=p(x) will satisfy

(2.21)

whence the inequality of Theorem 1.1 follows. It remains to clarify
the cases in which equality holds. From Lemmas 2.2 and 2.3 we deduce
that the second inequality in (2.20) becomes equality only if either x
or k n. In the latter case we may assume again that x . Then careful
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examination of the proof of Theorem 2.1 shows that for x (2.5) is
fulfilled with equality sign ifand only ifp Tn. Consequently, the first
inequality in (2.20) becomes equality only if p + Tn, and therefore
(2.21) holds with equality sign if and only iff +/- Tn. Theorem 1.1 is
proved.

Remark 1 Unfortunately, our method of proof does not work in the
case k 1. The reason is that Lemma 2.3 is not true for k and n > 7.
A direct verification shows that IlZn, 111. < Tn() for 3 < n < 7, which
guarantees the validity ofTheorem 1.1 for k when 2 < n < 7. The real
situation when k and n > 8 is not known.

Remark 2 The inequalities of Theorem A and Theorem 1.1 remain
valid also for polynomials with complex coefficients. This follows from
the fact that iffis a polynomial with complex coefficients satisfying the
assumptions ofTheorem A (or ofTheorem 1.1), then these assumptions
will be satisfied by Ref and eif (0 E I) as well. Indeed, let p be the
extremal polynomial amongst the polynomials into consideration but
allowed to have complex coefficients, and let

sup( IIf(k) II) [p ei’rp (k)(), E [-- 1, 1],
f

with some 7 E - Then the polynomial g(x)= Re{ei’p(x)} also belongs
to the class into consideration and satisfies g(k)()= ip()()l. Thus, we
found another extremal polynomial which, in addition, has only real
coefficients.
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