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Some elliptic differential operators possess a weighted positivity property, where the
weight is a fundamental solution ofthe operator. This property has interesting applications
to partial differential operators. The present paper is devoted to the property for ordinary
differential operators.

It is shown that the operator (1- d2/dx2) has the positivity property if and only if
m 0, 1,2, 3, while there exist operators of arbitrary even order for which the positivity
holds. Some necessary conditions for the property are given.
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1 INTRODUCTION

Let p(D) be an elliptic differential operator with constant coefficients,
having the fundamental solution 1. The inequality

Re ,p(D)u. uI’dx > O, u E C(Rn) (1)

was used by Maz’ya [1,2] to obtain a necessary condition for the
Wiener regularity of a boundary point for the biharmonic operator
in dimensions 4, 5, 6, 7. The inequality (1) fails for that operator if n > 8.
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302 S. EILERTSEN

This result was extended to the polyharmonic operator by Maz’ya-
Donchev [3], and to the fractional Laplacian by Eilertsen [4].

Since it is not at all clear exactly which differential operators possess
the weighted positivity property (1), we are motivated in the present
paper to study the property in the one-dimensional case. We will be
concerned with operators p(D) in R1, where p is a positive polynomial
and Du(x)= -i du/dx.
The structure of the paper is as follows. In Section 2 we prove that

there exist operators of arbitrary even order satisfying (1) in the one-
dimensional case. In fact, we prove that if the sequence (aj) grows
sufficiently fast then (1) holds for

p(D) (al + D2)(a2 + D2) (am + D2).
We also give explicit examples of such operators. In Section 3 we find

some necessary conditions for operators to satisfy (1), and deduce
examples of operators not having this property, for instance / O4.
Finally, in Section 4, we study the operators (1 + D2)m. We prove that
they satisfy (1) if and only if m 0, 1,2, 3. The case rn 3 is more com-
plicated than the others. For this case, an important step in the proof is
the identity (24). In the cited papers it was essential to have a certain
minorant (instead of 0) on the right of (1). We will also see in Section 4
that the operator (1 + D2)3 has a different behavior, with respect to this,
than the operators +D2 and (1 + D2)2.
By Parseval’s formula, these results can also be interpreted as results

for certain integral operators. For instance, it follows from Proposition
11 that if rn 1,2, 3 then

fJ (1 /X2)m

(1 / (x y)2)m f(x)f(y) dx dy >_ O, f real in C(R),

with equality only forf= 0, while for rn > 4, the double integral can take
negative values.
Some notation: Fdenotes the Fourier transform,

(Fu)() f.l() f e-iXu(x) dx.

We write f instead of f_. Let S denote the Schwartz space of rapidly
decreasing C-functions on R1. We also write C instead ofC(R1).
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The letter c denotes positive constants. The notation a,, b means that
there exists c such that c- a < b < ca.

2 POSITIVITY

For a positive polynomial p we let F be defined by F 1/p. Thus I is
a fundamental solution of the operator p(D). By Parseval’s formula
we have

p(D)u, u-- dx (27r) -2 J’" p(x)
p(x y)

fi(x)fi(y) dx dy, (2)

for u E S. We define 79 to be the class of those positive polynomials p
for which the real part of (2) is nonnegative for all u E S.

LEMMA 1 For any polynomial p of degree 2n or 2n + there are

polynomials qj such that

p(x) + p(-y) (xy)jqj(x y). (3)
j=0

In q (t) andp(x) the coefficientsfor m andxm+ 2j areproportionalandhave
the same sign.

Proof With the new variables s (x + y)/2, (x y)/2 and u xy we
can write xm + (_y)m as

m

(, Af_ S)m Af_ (,_ S)m =2Z ()Sktm-k
k=0

m

k=0

[m/2J k

(m)()- ujtm-2j
k=0 j=0

The statement follows.

Remark It can be shown that

U-Vj

qj(x) . (EJ(p(x) / P(-Y)))Iy=o Cm,j bm+2jXm,
m=0

(4)
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where the operator E is given by

E (x + y)-I (O/Ox + O/Oy),

N is the degree ofp, bm is the coefficient for xm in p(x), and the coeffi-
cients Cm,j are given by

21-m [] ( m -q-2j (knt-J)Cm,j 2(k +j)J jk=O

COROLLARY 2 Ifp > 0 is an evenpolynomialofdegree 2n andF(qj/p) >_ 0
forj 0,..., n, then p E 79 andfor all u ,5 it holds,

2Ref()u.,rdx > lu(0)l 2 + f(bolul + 2b2nlU(n)12)p dx, (5)

where bo p(O) andb2n is the leading coefficient ofp. (The hypothesis imply
that I’ > 0.)

Proof Using (2) and expandingp(x) +p(y) according to the lemma we
see that the left-hand side equals

(2rr)_2 [[p(x)+p(y)fi(x)fi(y)dxdy (2rr)-1 fF(q /p)lu(  l= des.J J 7----Y5 =o

Ifwe put y=0 in (3) we get qo(x)=p(x) +p(0), so

F(qo/p) 27r6 + p(O)F(1/p).

Similarly, ifwe let x y , we get qn 2b2n. Since forp even F(1/p)
27ri’, this proves the assertion.

PROPOSITION 3 For each integer n >_ there is an e > 0 such that if the
positive constants al, an satisfy aj/aj + -C, then thepolynomial

p(x) (a, + x2)(a2 + x2) (an + x)

belongs to 79 and satisfies the inequality (5).
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Proof Define the polynomials pj and the constants b by

pj(x) (al + x2)(a2 + x2) (aj + x2) x2j + bx2(j-l) +..-+ bj.
Thusp Pn and we have by Lemma that the corresponding qj’s are of

the form

jnqn-j(x) CJo x2j + cb’(x2(j-l) +"" + cj bj, (6)
Jwhere ck are positive constants.

Now, writing

qn-j(x) cJopj(x) -+- bT(CJl + dJl )pj-1 -+-""-1- by(cf + ), (7)

we claim that d/= O(e), as e 0. Ifwe assume that this has been proved
for l 1,2..., k- 1, and identify the coefficients for x2(-k in (7) and
(6), we get

j j n O(E) j-1 n j O(e))b-(k-1) n jcobk h- b (cJl -+- )bk_ -+-’-’-+- b/_ (ck_ -+- -+- bkdk O.

(8)
Observe that ife < (so that (a) is increasing) there is a numberMsuch

that we have the following estimation for b:
aj-k+ aj-+2 aj < b < Maj_k+ aj-k+2 aj.

Therefore, if 0 < < k- 1,

t,,_t < M2 aj-k+" "aj-i O(e).
b an-k+ an-I

Hence (8) shows that d O(e). Since for k 1 no assumptions were
used, the claim is proved.

Sincep/p has positive Fourier transform and the coefficients in (7) are
positive for small e, the proof is completed by Corollary 2.

Example 4 For any polynomialp of degree 2n, we can easily compute
(for instance by using (4)) the following:

qo(x) p(x) + p(O),
q (x) (p’ (x) p’(O))/x

qn- (x) nbnx + (2n- 1)b2n_X + 2b_,
qn(X) 2bn,
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where bm is the coefficient for X
m in p(x). Now let p be as in the

proposition. It follows immediately that qo/P and qn/P have positive
Fourier transforms. The same is true for ql/p since

np’(x____) 2 j:lxp(x) .= aj + x2"

As for q._ we now have

n

qn-1 (x) n2(al + x2) + 2E aj n2al,
k=l

so the condition 2, aj > n2al is sufficient for the Fourier transform of
qn- lip to be positive.

Taking n 1,2 and 3, we have proved that the polynomials

a + X2,
(a + xZ)(b + x2),

(a + x2)(b + x2)(c +

a>0,

a,b > 0,

a, b, c > 0, 7a < 2(b + c)
(9)

are in P and satisfy the inequality (5).

3 NON-POSlTIVITY

It is quite immediate that a necessary and sufficient condition for a

positive polynomialp to belong to 79 is the Bochner type condition

-cc
p(t)

j,k=l p(tj- tk) >- 0, for all cj, tj E R and n 1, 2, (10)

We can consider (10) as the limit ofthe right side of (2) as the function
tends to the distribution 27r cjtj, where 6tj is the Dirac measure at tj.

If we instead let ff tend to the distribution 27rL(- iD)6t, where L is a
polynomial with real coefficients, we obtain the necessary condition

p(x)
z(O/Ox)Z(O/Oy) p(x y)

>0, ER, (11)
x=y=t
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in which only the two points 0 and occur. The following proposition
provides an equivalent form of this condition.

PROPOSITON 5 Let L be any polynomial with real coefficients. The
condition

(L(-iD)(p(t + iD)L)(iD))(1/p)(O) > 0, E R (12)

is necessaryforp 79.

Proof Let b E C have b(0) 1. Taking u(x)=eitXL(ix)q(ex) and
letting e 0, the real part of (2) tends to

fp(t + D)(L(ix))L(ix)F(x) dx / L(ix)(p(t + iD)L)(-ix)F(x) dx.

(When passing to the limit, we notice that P(x) decreases exponentially as
Ixl Since F 1/p, the last integral equals the left side of (12).

COROLLARY 6 The condition

4p(t)2(p(O)p"(O)-p’(0)2) >_ (2p(t)p’(O)-p(O)p’(t))2, t R (13)

is necessaryforp 79.

Proof If we take L(x)=a+x, the operator that acts on lip in (12)
becomes

ap(t) + ap’(t) (p(t)(iD) + p’(t)iD).

Thus the left side of (12) becomes a quadratic form in a. This form being
nonnegative for all real a is equivalent to

-4(p(t)/p(O))(p(t)(iD) +p’(t)iD)(1/p)(O) >_ (p’(t)/p(O)).
The last inequality, multiplied by p(0)4, can be written as (13).

Example 7 Condition (13) implies that if p"(0)< 0 then p is either
constant or does not belong to 79

Example 8 Let p(x) (1 + x)m. For this polynomial (13) reads

2(1 + t) >_ mt,
which is equivalent to m < 8.
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Ifwe take L(x) --ax + X
2 and 1, Proposition 5 leads to

12m(m + 1) 2m(m2 ma a2) _> 0.

This is equivalent to 24(m + 1) _> 5m2, that is, rn _< 5.

It is also possible to prove nonpositivity for (1 + x2)5 and (1 + xZ)4
with the aid ofProposition 5, but then one has to use a polynomial L of
degree 3 in the former and of degree 4 in the latter case. In Section 4 we
give another proof of the nonpositivity when rn _> 4.

PROPOSITION 9 Ifp E 79 then the realpart ofF(1/p) is nonnegative.

Proof Assume that Re F(1/p)< 0 at the point 0 and hence also at
the point 0. Let 4 be a real, even function with b(0)= and E C.
Putfix) cos(oX)d(ex), so that suppj {-0, 0} as e -- 0.

Let q be as in Lemma 1. Thus q, is a positive constant so, by the con-
tinuity of F(1/p), there is an a > 0 such that Re F(q,,/p) <_ a in supp j,
ife is small enough. Also, there is a numberA such that Re F(qy/p)() <_ A,
forj=0, ...,n- and :0.
Now, using the inequality

i g(K , g) dx < sup^(Re) l g2 dx, g, Kreal,
suppg

we get, sincefis even, that (2) withfin place of d can be estimated by a
constant times

IIp(xI+pl-’ 
p(x- y)

f(x)f(y)dxdy= xj(x)((m/p , yJf(y))(x)dx
j=0

f A x2j ax2n f(x)2 dx.
./ j=o

The last expression is clearly negative for small e.

Example 10 Let p>0 be a nonconstant even polynomial with
F(1/p) >_ 0 (for instance, p can be any nonconstant even polynomial
in 79). Since

Re F(1/p(x e))() F(1/p)() cos(e),

Proposition 9 shows that if e 0 then p(x e) does not belong to 79.
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4 THE OPERATORS (1 + D2)m

We introduce some notation. Letpm(X) (1 + x2)m, l"m (270 1F(1/Pm)
and put A(x)= (1 + IxlYe-Ixl. We observe that 1-am )km_ 1, according
to Lemma 12 below. We define the form

am(u) Re/pm(D)u. lIm dx,

and the weighted Sobolev norms

Ilullm,, In(J) 12A,dx
j=0

We remark that the subsequent inequality (20) shows that [lUllm,,_>
clu(0)l, if m > and s > 0.
The main result of this section is the following proposition. The five

lemmas that follow it are needed for the proof.

PROPOSITION 11 The polynomial (1 + x2)m belongs to 79 if and only if
m O, 1,2, 3. Thefollowing inequalities hold:

Ilulll,0 Ql(u), (14)

Ilull, Q2 (u), (15)

-1 ilull3,l < 03(u) < cllull 23,9." (16)

The inequality (16) cannot be improved by replacing any of the squared
norms by another one ofthe type Ilull 3,s"
LEMMA 12 Thefollowing identities hold:

F1 (x) 1/2e-lXl,
r(x) 1/4 (Ixl + 1)e-lxl,

ra(x) (x + 31xl + 3)e-lxl,

2m+ x2
I’m+.(x) 2(m + 1Fm+ (x) + 4m(m + 1) Fro(x).
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Proof The recursion formula follows from the relation

(1/p)" -4m(m + 1)/Pm+2 -3r- 2m(2m + 1)/Pm+l.

The formulas for F1 and F2 can be calculated directly.

For the next lemma, which will be used for counter examples, we con-
struct the functions ut, t> 1. Let b E C((0, 2)) be real with b in a

neighborhood of 1. Define bt E C((0, + 1)) so that bt= 1 on [1,t] and

4,,(x) 4,(x), 4,,(x + t) 4,(x + xG [0, 1].

Let w be a fixed real number and put

u,(x) elXl/2t(Ixl) cos(wx/2).
Then U C is real and even.

LEMMA 3 Let ut be as above. As z we have

Om(ut) (2-3m/m!)Re(3 + 60
2 2ovi)mtm -+- o(tm-1). (17)

Proof It follows from Lemma (12) that m(X) r(Ixl)e -Ixl, where r is
a polynomial of degree rn- having leading coefficient 2- m/(m- 1)!.
Since ut is real and even,

Qm(ut) 2 r(x)e-Xut(x)pm(D)ut(x) dx 2 r(x)bt(x) dx,

where Ct is introduced in the obvious way. For x [1,t] we have

)t(x) cos(o3x/2)pm(O -i/2)cos(wx/2)
cos(wx/2)Re(eiwx/Zpm((W- i)/2))
2-(2m+l)Re((3 + w2 2wi)m(1 + eiwx))

and it follows that

Qm(ut) 2 fo (r()t(x) -+- r(x + t)t(x -+- t)) dx

( mSt eiwx) ).+ 2-2m Re (3 + w2 2wi) r(x)(1 + dx
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Since r has degree m- the boundedness of {t} implies that the first
integral is O(tm- 1). After one integration by parts also the integral

f r(x)eiwx dx is seen to be O(tm- 1), SO

Qm(ut) 2-2mRe(3 + w2 26vi)m r(x) dx + o(tm-1), as t.

This gives (17).

LrMMA 14 Ife > 0, S E (1, 2) and k is a nonnegative integer then there
exist u, v C such that

a3(u) < lulV l=  dx, 0 <j, (18)

a3(v) _> e-1 flv(YlEAdx, 0 <j_< k. (19)
J

Proof If we take w x/ in the definition of ut, Lemma 13 gives
Q3(ut)=o(tZ), as t--,. On the other hand, for x[1, t], a simple
calculation shows that

lulj) (x)l 9 eX(1 + cos(/x +j27r/3))/2,

so for large t, the integral in (18) majorizes

tXS(1 -+- cos(vx +j27r/3)) dx > ts+l/3.

This proves (18).
To prove (19) we take w 0. Lemma 13 then gives Q3(ut) >_ ct3, for

large t. But, similarly as in the proofofLemma 13, we see that the right-
hand side of (19), with ut in place of v, is O(ts+ 1).
The proof of the following simple lemma, which we use to establish

equivalent norms in Proposition 11, also indicates the idea behind the
more nontrivial Lemma 16.

LEMMA 15 /fa > 0 thenfor every u S we have

0 _< -2lu(0)l + f e-lXl((1 + a)lul + a-lu’l)dx,

0 _< f(1 + Ixl)e-lXl((1 / a)lul= 21u’l2 / a-llu"lz) dx.

(20)

(21)
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Proof We begin by proving the second inequality. Let v E S be a real
function that is either even or odd (thus v(0)v’(0)=0). By partial
integration

(1 x)e-Xv dx+x)e-Xvv" dx (1 +x)e-X(v’)2 dx --(1 + x)e-X(v 2(v’)) dx,

so for any a > 0,

0 < a (1 + x)e-x (v + a-iv") 2
dx

< (1 + x)e-x((1 + a)- 2(’) +a-l("))dx. (22)

Now, if u is real, (21) follows from (22) and the observation

/ /0(Ixl)u() (x) aN 2 p(x)(uj) (x) + ulj) (x) 9) dx,

where u u0 + u is the decomposition of u into even and odd functions.
The complex case follows immediately. Similarly, the identity

e-X(av + a-1 v’)2 dx -v(0)2 + e-X((a + 1)v2 + a-1 (v’)) dx

leads to the first inequality.

LEMMA 16 For every u S it holds,

0 _< 41u(0)l2 / f e-lxl(x2lu[2 / 6(1 -Ixl)lu’l2

/ 31x1(2- Ixl)lu"[2 / 2x21u’l2) dx. (23)

Proof This follows, as in the proof of the preceding lemma, from the
identity

4v(O): / 2 e-X(xv / 6(1 x)(v’)9 + 3x(2 x)(v") / 2x:Z(v")9 )dx

xae-(3(v"- v’ + v) + (2v"- 3v" + 3v’- v)) dx, (24)
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for a real v E S. To verify (24), one can expand the right-hand side and
integrate by parts several times.

Proof of Proposition 11 The range of the argument for 3 + W2 2wi is
[- 7r/6, 7r/6] (the endpoints are attained for w 4-x), so if m > 4 then
(3 + wz 2wi)m assumes values with negative real part. By Lemma 13,Pm
does not belong to P if rn >_ 4.
We now turn to proving the inequalities. Using the decompositions

+2xyp (x) + Pl (Y) +p(x-y) p(x-y)’
4xy + 2x2y2p2 (x) +p(y) + +

p(x y) p (x y) p(x y)’
6xy 9xg-y 3x2y2 + 2x3yP3 (X) + P3 (Y)

1 + + +
P3 (x y) p (x y) p(x y) P3 (x y)

along with Parseval’s formula and the formulas for F(1/Pm) 27r1-’m we
obtain (similarly as in the proof of Corollary 2) the identities

1/2Q (u) lu(0)l + e-lxl(lulz + 21u’l) dx,

if u,,i)202(u)--lu(O)12/_ e-lXl(8lu’ +(l/[xl)(lul +21 )dx,

2Q3 (u) lu(0) 12 / fe- X ((x + 3lxl / 3)lu[2 / 481u’[2

+ 3(--x2 + 9lxl + 9) lu"l + 2(x + 3lxl + 3) lu"l) dx.

(25)

(26)

(27)

Now (25) immediately gives (14).
(15) follows from (26) and a combination of (26) and (21).
The right side of (27) minus the right side of

3 1 f Ixl [u[2 22Q,(u) >alu(0) + e- ((1 + Ix[) + 2(7 + [xl)[u’

+ (9 + 71xl)lu"l2 + 2(1 + Ixl)lu"l2) dx, (28)

multiplied by 16 equals the nonnegative expression in (23). Thus (28)
holds. Now (16) follows from (28) and (27).
The last statement in the proposition is a consequence ofLemma 14.
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Remark From the viewpoint of (27), the negative term on the right
makes it nontrivial that Q3(u) _> 0. The proof of Lemma 14 shows that
(27) minus the integral f Ixle-Illu(jl (x)12dx, multiplied by any positive
number, can be negative if s > andj > 0.
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