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This paper presents new lower bounds for the norms of 2-homogeneous real-valued
polynomials on lp spaces for 0 <p < which are sharper than those recently given by the
author.
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This note is concerned with the general problem of the relation between
the norm of a polynomial and its coefficients. This type of problem
has been studied in many contexts [1-6,8-11] over the years, because of
both its relevance to non-trivial problems in mathematics and because
of its our inherent interest. In this note we focus our attention on lower
bounds for the norms of 2-homogeneous real-valued polynomials on lp
spaces. Recently the author [9] gave lower bounds for the norms of 2-
homogeneous real-valued polynomials on lp spaces for 0 <p < . We
here improve them.

Let E be a real Banach space with the unit sphere SE and rn > 2, a
natural number. 79(mE) denotes the Banach space of m-homogeneous
real-valued polynomials on E, endowed with the polynomial norm
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IIPII supllxll IP(x)]. See Dineen [7] for more details about the theory
of polynomials on Banach spaces.

LEMMA LetO7ScS’ cN andx, aijERfori,jES’ with i<j. Then

max Ix+ Z aijeiej
ek=d:l, kS’ i,jS’, i<j

Proof Let m > 2 be a positive integer. It is enough to show that

max Ix+ Zek=-t-1, <k<_m
l<i<j<m

ek=’+-l, l<k<m+l l<i<j<m+l
a#’eij

Let

max [x nt- Z aijeif-j
=:1:1, <k<m

<i<j<m

--x+
<_i<j<_m

Letfor some sign choices f-(,..., %.

f-m+ aim+

if x + 21<i<j<_m aijf-[f-j > 0 and

aim+ i

otherwise. Then we have

max Ix +et=+l, l<_k<_m+l
<_i<j<_m+

>x+
<i<j<m+

x+
<i<j<m

Z aim+lf-
l<i<m
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LEMMA 2
Then

Let rn >_ 2 be a positive integer. Let x, aij (1 < <j< m) E R.

max
ek=4-1, l<_k<_m

x+ 2_ aijeiej
l<i<j<_m

Ixl+ max lail.
<i<j<m

The equality holds if and only if the following conditions are satisfied.
Without loss ofgenerality, assume that max1 _< i<j<_m [a01- la21.
(a) aij Ofor 3 < <j < m.
(b) xal2alia2i < 0 and [ale[- la2glfor each 3 < < m.

(C) E3 _<i_< m [ali[ _< min{lx[, la121}.

Proof Use induction on m. If m 2, then the lemma is true because
max{Ix + al, Ix a12[} Ixl + lal. Suppose that the lemma is true
for 2,3,...,m-1. Without loss of generality, we may assume that
max <_i<j<_m [a/[- [a34[. Put

M= max x+ Z aijeiej
e=-t- l<k<m

l<i<j<m

Substituting el- 4-1, we get

max
e=+l, 2<_k<_m

3<i<j<m

<M

aijeiej)
(1)

and

max
ek=-t-1, 2<k<_m

3<i<j<m

(2)
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By adding (1) and (2) and the triangle inequality, we get

ek=4-1, 2<k<m 3<j<m 3<_i<j<m
aijeiej _<. (3)

Again, by substituting 2--+1 into (3) and adding each other and the
triangle inequality, we get

max Ix -’t- ao’e.iej
ek=+l 3<k<m

3<i<j<m

_< M. (4)

By induction hypothesis and (4), we have

Ixl + max la+l- Ixl + 1a341- Ixl + max [aijl
l<i<j<m 3<i<j<m

< max Ixq-aije.ie.j
Ck--q-1, <_k<_m

3<i<j<m

Suppose that conditions (a)-(c) are satisfied. From now on, we will
assume that

l<i<j<m

Then by (a),

--al2l--l<_i<_m(ali--a2i)i3
Ix--al21nt-l<i<m(ali--a2i)i3

Without loss of generality, assume that xa12 > O. Then by (b),

Ix + a21 + (ali + a2i)i
3<i<m
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for any sign choices 3,’’ m and, by (b) and (c),

Ix a121 + (ali- a2i)i
3<i<m

<_ Ix a21 + 2 Z lai[
3<i<m

<_ IX al2l q- 2 min{Ixi, lal2l}
--Ixl-t-la12[ (6)

for any sign choices 3,’’’, m. Thus M= Ixl + la121. Let us prove the
necessary condition. First we will prove it when m 4. Some computa-
tion shows that

max Ix+ aijeiej
ek=+l, l<k<4[ <i<j<4

max{Ix + a12 -4- a34[-+-I(al3 + a23) -4- (a14 -+- a24)1,

IX a12 4- a341 + [(a13 a23) 4- (a14 a24)]}.

By some calculation, we get

(a) a34 0.
(b) xa12alia2i < 0 and lal,I--la2/I for i= 3, 4.
(C) E3 _<i_< 4 _< min{lxl, lal2l}.

Let m > 4. Suppose that M Ixl / laa21. Let 3 < i0 <Jo <_ m be fixed.
Let cr be the permutation on { 1,2,..., m} such that

cr(3)=i0, tr(4)=j0, cr(i0)=3, or(j0)=4.

Define bij ar(i)r(j) for each <j_< m. By Lemma 1,

max x + Z b0"i
ek=+l, l_<k<4

l<i<j<4

< max
ek=-+-1, l<k<m

x+
<i<j<rn

bijeij =M

and by the first claim ofLemma 2,

max
k--Zt= 1, l_<k_<4

X + b0.ij
l<i<j<4

Ixl + max Ibijl
l_<i<j_<4
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SO

max
ek=+l, l<k<4

x-+- Z bijeiej
l<i<j<4

Ixl + max Ib  l.
l_<i<j<4

By the above argument for m--4 case, we have 0--b34--aiojo and
xb12b13b24 xal2alioaljo <_ 0 and [ali0[ Ib131 Ib24[--lau0l, showing
(a) and (b). Suppose that (c) is not true. By (a), (b), (5) and the triangle
inequality,

M > max x a12[ + 21 aliei
ek=+l, 3<k<m 3<i<m

IX- a121 + 2 lail > Ix a=l + 2 min{Ix I, la9.l}
3<i<m

a contradiction. Therefore we complete the proof.

Remark Lemma in [9] can be improved as follows. Let E be a normed
space over a field (C or R) and m > 2, a natural number. Let x, aij

(1 < <j < m) E E. Then

x+
l<i<j<m

eiejaij max {llxll Ila/ll}.
<i<j<m

Using Lemma 2, we obtain the main result of this paper.

THEOREM 3
we have

Let P(x) 2i<_j bijxixj 79(2/p), b/ R, 0 <p <_ c. Then

f
Ilpll sup {

mN, (Wl ,w2 wm,O )ESlp
Y biiw2i
<i<m

+ max Ibijwiwj[).< <j<_m
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Proof It follows from Lemma 2 because

Ilell Ie(wa,..., f.mwm, O,O,..- biiw"- bijwiwjiJ]
l<i<m l<i<j<m

for any (Wl, w2, Wm, 0,...) E Sll, X l<i<m biiw and aij= bijeiey
for any sign choices el,..., em.

COROLLARY 4
Then we have

(a)LetP(x) Yi<jbijxixj p(2/p), bij R,0 <p <.

(b) Let P(x) -]i<jbijxixj p(2/), bij R. Then we have

IIPII mENSUp{ <i<m bii + max Ibil}.l<i<j<m

Proof (a) follows by taking wk 1/mlip for k 1, 2,..., m.
(b) follows by taking wk 1 for k 1,2,..., m.

PROPOSITION 5 (a)
Then we have

Let P(x)= Eil inair"inXi Xin (n/2) air-i, K.

IIPII lai,...il

(b) If

then
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Proof Use induction on n.
Case n 2. For x (Xk) E St2,

k

(by the H61der inequality)

k k,j

lajle

(by the Hblder inequality)

Suppose that for n _< k, the proposition is true. For x (Xk) Sty,

aiv..ik+ Xil Xik+
il ik+l

(by the induction hypothesis)

(by the H61der inequality)
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