J. of Inequal. & Appl., 2000, Vol. 5, pp. 53–61 Reprints available directly from the publisher Photocopying permitted by license only

Steffensen Pairs and Associated Inequalities

HILLEL GAUCHMAN

Department of Mathematics, Eastern Illinois University, Charleston, IL 61920, USA

(Received 22 February 1999; Revised 12 April 1999)

Let x_1, \ldots, x_n be positive numbers and $\alpha \ge 2$. It is known that if $\sum_{i=1}^n x_i \le A$, $\sum_{i=1}^n x_i^{\alpha} \ge B^{\alpha}$, then for any k such that $k \ge (A/B)^{1/(\alpha-1)}$, there are k numbers among x_1, \ldots, x_n whose sum is bigger than or equal to B. We express this statement saying that a pair of functions $(x^{\alpha}, x^{1/(\alpha-1)})$ is a Steffensen pair. In this paper we show how to find many Steffensen pairs.

Keywords: Steffensen inequality; Steffensen pair; Convex function; Tchebycheff inequality

1991 Mathematics Subject Classification: Primary 26D15

1. INTRODUCTION

Classical Steffensen's inequality [2] states:

THEOREM A Let f and g be integrable functions from [a, b] into \mathbb{R} such that f is decreasing, and for every $x \in [a, b], 0 \le g(x) \le 1$. Then

$$\int_{b-\lambda}^{b} f(x) \, \mathrm{d}x \leq \int_{a}^{b} f(x) g(x) \, \mathrm{d}x \leq \int_{a}^{a+\lambda} f(x) \, \mathrm{d}x,$$

where $\lambda = \int_a^b g(x) \, \mathrm{d}x$.

H. GAUCHMAN

In [1], the following discrete analogue of Steffensen's inequality was proved:

THEOREM B Let $(x_i)_{i=1}^n$ be a decreasing finite sequence of nonnegative real numbers, and let $(y_i)_{i=1}^n$ be a finite sequence of real numbers such that for every i, $0 \le y_i \le 1$. Let $k_1, k_2 \in \{1, ..., n\}$ be such that $k_2 \le y_1 + \cdots + y_n \le k_1$. Then

$$\sum_{i=n-k_2+1}^n x_i \le \sum_{i=1}^n x_i y_i \le \sum_{i=1}^k x_i.$$

As an immediate consequence of Theorem B, the following proposition was proved in [1]:

PROPOSITION A Let x_1, \ldots, x_n be nonnegative real numbers such that the following two conditions are satisfied: (i) $\sum_{i=1}^n x_i \leq A$, (ii) $\sum_{i=1}^n x_i^2 \geq B^2$, where A and B are positive real numbers. Let $k \in \{1, \ldots, n\}$ be such that $k \geq A/B$. Then there are k numbers among x_1, \ldots, x_n whose sum is bigger than or equal to B.

To prove Proposition A we can assume that $B \ge x_1 \ge \cdots \ge x_n$. Set $y_i = x_i/B$. Then $\sum_{i=1}^n y_i \le A/B \le k$. By Theorem B,

$$\sum_{i=1}^{k} x_i \ge \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} \frac{x_i^2}{B} \ge B.$$

Proposition A shows that under certain conditions, a relatively small portion of x_1, \ldots, x_n has a relatively large sum. For example, if $\sum_{i=1}^{n} x_i \leq 300$ and $\sum_{i=1}^{n} x_i^2 \geq 10\,000$, then there are three numbers among x_1, \ldots, x_n , say x_j, x_k, x_m , such that $x_j + x_k + x_m \geq 100$, i.e. $x_j + x_k + x_m \geq \frac{1}{3} \sum_{i=1}^{n} x_i$.

We will restate Proposition A using the following definition:

DEFINITION Let $\varphi: [c, \infty) \to [0, \infty)$, $c \ge 0$, and $\tau: (0, \infty) \to (0, \infty)$ be two strictly increasing functions. We say that (φ, τ) is a Steffensen pair on $[c, \infty)$ if the following is satisfied:

If x_1, \ldots, x_n are real numbers such that $x_i \ge c$ for all i, A and B are positive real numbers, and (i) $\sum_{i=1}^n x_i \le A$, (ii) $\sum_{i=1}^n \varphi(x_i) \ge \varphi(B)$, then for any $k \in \{1, \ldots, n\}$ such that $k \ge \tau(A/B)$, there are k numbers among x_1, \ldots, x_n whose sum is bigger than or equal to B.

Now Proposition A can be reformulated as follows:

PROPOSITION A' (x^2, x) is a Steffensen pair on $[0, \infty)$.

The following more general result was proved in [1]:

PROPOSITION B If $\alpha \ge 2$, then $(x^{\alpha}, x^{1/(\alpha-1)})$ is a Steffensen pair on $[0, \infty)$.

The purpose of this paper is to find more examples of Steffensen pairs.

THEOREM 1 Let ψ : $[c, \infty) \rightarrow [0, \infty)$ where $c \ge 0$, be increasing and convex. Assume that ψ satisfies the following condition:

$$\psi(xy) \ge \psi(x)g(y)$$
 for all $x \ge c, y \ge 1$,

where $g[1,\infty) \to [0,\infty)$ is strictly increasing. Set $\varphi(x) = x\psi(x)$, $\tau(x) = g^{-1}(x)$, where g^{-1} is the inverse function for g. Then (φ, τ) is a Steffensen pair on $[c,\infty)$.

Example Let $\alpha \ge 2$, $\psi(x) = x^{\alpha-1}$. Then $\psi(xy) = \psi(x)\psi(y)$. Hence $\varphi(x) = x^{\alpha}$, $\tau(x) = x^{1/(\alpha-1)}$, and we arrive at Proposition B.

THEOREM 2 Let $f : [0, \infty) \to \mathbb{R}$ be a twice differentiable function on $[0, \infty)$ such that $f'(x) \ge 1$ and $f''(x) \ge 0$ for all $x \ge 0$. Assume that f(0) = 0. Then the functions ψ and g from $[1, \infty)$ into $[0, \infty)$ given by

$$\psi = g = \exp \circ f \circ \ln$$

satisfy the conditions of Theorem 1.

Remark There are many functions satisfying the conditions of Theorem 2. For example, if $f(x) = \sum_{i=1}^{\infty} a_i x^i$ is the sum of a series converging on $[0, \infty)$ and if $a_1 \ge 1$, $a_i \ge 0$ for $i = 2, 3, \ldots$, then f(x) satisfies the conditions of Theorem 2.

PROPOSITION 1 If $\alpha \ge 1$, then $(x \exp(x^{\alpha} - 1), (1 + \ln x)^{(1/\alpha)})$ is a Steffensen pair on $[1, \infty)$.

PROPOSITION 2 Let a and b be real numbers satisfying the conditions b > a > 1 and $\sqrt{ab} \ge e$. Set

$$\varphi(x) = \begin{cases} (x^{1+\ln b} - x^{1+\ln a})/\ln x, & \text{if } x > 1, \\ \ln b - \ln a, & \text{if } x = 1, \end{cases}$$
$$\tau(x) = x^{1/\ln \sqrt{ab}}.$$

Then (φ, τ) is a Steffensen pair on $[1, \infty)$.

H. GAUCHMAN

Remark Since $\sqrt{ab} \ge e$, $x \ge x^{1/\ln \sqrt{ab}}$ for $x \ge 1$. Therefore it is possible to take $\tau(x) = x$ in Proposition 2.

2. PROOF OF THEOREMS 1, 2 AND PROPOSITIONS 1, 2

Theorem 1 can be deduced easily from Theorem 6.5 in [1]. However the proof of Theorem 6.5 in [1] uses the integration over a general measure space. Because of this reason we give here a direct and elementary proof of Theorem 1 (although it follows closely the ideas of the proof of Theorem 6.5 in [1]).

LEMMA 1 Assume that $\psi[c, \infty) \rightarrow [0, \infty)$, $c \ge 0$, is increasing and convex. Set $\varphi(x) = x\psi(x)$. Let x_1, \ldots, x_r be positive real numbers such that $x_i \ge c$, $i = 1, \ldots, r$. Set $m = \min\{x_1, \ldots, x_r\}$. Then

$$\sum_{i=1}^r \varphi(x_i) - \psi(m) \sum_{i=1}^r x_i \le \varphi\left(\sum_{i=1}^r x_i\right) - \psi(rm) \sum_{i=1}^r x_i.$$

Proof Since $\psi(x)$ is convex, it is well known (and easy to prove) that if $x_1 < x_2$ and $\delta \ge 0$, then

$$\psi(x_2) - \psi(x_1) \leq \psi(x_2 + \delta) - \psi(x_1 + \delta).$$

Using this fact we obtain

$$\sum_{i=1}^{r} \varphi(x_i) - \psi(m) \sum_{i=1}^{r} x_i = \sum_{i=1}^{r} x_i [\psi(x_i) - \psi(m)]$$

$$\leq \sum_{i=1}^{r} x_i [\psi(x_i + (r-1)m) - \psi(rm)]$$

$$\leq \sum_{i=1}^{r} x_i \left[\psi\left(\sum_{i=1}^{r} x_i\right) - \psi(rm) \right]$$

$$= \psi\left(\sum_{i=1}^{r} x_i\right) \sum_{i=1}^{r} x_i - \psi(rm) \sum_{i=1}^{r} x_i$$

$$= \varphi\left(\sum_{i=1}^{r} x_i\right) - \psi(rm) \sum_{i=1}^{r} x_i.$$

Proof of Theorem 1 Let x_1, \ldots, x_n be real numbers such that $x_i \ge c$ for all *i*. Without loss of generality we can assume that $x_1 \ge \cdots \ge x_n$. Let A and B be positive real numbers, and (i) $\sum_{i=1}^n x_i \le A$, (ii) $\sum_{i=1}^n \varphi(x_i) \ge \varphi(B)$. Assume that $k \ge \tau(A/B)$. We will prove that $x_1 + \cdots + x_k \ge B$.

The inequality $k \ge \tau(A/B)$ implies that $g(k) \ge A/B$. Hence

$$A\psi(x_k) = \psi(x_k)\frac{A}{B}B \le \psi(x_k)g(k)B$$

Since $\psi(xy) \ge \psi(x)g(y)$, we obtain

$$A\psi(x_k) \le \psi(kx_k)B. \tag{1}$$

Now we have

$$\begin{split} \varphi(B) &\leq \sum_{i=1}^{n} \varphi(x_i) = \sum_{i=1}^{k} \varphi(x_i) + \sum_{i=k+1}^{n} x_i \psi(x_i) \\ &\leq \sum_{i=1}^{k} \varphi(x_i) + \psi(x_k) \sum_{i=k+1}^{n} x_i \\ &= \sum_{i=1}^{k} \varphi(x_k) + \psi(x_k) \left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{k} x_i \right) \\ &\leq \sum_{i=1}^{k} \varphi(x_k) - \psi(x_k) \sum_{i=1}^{k} x_i + A \psi(x_k). \end{split}$$

Lemma 1 implies that

$$\varphi(B) \leq \varphi\left(\sum_{i=1}^{k} x_i\right) - \psi(kx_k) \sum_{i=1}^{k} x_i + A\psi(x_k)$$

By (1), we obtain that

$$arphi(B) - arphi\left(\sum_{i=1}^{k} x_i\right) \leq -\psi(kx_k)\sum_{i=1}^{k} x_i + \psi(kx_k)B$$

= $\psi(kx_k)\left(B - \sum_{i=1}^{k} x_i\right).$

Assume that the conclusion of the theorem is wrong, that is, assume that $B - \sum_{i=1}^{k} x_i > 0$. Then we have

$$\varphi(B) - \varphi\left(\sum_{i=1}^{k} x_i\right) \le \psi\left(\sum_{i=1}^{k} x_i\right) \left(B - \sum_{i=1}^{k} x_i\right)$$
$$= B\psi\left(\sum_{i=1}^{k} x_i\right) - \varphi\left(\sum_{i=1}^{k} x_i\right).$$

This implies that $\varphi(B) \leq B\psi(\sum_{i=1}^{k} x_i)$. Hence $\psi(B) \leq \psi(\sum_{i=1}^{k} x_i)$. It follows that $B \leq \sum_{i=1}^{k} x_i$, which contradicts the above assumption.

Proof of Theorem 2 For x > 1,

$$\psi'(x) = \psi(x)f'(\ln x)\frac{1}{x} > 0,$$

$$\psi''(x) = \psi(x)f'(\ln x)\frac{1}{x^2}[f'(\ln x) - 1] + \psi(x)f''(\ln x)\frac{1}{x^2} \ge 0$$

Therefore ψ is increasing and convex. Let $y \ge 0$, be a fixed number. For $x \ge 0$, set

$$F(x) = f(x + y) - f(x) - f(y).$$

Then

$$F'(x) = f'(x+y) - f'(x) \ge 0, \quad F(0) = 0.$$

Hence $F(x) \ge 0$ for all $x \ge 0$. Thus

$$f(x+y) \ge f(x) + f(y)$$

for all $x, y \ge 0$. Therefore, for $x, y \ge 1$, we obtain

$$\psi(xy) = \exp(f(\ln xy)) = \exp(f(\ln x + \ln y))$$

$$\geq \exp[f(\ln x) + f(\ln y)]$$

$$= \exp(f(\ln x)) \cdot \exp(f(\ln y)) = \psi(x)\psi(y).$$

Proof of Proposition 1 For $\alpha \ge 1$, set $f(x) = e^{\alpha x} - 1$. Then f(0) = 0 and for all $x \ge 0$, $f'(x) \ge 1$, $f''(x) \ge 0$. Therefore by Theorem 2, functions ψ and g from $[1, \infty)$ into $[0, \infty)$ given by $\psi(x) = g(x) = \exp(e^{\alpha \ln x} - 1) = \exp(x^{\alpha} - 1)$ satisfy the conditions of Theorem 1. It follows by Theorem 1, that (φ, τ) , where $\varphi(x) = x\psi(x) = x\exp(x^{\alpha} - 1)$ and $\tau(x) = g^{-1}(x) = (1 + \ln x)^{1/\alpha}$ is a Steffensen pair on $[1, \infty)$. **Proof of Proposition 2** We prove this proposition using Theorem 1 and recent results from [3]. Let b > a > 1 and $\sqrt{ab} \ge e$. Set

$$h(x) = \begin{cases} (b^x - a^x)/x, & \text{if } x \neq 0, \\ \ln b - \ln a, & \text{if } x = 0. \end{cases}$$

By Proposition 3 in [3], h'(x) > 0.

LEMMA 2 $h''(x) \ge h'(x)$ for $x \ge 0$.

Proof It is easy to see that

$$h^{(n)}(x) = \int_{a}^{b} (\ln t)^{n} t^{x-1} \,\mathrm{d}t.$$
 (2)

We will use the following Tchebycheff inequality.

Let $p, q: [a, b] \to \mathbb{R}$ be integrable increasing functions and let $r: [a, b] \to [0, \infty)$ be an integrable function. Then

$$\int_a^b r(t)p(t)\,\mathrm{d}t\int_a^b r(t)q(t)\,\mathrm{d}t\leq \int_a^b r(t)\,\mathrm{d}t\int_a^b r(t)p(t)q(t)\,\mathrm{d}t.$$

Taking $p(t) = q(t) = \ln t$, $r(t) = t^{x-1}$, we get

$$\left(\int_a^b \ln t \cdot t^{x-1} \,\mathrm{d}t\right)^2 \leq \int_a^b t^{x-1} \,\mathrm{d}t \int_a^b (\ln t)^2 t^{x-1} \,\mathrm{d}t.$$

By (2), we obtain that for all x,

$$[h'(x)]^2 \le h(x)h''(x).$$
(3)

By Proposition 4 in [3], for every $y \ge 0$, F(x) = h(x+y)/h(x) is increasing as a function of x. Therefore

$$F'(x) = \frac{h'(x+y)h(x) - h(x+y)h'(x)}{[h(x)]^2} \ge 0.$$

Hence

$$h'(x+y)h(x) - h(x+y)h'(x) \ge 0$$
 (4)

for all *x* and all $y \ge 0$.

Taking x = 0 in (4), we obtain

$$h'(y)h(0) - h(y)h'(0) \ge 0$$
(5)

for all $y \ge 0$.

$$h(0) = \ln b - \ln a$$

$$h'(0) = \lim_{x \to 0} \frac{1}{x} \left[\frac{b^{y} - a^{y}}{x} - (\ln b - \ln a) \right] = \frac{1}{2} \left[(\ln b)^{2} - (\ln a)^{2} \right].$$

Hence $h'(0) = h(0) \ln \sqrt{ab}$. Since $\sqrt{ab} \ge e$, we obtain that $h'(0) \ge h(0)$. It follows from (5) that $h'(y) \ge h(y)$ for $y \ge 0$. Therefore, by (3) and (5),

$$h(x)h''(x) \ge [h'(x)]^2 \ge h(x)h'(x)$$

for $x \ge 0$. Thus $h''(x) \ge h'(x)$ for all $x \ge 0$. That proves the lemma.

Set $\psi(x) = h(\ln x)$ for $x \ge 1$. Then $\psi'(x) = h'(\ln x)(1/x) > 0$, $\psi''(x) = (1/x^2)[h''(\ln x) - h'(\ln x)] \ge 0$. Hence $\psi(x)$ is increasing and convex. In addition,

$$\frac{\psi(xy)}{\psi(x)} = \frac{h(\ln(xy))}{h(\ln x)} = \frac{h(\ln x + \ln y)}{h(\ln x)}.$$

By Proposition 5 in [3], we have that for $x, y \ge 0$,

$$\frac{h(x+y)}{h(x)} \ge (\sqrt{ab})^{y}.$$

Therefore, for $x, y \ge 1$,

$$\frac{\psi(xy)}{\psi(x)} \ge (\sqrt{ab})^{\ln y}.$$

Set $g(x) = (\sqrt{ab})^{\ln x}$. Then $g^{-1}(x) = x^{1/\ln \sqrt{ab}}$. By Theorem 1 (φ, τ), where

$$\begin{split} \varphi(x) &= x\psi(x) \\ &= \begin{cases} x(b^{\ln x} - a^{\ln x})/\ln x = (x^{1+\ln b} - x^{1+\ln a})/\ln x, & \text{if } x > 1, \\ \ln b - \ln a, & \text{if } x = 1, \end{cases} \\ \tau(x) &= x^{1/\ln \sqrt{ab}}, \end{split}$$

is a Steffensen pair.

60

References

- [1] J.-C. Evard and H. Gauchman, Steffensen type inequalities over general measure spaces, *Analysis*, 17 (1997), 301-322.
- [2] J.F. Steffensen, On certain inequalities and methods of approximation, J. Inst. Actuaries, 51 (1919), 274-297.
- [3] Feng Qi and Sen Lin Xu, The function (b^x a^x)/x: inequalities and properties, Proc. Amer. Math. Soc., 126(11) (1998), 3355-3359.