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1. INTRODUCTION

Gautschi [3] proved the following inequalities- (xp + 2) 1/p-x < e

p>l, x>0,

xp 2e-tp dt < ap + x
ap

where

p/(p-1)

(1.1)
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The integral in (1.1) can be expressed in terms ofthe incomplete Gamma
function

e-tp dt =-F ,xp
P

where

F(a,z) e-tt -1 dt, a>O,z>O.

Alzer [2] refined these bounds showing new inequalities for 0 <p < 1
and forp > 1. In the case p > and x > 0 he found

I" 1+ (1-e-X)1/p< e- dt<r’ 1+ (1-e-X) 1/p,

(1.2)

where

Recently Feng Qi and Sen-lin Guo [5] established, among others, the
inequality

x e x’
et’ dt < x > O, p > (1 3)xP-1

In Section 3 we shall give lower and upper bounds for this integral and
as a particular case we also recover this bound.

In this paper we are essentially interested in the product of the two

integrals

fxF(x,p) et" dt. e-t" dt x>O,p>_l

and our main purpose is to establish an upper bound for F(x,p).
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First of all, we observe that by the inequalities (1.1) and (1.3), the
following relations

F(0,p) 0, lim F(x,p) 0 for p > (1.4)
x-+-bo

hold. However, using twice the l’H6spital rule, we can obtain the more
informative result

lim F(x,p) lim f e-tp dt 0 if p > 1,
lim if p 1

x x- 1/(f etp dt) x--,pxP-, ifO <p<’ 1.

By relations (1.4) it follows for any fixed p > that the function F(x, p)
must have an absolute maximum. Let the function o(p) be defined by

(p) sup F(x,p), p >_ 1.
x>O

In the special casep 1, a direct calculation gives F(x, 1) e-x hence
q(1) 1.
Concerning the function F(x,p) we have the following two results

which will be proved in the Section 2.

THEOREM Let p > 1. Then the function F(x,p) has the property of
unimodality, i.e. there exists a unique point Xp > 0 such that the function
F(x, p) increasesfor 0 < x < Xp and decreasesfor Xp < x <

THEOREM 2 Let p* 1.87705... Then thefollowing inequality

tp p* (1.5)F(x,p) etp dt. e- dt <-, x > O, p >

holds. The value p* is the unique solution ofthe equation qo(p)= 1/4.
The case p-= 2 is of special interest in view of the connection between

the integral f e-t2 dt and the complementary error function erfc(x)"

2fxerfc(x) e-t2 dt.
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Moreover, by means of the Gamma function, F(x,p) can be written as

(1.6)

Remark By (1.6), for a fixed x E (0, 1), the function F(x,p) tends to
x(1-x) when p---oe and, particularly, limp__, F(1/2, P) 1/4. Hence
lim sup_o (p)>_ 1/4. Then by Theorem 2 it follows limo qo(p) =.
This justifies the choice of the constant 1/4 in Theorem 2.

2. PROOF OF THE THEOREMS

Proof of Theorem 1 Fix the value p > 1. Then by the relations (1.4),
F(O,p)= F(oe,p)= 0 and by Rolle’s theorem, the function dF(x,p)/dx
has at least one positive zero in (0, oc). Differentiation of F(x,p) with
respect to x gives

xf fo
xd

F(x,p) e e-tp dt e-x" et" dt,

d [eXVF,(x,p)] 2xP-e:zx e-t’ dt- x-Pe-x"
dx

2xP-le:ZxPf(x),

where

lim f(x) O,
d
f(x) (p 1)x-Pe-xp > O.d--

Therefore f(x)< 0 and consequently the function eXF’(x,p) strictly
decreases. Thus F’(x,p) can have at most one zero. This and the existence
ofa zero ofF’(x,p) show that F’(x,p) has exactly one zero Xp > 0. Clearly,
the function F(x,p) increases on (0, Xp) and decreases on (Xp, oe). This
completes the proof of Theorem 1.

Proofof Theorem 2 First we show that the point Xp where the function
F(x, p) takes on its maximum value belongs to the interval (0, 1). To this
end, by Theorem 1, it is sufficient to show that F’(1,p) < 0.
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Making use of the substitution

s=tp, s=t-p

in the first and in the second integral of F(x, p), respectively, we obtain

F’(1,p) = el-ss(1/p)-I e-l+(1/S)s-1-(1/p) ds.

Introducing the notations

,(cr) pF’(1,p) el-Ss’- e-+(1/S)s-- ds,

we see that the function I,(cr) has the same sign as F’(1,p). A dif-
ferentiation gives

’(o) -d-(cr) el-ss + e-+(/S)s--] logsds > 0.

Therefore ff(r) increases, hence if(or) < (1/p*) for cr < 1/p*, or, equiva-
lently for p >p*. A direct calculation shows that F’(1,p*) -0.134 < 0.
This implies that F’(x,p) < 0 for x _> and p _> p*, and that

(p) max F(x,p), for p > p*.
0<x<l

Now we need only to prove that qo(p) < 1/4 for p > p*. We use two dif-
ferent approaches to attack this problem: one for large values of
p, say p >p0 2.099376... > 2, and another for moderate values ofp,
p* <p <p0. The value ofp0 will be specified later.

First we consider the case p >P0. By the series expansion of the
exponential function etp, we have

X np+
etp dt

x

n=0 (np+ 1)n!" (2.1)
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Concerning the second integral f e-tp dt, the series expansion of e-tv

yields

X

e-tp dt xZ(- 1)n
xnp

(2.2)
n=0 (np+ 1)n!"

Moreover

/0 e-tv dt e-Ss(1/p)-I ds F +
P

This and (2.2) give

/x e-dt=F 1+ -x (-1)’
n’-O

XnP
(np + )n!

Introducing the functions

cx zn
n=O (np + 1)n!’

we have to show that

B(z) Z(- 1)n
zn

n=O (np + 1)n!’

[ (pl_) )]X r / --xB(z A(z) <-, z-- xp. (2.3)

The left-hand side can be considered as the quadratic polynomial
-u2AB / AEu taken at u x. Since this polynomial has its maximum

1/4(AE2)/B at u F/(2B), inequality (2.3) will be satisfied if we show that

A(z)I: (1 +) < B(z). (2.4)

Now we introduce the notation

1-r:(1 + l/p)
Cp (p + 1)1 + r2(1 + l/p)’
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and we are going to show that (2.4) holds for 0<z <z0, where

z0 0.358035... is the solution of the equation

2 Z f0
z sinh

dt.c2 0.36059 .... z+
3.3! + 5.5 +

To prove inequality (2.4) we replace A(z) and B(z) by their series
expansions given above. In this way (2.4) becomes equivalent to

z
. + p + z3 Z4cp _> z cp (2p + 1)2! (3p + 1)3! cp (4p + 1/4!

+
p+ z5

(5p + 1)5!

We claim that

z

z+3.3!
z5 z2

+... > Z-Cp(2p+ l)2!
p+l+ (3p + 1)3!

z

z4
cp (4p + 1)4!

p+l+ (5p / 1)5!

for 0 < z < 1. For n 1,2,... we have to show

z2n+l z2n
(2n + 1)(2n + 1)! > --Cp (2np + 1)(2n)!

+ p + 1 z2n+l
[(2n + 1)p + 1](2n + 1)!

or

2n 2np + 1
ep >

(2n+ 1)2 [(2n + 1)p+ 1]
z" (2.5)

Since the right-hand side is less than for n > 1, p > 0 and 0 < z < 1,
hence it is sufficient to show that

p > 2 0.36059..., for p >_ p0 > 2.



46 . ELBERT AND A. LAFORGIA

This inequality has the form

(p-% 1) 1-r2(1 + l/p) > c2, p > 2,
-% r2(1 + l/p)-

and using the notation 1/p t, this inequality is equivalent to

g(t) 2 log r(t + 1) log + (1 -c2)t
+ (1 + c2)t

_<0, O_<t_<1/2. (2.6)

Clearly we have g(0) g(1/2) 0. Inequality (2.6) will be proved ifwe show
that the function g(t) is convex. To this end we are going to show that

g"(t) 2’(1 + t) 4c2
-% (1 -c22)t

[1 + (1- c2)t]2[1 -% (1 -% c2)t]2
> 0, (2.7)

where b(x) denotes the logarithmic derivative of F(x). Using the
inequality [4, p. 288]

>7’ t>o,

we shall prove inequality (2.7) if we show that

l+t
l+t

4c2
[1 + (1- c2)t]2[1 + (1 + c2)t]2

> 0

which is equivalent to

[1 -% (1- c2)t][1 -% (1 -% c2)t]- 2(1 -% t) > 0

or

(1 c)t + (2- 2v)t + 1 > O.

But this is true because the polynomial on the left-hand side has no

positive zeros. Thus the function g(t) defined above is convex and this
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proves the inequality (2.6). So inequality (2.4) is proved for 0 < z < z0
and p > 2.
Now let us define xo(p) z/p. We have proved that the function

F(x,p) is less than 1/4 for 0 < x < xo(p). If we prove that the function
F(x,p) has its derivative negative at x x0(p), then by Theorem 1, we
can conclude that F(x,p) < , for every x > 0. Now we prove that this is
true forp _> P0. We have to show that

fo
x

e-XF’(x,p) e-tv dt e-2x et dt

--Y’(1 +) xB(xP) -e-ZXxA(xP) < O (2.8)

at x xo(p) where the functions A(z) and B(z) have been introduced
above. We prove (2.8) by using the following lower bound for A(z)
and B(z):

cx zn
A(z)

n=O (np + 1)n!
,(z)> -- (2.9a)p+l’

(zl (--)n z"

n:O (np + 1)n! > p+l
(2.9b)

where

-’ Zn -’( n-1 Zn
U(Z)

n=l n ?-n!’ v(z)
n=, n n! (2.10)

Clearly (2.9a) is valid for z > 0 andp > 1.
The proof of (2.9b) is not so immediate. To show this inequality we

start from

v(z) 1
)n (n 1)zn (2.11)B(z)- + (-1 n(np+l)n!"p+ p+ n=2
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We wish to prove that the function on the fight-hand side is positive,
at least for 0 < z < 1. The series in (2.11) is of the Leibniz type and

(n- 1)z’ nzn+l
> n= 2,3,...

n(np + 1)n! [(n + 1)p + 1](n + 1)(n + 1)!’

So B(z) + v(z)/(p + 1) > 0 for 0 < z < and the proof of the inequal-
ity (2.8) is reduced to the proof of the one where A(z) and B(z) are
replaced by their lower bounds (2.9a) and (2.9b), respectively. Thus we
need to show that

-+- e-2z v(zo) -p+le-Zu(z)]
which, with 1/p is equivalent to

r(1 + t)< z [1 +e-2z- v(zo) e-2Zu(zo),]
Taking the logarithms, this inequality can be written as

h(t) logF(2 + t)- tlogzo -log(c / fit) < 0,

where

o 1 + e-2z, /3 o + e-2Zu(zo) v(zo).

The function h(t) has derivative

h’(t) b(2 + t) log z0

Moreover h(0) < 0, h’(0) > 0 and h"(t) > 0. This shows that h(t) increases
for t> 0. Numerically we find that h(1/2)> 0, therefore h(t) has exactly
one zero at t0=0.476331...E(0,1/2). This zero give p0=l/t0=
2.099376... and, consequently, Theorem 2 is true for p >P0.
Now we consider the case p* <p <P0. First we observe that by

(1.6) F(x,p)< F(x,p*) for 0 < x < 1. Indeed, the function l(z) has its
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minimum at 1.46163... [1, p. 253], and 1-’(z) is increasing for z >, i.e.

for p* < p < P0,

because + lip > + 1/po + to 1.476331 > . Moreover for
0 < x < we have

J’o x fo
x

etp dt < etp* dt, fo
x

fo
x

e-t’ dt > e-t* dt.

Hence by (1.6) F(x, p) < F(x,p*) and consequently, by the definition
ofp*

<

i.e. F(x*,p*)=1/4 and dF(x*,p*)/dx=O. The values of p* and x*=
0.677050... are calculated numerically. The proof of Theorem 2 is

complete.

3. INEQUALITIES FOR f; etp dt AND fc e_tP dt

The estimation of the integrals / etp dt, f e-tp dt occurred in Section 2
may have an independent interest. For this reason we point out some
inequalities here which can he deduced directly from the inequalities
occurring between these integrals and the functions u(z) and v(z)
introduced by (2.10)

j/o"ze- fo1 -e-s
u(z) ds, v(z) ds.

s s

For the first integral we have

U(Xp) foX U(Xp)
1+ <- etdt<l-+-, p>l x>O. (3.1)

p+l x p
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Similarly we get for the second integral

v(xP) fo
x 9(3p + 1) (3.2)

p+l <-x e-t’dt, p> 1, O<x<4(2p+1),
where the bound for xp in this inequality comes from a closer inves-
tigation of the properties of the Leibniz type series met in the proof of
Theorem 2.
We deduce other bounds for f etp dt:

exp-1 p-1 fx 2 ex-
J0p xP-1 "+- X < et dt <

p p+l xP- p-1
p+i x, p>l.

(3.3)

Let us observe that these inequalities become equalities at p and
that they are reversed for 0 <p < 1. The inequalities (3.3) are based
on the following reasoning: We wish to find the values of # and u such
that the function #(ex 1)/(xp-) + ux is an upper (lower bound) for
the integral. We consider the function

x e xp

l’Xetp dt- # xP_l

-x 1-#-u+ (n+l)!n=l

Ifwe choose # _> 2/(p + 1), u= #, then we have #- u=0 and the
coefficients of xnp are negative except the case n where we have
the coefficient equal to zero. The optimal choice is clearly # 2/(p + 1)
and consequently u=(p-1)/(p+ 1). Similarly considerations show
that the choice # 1/p and u (p- 1)/p gives the lower bound of (3.3).
When # and u 0 we obtain the upper bound

"x exp-
etp dt < x > 0, p >xP-1

which is the inequality (1.3) mentioned by Feng Qi and Sen-lin Guo [5].
Finally we observe that using different values of the parameters #

and u, other inequalities of the type considered here can be obtained.
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