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We consider quadrature formulae for Cauchy principal value integrals

Iw4[f] fab fx(X_) w(x)dx, a<<b.

The quadrature formulae considered here are so-called modified formulae, which are
obtained by first subtracting the singularity, and then applying some standard quadra-
ture formula Q.. The aim of this paper is to determine the asymptotic behaviour of the
constants hi,. in error estimates of the form Rnmd[J ][ < i,.(C)llf(i) I1 for fixed and
n x, where Rd[3 ] is the quadrature error. This is done for quadrature formulae Qn
for which the Peano kernels Ki,. of fixed order behave in a certain regular way, including,
e.g., many interpolatory quadrature formulae as Gauss-Legendre and Clenshaw-Curtis
formulae, as well as compound quadrature formulae. It turns out that essentially all the
interpolatory formulae behave in a very similar way.
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168 K. DIETHELM AND P. KtHLER

1 INTRODUCTION

We consider the numerical evaluation of the Cauchy principal value
integral

b f(x) W(X) dx,Iw,[f] x’"

for arbitrary, but fixed ( E (a, b), where w is a given weight function. This
expression is also known as the finite Hilbert transform of wf at the
point . The numerical methods we investigate are based on the principle
of the subtraction of the singularity [4, p. 184]. We note that

aa x-
b w(x) dx. (1)w(x) dx +f() x -Then, we let Q,[g] i=l aig(xi) be a quadrature formula for the

integral

b

Iw[g] g(x)w(x)dx, (2)

with remainder term R,[g] Iw[g]- Q,[g]. We now apply this quad-
rature formula to the first integral in (1), which yields

I,[f] Qn
Ff - -t--g.n .f(" :’(’).1 -It-f(’)Iw,.

gmod Dmod
:Dn+l [J ] + "n+l [J ]’

where

n+l ta, ’1 Q,, +f()Iw,[l],

mOd[j ] __Rn[(’)_--()]n+l

(3)

A quadrature formula ,)mod obtained in this way is called a modifiedDn+l
quadrature formula. It uses one node more than Qn, namely (; if is
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already a node of Qn, then it is a double node of rmod This method hasn+l
frequently been considered, see, e.g., Davis and Rabinowitz [4, p. 184],
Diethelm [5,6,9], Elliott and Paget [11], Gautschi [13], K6hler [16],
Monegato [18], and Stolle and StrauB [23].
Whereas it is sufficient for (2) that W ELl[a,b], more restrictive

assumptions are necessary for the consideration of Cauchy princi-
pal value integrals. We assume that w=w,b, where w,(x)=
(x a)(b x) (a,/3 > 1) is a Jacobi weight function, and b satisfies
the Dini-type condition

w(b, t) dt <

(a denotes the modulus of continuity).
The modified quadrature formulae have got a certain weakness

because they cannot be applied very well to functions of rather low
smoothness properties. In particular, it is known [3,22] that divergence
may happen if the function f does not fulfil a Lipschitz condition of
order 1. On the positive side, we note that convergent subsequences
exist under very weak assumptions on f [2]. Furthermore, as soon as
we assume thatffulfils a Lipschitz condition of order 1, we can imme-
diately deduce convergence for almost every reasonable choice of the
quadrature formula Qn [9]. Avery attractive feature ofmodified methods
is that, under this Lipschitz assumption, the convergence is automati-
cally uniform for all E (a, b) [9]. It is known that many other classes of
quadrature methods for the Cauchy integral do not give uniform con-
vergence at all [7]. Moreover, it is known that the Gaussian formulae
for the Cauchy principal value integral, i.e. the formulae having the
highest possible algebraic degree ofexactness among all formulae having
a prescribed number of nodes (a property that is heuristically used to
argue that the error is likely to be very small for smooth functions), are
methods of this special type.
Our main interest are error bounds of the form

[omod f(i)

with best possible constants i,(), the so-called error constants. Obvi-
ously, in order to give bounds on the error, it is useful to have sharp
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bounds for these error constants. In particular, we shall look at the
behaviour of the e;i,n as is fixed and n-- o. For a bounded linear
functional L:Ci[a, b] IR with L[Pi-1] 0 (where Pi-1 denotes the
polynomials of degree less than/), let

supf ]L[f]l
IIf(011 f E Ci[a, b], Ilf(0 I1 0}.

Then, it is well known that ni IILIIi is the best possible constant in the
estimate It[f]l _< ,llf(/)llo. If Rn[Pr-1] 0 (but Rn[p]0 for some

P E Pr), then modrz, .] 0 for all , and IImd[.;]ll is finite for alll"n+ t--r, l"n+l
and i= 1,...,r+ 1. Therefore, in our case we have to consider

/mod[.;I*’n+l i"

Let us now recollect the most important previously known results
about these expressions. Noble and Beighton [19] and Stolle and StrauB
[23] have discussed the case of modified trapezoidal and modified
Simpson methods for the weight function w 1. They have stated some
upper bounds for special cases of i, but (except for one special case) these
bounds did not display the correct order of magnitude of the constants
as n . Later, for the modified trapezoidal and midpoint methods,
Diethelm [5] has shown

-i DmodC n In n < [’" ] < ?-.in- In n for 2,n+l

with some constants c and i independent of. Using different methods,
this has been extended to arbitrary modified compound methods [6]
for all satisfying Rn[T’i-1] 0, but still only for w 1, and with some
significant gaps between the constants c’ in the lower bound and ?i in
the upper bound. Yet another approach [9] gave the upper bound for
all i, but no lower bounds, for more general weight functions and modi-
fied interpolatory methods. Note that the results described up to this
point were all uniform results for all (a, b). A particular consequence
of this uniformity is uniform convergence results of the form

sup I/md f(i)
(a,b)

(4)

with ci independent off, n, and in all the situations mentioned above.
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Now, it is clear that a potential user of a quadrature formula would
like to prefer a method having a small coefficient ci in (4). Therefore, it is
of interest to determine the coefficients corresponding to the various
methods as precisely as possible in order to allow a comparison. The first
step in this direction was done by K6hler [16] who, using amethod similar
to that of [9], determined the precise asymptotic constants for modified
compound methods under the assumption w_= 1. Some results of this
type concerning quadrature methods not based on the subtraction of
the singularity have also been established recently [8,17]. In the present
paper, we want to continue the work in this direction and generalize
the results to more general weight functions and, in particular, to include
the class of modified interpolatory quadrature formulae. Since, as we
mentioned above, for all these methods the uniform and optimal order
convergence ofthe error terms has already been established, wemay look

omod [.; ] as is fixedat the pointwise behaviour ofthe error constants "n+l
and n oc. It turns out that we can determine this behaviour precisely.
The main result in this context is (cf. Theorem 2.1) that asymptotically
all the modified interpolatory formulae based on the classical choices of
nodes behave in the same way, i.e. the coefficients ci are identical. This
gives the user the freedom to choose any one ofthese formulae, the choice
possibly being based on the simplicity of the nodes or the availability of
function values off, without having to worry about the quality of the
approximation.

In Section 2, we shall state our main results, i.e. the theorems
describing the asymptotic behaviour of the constants IImd[’" ]11 for"n+
various types ofquadrature formulae. The proofs are based on a general
theorem stated in Section 3. In Section 4, we shall prove the theorems of
Section 2, and Section 5 finally contains the proof of the general result
described in Section 3.

2 ASYMPTOTIC BEHAVIOUR OF THE ERROR CONSTANTS

2.1 InterpolatoryQuadrature Formulae

Let nodes a < xl <... < xn < b be given, and let F[f] E ’’?n-1 be the
polynomial of degree n- interpolating a given function f defined
on [a, b] at x,... ,xn. Then an interpolatory quadrature formula for
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bIw[f f’a f(x)w(x) dx is defined by

Qn[f] Iw[F[f]].

Various choices of interpolatory quadrature formulae have been sug-
gested as basic methods for the construction ofmodified formulae, such
as Clenshaw-Curtis formulae (Chawla and Jayarajan [1]), Gaussian
formulae (Criscuolo and Mastroianni [2], Elliott and Paget [11],
Gautschi [13], Hunter [14]), Gauss-Kronrod formulae (Rabinowitz
[21]), or, more generally, positive interpolatory quadrature formulae
(Diethelm [9]).

In this subsection, let [a, b] [-1, 1], let

w (x) x2)

denote the ultraspherical weight functions and pn the corresponding
orthogonal polynomials. Let the weight function w and the nodes
xl, xn be chosen according to one of the following four cases.

(1) Let w= wa for some k >_ 0, and let the nodes xi be the zeros of p2;
i.e., Qn is the Gauss formula for the weight function wa (this
includes the Gauss-Legendre formulae for k 1/2).

(2) Let w 1, and let xl,..., x, be the zeros ofp2 for some k E (- 1/2, 2).
(3) Letw= 1,1etxl 1,x= 1,andletx2,... ,x,_l bethezeros OfPn_).

for some k E [1/2, 4] (this includes the Clenshaw-Curtis formulae
fork-l).

(4) Let w= 1, let n be odd, and let xz, Xa,...,x,,_l be the zeros of
the Legendre polynomial of degree (n- 1)/2, and Xl,X3,... ,x,, the
zeros of the Stieltjes polynomial of degree (n + 1)/2, so that the
corresponding interpolatory quadrature formulae are the Gauss-
Kronrod formulae.

It is known that in all four cases, the weights al,..., a are positive.
Under these assumptions, we can determine the asymptotic behaviour

of the error constants precisely. In the following result, Bi denotes the
ith Bernoulli polynomial with main coefficient 1/i!, defined on [0, 1].
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THEOREM 2.1 Let the Q,,, n--1,2,.., be interpolatory quadrature
formulae according to one of thefour cases described above. Then,

n
,-+lim 1--n "’n+l [’; ]II/omd 2r’llnell Iw() (1 2),/2

for all > and every E (- 1, 1).

The expression for the limit in Theorem 2.1 depends on i, w and , but
not on the special quadrature formula Qn (i.e., not on the nodes xi), so
that, for functions of low smoothness (which means for non-analytical
functions), it is likely that the performance of all quadrature formulae
admitted in this subsection is very similar; other criteria like simplicity of
the nodes xi may therefore be preferred.

Remark 2.1 In [9, Theorem 2.3], the uniform upper bounds

I’"n+l oo
oc

--i In n + Cin-i, (5)

with an explicitly stated constant Ci, have been derived. A comparison
with our Theorem 2.1 reveals that the bound of (5) overestimates the
correct value significantly, especially if is large and/or is close to one
of the end points of the interval of integration.

2.2 Compound Quadrature Formulae

el be given, let F[f] "Pr-1 be the poly-Let nodes 0 _< X] ’( < X

nomial of degree r- interpolating a given functionfdefined on [0, 1]
at xl,...,Xr,el and let E[f] =f- F[f] denote the interpolation error.

Using F, a piecewise polynomial interpolant F(m) is defined in the
following way. Let, forfdefined on [a, b],

FJ[f] Fifo bj] o b}-1, with g;j(t) zj-1 + thj,

and

F(m)[fl(x) FJ[f](x) for x (Zj_l,gj), j= 1,...,m.
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Then a quadrature formula of compound type for Iw[f]=
fba f(X)w(x dx is defined by

Q(m) f Iw[F(m) f]].

This approach has been investigated, e.g., in Diethelm [5,6], K6hler [16],
Noble and Beighton [19] and Stolle and Straul3 [23].

In the notation of the previous sections, Q(m) Qn, where n km/ c

for some k E {r 1, r} and c E {0, } but for convenience, we will use the
notation Q(m) here.

Let the elementary quadrature formula Qel be defined by Qel= Q(1)
for w-- and [a, b] [0, 1], and let

be the Peano kernels of Qel, i.e.,

Rel[f] Jo" f(x) dx Qe[f] fO f(i)(t)gl(t) dt.

Then, the following result describes the behaviour of the error con-
stants for the modified quadrature formulae based on these compound
methods.

THEOREM 2.2 Assume that there exists a strictly increasing function
Z CI[o, such that z(O) a, z(1) b, and

mhj z’(z-l(zt)) + o(1)

uniformlyfor l {j 1,j} and zj-1, zj [t, b] c (a, b) for all closed sub-
intervals [t, ] c (a, b) where hi= zj zj_l. Moreover, let

max (h-I fz
zj ) (ml---7)l<j<m
-1

Iw(x)ldx O (6)

Then the errorfunctional omod Dmod
"(m) [", ] Iw, :(m) [.;{] satisfies

m
lim mda(m) [’" ]]li 2llBi billllW()l(zt(z-l()))
m--.cx In m

for i= 1,..., r and (a, b), where bi fl0 ]3i(x) dx, Ji g1.
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Example 2.1 Let

f a + (2x)’r(b a)/2
b (2(1 x))7(b a)/2

z= z(J_--__) for j= 0,...,m,
\mj

for x 6 [0, 1/2]
for x E [1/2, 1],

and let

w(x) (x- a)’ (b x)b(x),
where b is of Dini-type and c,/3 > 1. Then (6) holds if

(1 1)> max
c+l’ 3+1

For 7 and w the Q(m) are the classical compound quadrature
formulae with constant weight function and equidistant partition points
(this case was treated in [16]). However, our new results now allow us to
apply compound-type methods also for other weight functions. More-
over, by a suitable choice of the function z (that determines the mesh
spacing), we can adapt the location of the nodes. Doing so, we may
reduce adverse effects due to an irregular behaviour of the weight
function.

Example 2.2 Let [a, b] [- 1, 1],

z(x) cos( x),

and let zj and w as in Example 2.1. Then (6) holds if

Remark 2.2 Instead of defining F by polynomial interpolation, one
can also use other linear approximation methods, cf. [15].

Remark 2.3 If only w is considered, then it is not necessary that Qel
is defined by interpolation as above. Instead, one can choose for Qel any
quadrature formula defined on [0, 1] which is exact for polynomials of
degree r > 0.
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Remark 2.4 For r / 1, gr + 1,(m) does not exist, so that the estimates
Kmoddeveloped here cannot be applied, though r+l,(m) exists. As earlier

results for w and equidistant zi show [6,16], it can be expected that

mod[.;]ll o(m-r)I"’(m) r+l

3 A GENERAL RESULT ON THE ERROR CONSTANTS

For the error functional ofthe classical quadrature formulae Rn, we have
Peano kernel representations

b

Rn[g] g(i) (x)Ki,n(X) dx for 1,..., r,

where the Peano kernels Ki,n are defined by

Kin(X)=, (-1)iRn[(x-(i-- 1)!.)i--1]+ for 1,...,r.

The behaviour of these Peano kernels is the crucial point in our
considerations. Indeed, one can say that we require a certain regular
behaviour of these Peano kernels. As we shall see in the proofs, most of
the important types of classical quadrature formulae do have this
regularity. In particular, this holds for compound methods and many
positive interpolatory methods (Gauss, Gauss-Kronrod, Clenshaw-
Curtis, etc.).
To be precise, we assume that there exist points

a zo < zl < < Zm b,

where n and m are related by

n km + c (7)

for some fixed values k and c, and that there exists a strictly increasing
function z E CI[0, such that z(0) a, z(1) b, and

mhj z’(z- (zt)) + o(1)
uniformly for E {j- 1,j} and zj_l, zj [, b] c (a, b) (8)
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for all closed subintervals [a, b] C (a,b), where hi= zj-Zj_l, and that
there exist constants "yi such that

for all n. (9)

We further need that Kin behaves asymptotically like a function K.
l,n

of the form

K (x) wjhli (,x- zj-1,)l,n hj
for x [Z-l, z], (1 O)

where Bi is a function defined on [0, 1] which depends on Ki,n, and where

wj w(rlj) for some

More precisely, this means that we assume the existence of constants

7i,n 7i,,(a,/) (depending on n and the interval [a,/]) with 7i,n--O(1)
for fixed and n oc, such that

IIg K’ llL[a,6] <t,n -- 0 (-) (11)

for all [a,b] C (a,b).
Having collected these hypotheses, we now state the fundamental

theorem that we shall later use for the proofs ofTheorems 2.1 and 2.2.

THEOREM 3.1 Under the assumptions made above, there holds

m
lim Ilomd[.; lll 211e billl Iw()l(z’(z- ()))e,
n---cxz "’n+l

where bi fd Bi(x) dx.

Note that in statements where mainly the order is concerned, e.g.,
IIg , ll it is ofno importance ifn or m is used (because of (7));
one could also write IIg,l[-O(m-i) However, in statements where
the precise value of the constants is of interest, as in Theorem 3.1, one
has to be more careful.
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4 THE PROOFS OF THEOREMS 2.1 AND 2.2

To apply Theorem 3.1 to the case that Qn is an interpolatory quadra-
ture formula, it is necessary to show that the assumptions made in the
previous section hold; especially, that there exists a function Kg of the
form given in (10), such that (11) holds. For certain classes of inter-
polatory quadrature formulae, Petras [20] has shown that this is the case,
with Bi being the Bernoulli polynomials. More precisely, let

i (-- 1)iB

for the part dealing with the interpolatory formulae, where B is the
Bernoulli polynomial of degree i, with main coefficient l/i!. The
Bernoulli polynomials have the property that fd Bi(x) dx 0 for i>_ 1,
so that bi=0. Petras has considered rather general classes of weight
functions and nodes, but for simplicity, we will restrict to the standard
cases mentioned in the statement of Theorem 2.1 here.

Proof of Theorem 2.1 For open quadrature formulae (i.e., for a < X1
and xn < b), we define m n + 1, z0--- 1, zj--xj for j- 1,..., m- 1,
and Zm 1, and for closed formulae (i.e., for a x and x b) we set
m n- and zj =xj+ forj O,..., m. Further, let

z(x) cos 7rx and w= w(Z_ + z,)2

We consider the cases 1-3, using results of Petras [20]; the proof of
case 4 is essentially the same, using results of Ehrich [10]. Equation (8)
follows from the remark on page 218 of Freud [12] concerning the
distance Oi+ Oi, where Xi’ COS 0i. Further, there holds Ilg/,oll
O(n-i) (cf. [20, Eq. (1.2)]), so that (9) is satisfied. The relation
Ilgi,n g’,n [[L[f] O(n-i) for every [,/] C (-1, 1) follows from the
results of Petras [20], so that also (11) holds. Therefore, we can apply
Theorem 3.1, which, since za(z-l(()) 7r(1 2)1/2, completes the proof.

The proof of the corresponding theorem in the case of compound
quadrature formulae relies on the construction principle of these for-
mulae. In particular, our regularity assumptions on the Peano kernels
are almost immediate consequences of this construction principle.
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Proof of Theorem 2.2
representations

The interpolation error E has Peano kernel

E[f](x) foo f(i) t)Hi(x, t) dt

for 1,..., r. We obtain

where

gi,(m)(U h-1 zzi_, w(x)ni(ofl(X)’ ofl(u)) dx for u e (Zj-l,Zj).

Let wj fzi_, w(x) dx/hj, and let

Kig,(m) (u) wjh-1 Hi(Of (x), ofl (u)) dx
-1

Then

Ki,(m)(U KiB,(m)(U) h}-1 (w(x) wj)Hi( (x),1 (u)) dx,
-1
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and

[gi,(m (U) giB,(m)(U)[ h lln ll 
for u E [zj-1, zj],

Iw() w(

2 <j< m 1. Since w C(a, b), this yields

"gi,(m)- g/,(m)11L [,/]

for [6, b]c (a, b). Further,

"Ki,(m)l’<-"Hi’lmax(hj-ltZ ) (l 1l<j<m
Iw()ldx O

-1

by assumption.

5 THE PROOF OF THEOREM 3.1

By [16], we have the following Peano kernel representations for the
error functionals of the modified quadrature formula and the underly-
ing classical formula, respectively"

b
omod f(i) mod
"’n+ [J ] (x; 5i 3()f’()(x)Xi,.+l ) dx

for i= 1,...,r+ 1,

R,[ g] g(O (x)Ki,(x) dx for 1,..., r,

R.[g] g(O(x) dKi+,n(X) for i= 0,...,r- 1,

where

f 0 if (Xl,..., Xn),() a if xg.
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Therefore, by H61der’s inequality, we have that

/mod IIKmd (’;)11 (a,b) +I1--+ [’;]11; ,,-;,+

Thus, in order to determine the behaviour of II/mod [.. ] I1, it will be useful"’n+l
to investigate the Peano kernels occurring here. These Peano kernels
are defined by

k’md (X;) (-1)"i,n+l *’n+l - 1)!
for i= 1,...,r + 1, (12)

and

gi,n(X) (_l)iRn [(i__ .)i-1]1)!+ for/-- 1,...,r.

A key element in the proofis the following relation between the Peano
kernel of the modified formula on the one hand and the Peano kernel of
the classical formula on the other hand [9,16].

LEMMA 5.1 Let the intervals Je,x be defined by

[a, x] for x < ,J,x [x, b] for x > .
Then,for x E [a, b]\{(}, there holds

mod (X; ) I- xli-1 . Ki-l,n(t) dt for i= 2, r + 1,,n+l
,x I-- t[

gimod (x; ) --1- x[i-1Jfe dKin(t) for i-- 1 r.,n+l
,x 1- t[

(13)

(14)

This relation essentially allows us to express the relevant quantities
in terms of Peano kernels of the classical formulas and use some facts
about these kernels that have been established already.

Further, the following splitting of-mod is used, which is obtained by"’i,n+
partial integration of (14).
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LEMMA 5.2

where

Let 1 < < r andx e [a, b]\{}. Then

mod (X; ) ] (X; ) -+-//2 (X; ),n+l

(x; ) K,,.(x)

/C/2(x;) isign(- x)l xli- Ki,n(t)
,x I-- tl i+l

dt.

Now, we are in a position to give the proof ofour fundamental result.

Proof of Theorem 3.1 Let E (a,b) be fixed. In the following, we
consider only the interval [a, (], since the interval [(, b] can be treated in
a completely analogous way.
Choose (not depending on n) and jl, j2 (depending on n) such that

for n sufficiently large, the following holds:

a<zj, <Zj2 < Zj2+I .
For the proof, the interval [a, ] is splitted into the three parts [a, zj,],
[zj,,z] and [zj, ], and the Peano kernels are treated on each part
separately:

k’md A + B + C,"i,n+l (’; ) IlL, [a,]

where

It is assumed that zj, and zj2 have been chosen such that

O(lnn)
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and

Lemma 5.2 yields, for a < x < , that

Imod (X;)l < (."i,n+l Ilgi,nll
x

2

(_ t)i+
dt

+ (- x/- ----(sO-a)

Recalling assumption (9) and the fact that 1/(- zj,)= O(lnn), this
implies

A k’md (x; )1 dx O
In In n

i.,./,n+l ni (16)
,./a

Note that this estimate holds uniformly for all ( E (a, b) because is not
involved in the calculations.

Next, we consider the interval [zj2, (]. Using the representation (14), we
derive C < C1 + C2, where

fzj X)i-1c (
Za

dKi n(t)
(- t)

ZJ:

dKin(t)
(- t)

gi,n(Zj2) fzj2 gi,n(l)
( Zj2)i- aa ( t)i+

_< IIg,,.ll O

dx

dt
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and

x)i_l fzi: dKin(t) dxC2 (-
(_ t)

< ( X)i-1 dVin(t) dx,
(_ t)

where Vi,,(t) Var(Ki,n, [a, t]) is the total variation of Ki,,, on the interval
[a, t]. Changing the order of integration yields

C2 ( (- x)i-1 dxdgin(t)
(- t)

dVin(t)

=-Var(Ki,n, [zj2, (]) for < i< r

--2J2llgi-l’nllt =0() for2<i<r._

For i= 1, we use the fact that Kl,,(x) g(x) t(x), where

g(x)= w(t) dt and (x)= a.(x.-x)+.
#=1

Then,

Var(g, [zj,]) Iw(t)ldt <_ Ilwll,t,l(-zj=)- o(1/n),

and

Var(, [zj, ]) < lau[ O(1/n)
zz <x.<

(since, as a consequence of [IKl,.ll O(1/n), there holds max1 _<, _< la.I
0(1/n)), and thus we have C2 O(1/ni) for i= 1, too.

Therefore,

C O(n-i) (17)

for < < r, and again this bound holds uniformly for all ( E (a, b).
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Combining (15), (16), and (17), we have

II’i,n+l(’,’md")lll[,l B + O(n-i ln lnn)

uniformly for ( E (a, b). It now remains to estimate B. Therefore, we now
consider the interval [zj, zj2 ].

Let [i,n be defined by

{ Ki,n(X)
Ki,n(X)-- giB,n(X)

for x E [a, z],
for x (zj,, ],

.mod byand "i,n+

-mod (X; ) gi’n(X)
"i,n+l X--

q- sign( x)l xl i-1JJ,x I tl-i-li,n(t) dt.

For zj, < x < (, we obtain

k’md (X; ) ,-mod (X; )l"i,n+l ’i,n+l

<

/

< ")/i,__..n_n [
nt k--x (_ t)i+

dt

dt

since Ki,n(t) i,n(t) 0 for [a, zj,]. This implies

fz& 1"mod (X; ) f-mod (X; )ldx 0 (’)’i,n 1.n n) (lnnI-’i,n+ *i,n+ 0

zj, \ n’ \’---,I

Let

Ki,n(X)
w h 6i

for x [a, z,],
for x (Zj_l, zj], j jl + 1,... ,j.
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.mod into four parts similar to Lemma 5.2, so thatWe split up
mod (X; ) ] (x; ) +//2 (x; ) +/(x; ) +//4(x; ) for x E [a, ),,n+l

where

These four parts are now treated separately. Let B, fzj2 I/ (x; )l dx.
Zjl

Then

wjh (]i (X zj-1) /hj) bi)
dx

dx

j2 iwjl(mhj)i
m---7 IIBi- b/Ill Z hj

_
zjj=jl +1

and analogously, using 1/( x) > 1/( zj_ 1), one obtains

el > 1 ][i_ bill1 hj
Iwjl(mhj)i

mi
j=jl+l - Zj-1

which yields

B1 --ll]3i- billlIW()l(zt(z-l()))ilnm (lnm+ o

since limn__. zj, limn-o zj2 .
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Let zj_l < x < zj < ,jl + 1 <j <j2. Then

1/2(x; )l i(- x)i-1
x i’n Ri n

(_ t)i+
dt

i({- x) i-1 J-- wt,hi fzV (]i (t- Z-l)
,=jl +1 -1

--wjh fzjil (i(’t--J-l)hi -bi)
where b(t)= 1/(- t)i+ 1. Since f (Bi(t) bi) dt 0, we obtain

Together with

)
-l

]i
hj

b, ,(t) at <_ h(x)llte- bi[l,

this yields

so that

maxB2 2ill& b/lllllwll.t,l,/,_<_<=
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Obviously, B3 _< B3,1 -k- B3,2, where

B3,1 i(- X)i-1

Zjl

"zjl i,n(t) Iin(X
(_ t)i_ dt dx

(llg/, IIo + +max_<_<i(lwlhi)lbil)
z

i((- x)i-1 fzj,
a (- t) i+1

dt dx

max hiu[bi[) 1- 0()
and

since

’%
x)i_B3,2 i(

Zjl

&n(t)
(_ t)i+

dt

_< sup
x,tE[zj ,zj

sup
x,tE [zj ,zj

dx

I//n(t) /.(X)I In z.,
-zj

IIin(t) [(i,(x)[O(lnn) o(lnn)

[i,n(t) i,n(X)[ [bi___[ max
H #, j+ j2

Iw(nht)i- wu(nhu)il

and w -- w(), nh, z’(z-l()) uniformly for all # E {jl + 1,... ,j2}.
Further,

Izj2 (- x)i-84 < [li,nl[ dx

o i( a)
o
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Collecting the estimates obtained above, yields

Therefore,

c"mod
I’’i,n+l "’ )II, la,el- IIti- billlw()l(z (z-l())) ilnm--:- + o \--:-//.lnm

An analogous reasoning can be applied to the interval [(, b], completing
the proof of Theorem 3.1.
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