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Let f be a domain in the complex plane C with the Poincar6 metric P(z)ldz[ which is
Idzl/(1- Izl) if f is the open unit disk. Suppose that the Riemann sphere CU {o} of
radius 1/2, so that it has the area 7r and let 0 < fl < 7r. Let a,(z), z E r, be the supre-
mum of the spherical derivative If’(z)l/(1 / If(z)l2) off meromorphic in f such that
the spherical area ofthe imagef(f) c C U {o} is not greater than . Then

ZEfl.

The equality holds if and only if f is simply connected.
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1. INTRODUCTION

The complex plane C R2, together with the point o at infinity, is
identified with the Riemann sphere C* of radius 1/2 touching C from
above at the origin with the aid of the stereographic projection viewed
from the north pole of C*. The sphere C* =CU {o} is the metric
subspace of the Euclidean space R3, so that it has the distance X(z, w)
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which can be expressed by

X(z, w) ....... z, w C;

z c; x(,) 0.

The spherical area of a set EC C* is given by the double integral

A(E) Jf dx dy

\{} (1 + Izl2)2’
z x + iy;

here E is identified with its projection. For example, the spherical cap
E(a,r) {z E C*; X(z,a) < r} ofcenter a E C* and radius, r, 0 < r < 1, has
the area 7rr2, so that A(C)--A(E(O, 1))=Tr. Actually, A(E(a,r))=

Let A/[ (gt) be the family of all the meromorphic functions in a domain
f C C; the constant function o is regarded as a member of A/[ (gt). The
spherical derivative off A4 (f) at z 9t is defined by

X(f(w),f(z))f#(z) lim
Iw-l-0 Iw-zl

hence f#(z) If’(z)[/(1 + l/(z)l =) if f(z) :/: o and f#(z)= if
f(z) . Note that (o)#(z) 0. The set ofw C* assumed byf
at least once in f is denoted byf(f); hencef(f) c C* and w Ef(gt) ifand
only if w =f(z) for a z 9t. For a constant/3, 0 </3 < 7r, we let .T’(gt,/3)
be the set of all f/(gt) such that A(f(f’t))</3. Note that
A(f(f’t)) <_ fff f#(z) dx dy; the right-hand side integral may possibly
be +.
We suppose that 9t is hyperbolic, namely, C\gt contains at least two

points. Let 4 be a universal covering projection from D {w; [w[ < }
onto f, b Proj(f) in notation; b is holomorphic and b’ is zero-free. The
Poincar6 density P is then the function in ft defined by

P(z)=(l_l I)lq,)l’w’2"’-"w"’’
z



SPHERICAL DERIVATIVE OF MEROMORPHIC FUNCTION 193

where z b(w); the choice of E Proj(f) and w is immaterial as far as
z b(w) is satisfied.
We begin with

THEOREM For eachf .T’(f, /) for hyperbolic f, the estimate holds:

f#(z) <_ Tr-/3 /3p(z (1.1)

at each z f. If the equality holds in (1.1) at a point z f, thenfmaps f
univalently onto a spherical cap. Conversely if f is mapped by a

meromorphicfunctionf .(f,/) univalently onto a spherical cap, then
there exists exactly one point z fl where the equality holds in (1.1).

THEOREM 2 Thefamily U(f, fl)for hyperbolic f is compact. Namely,
givenfn E .T(f,/),n 1,2,..., wehaveasubsequence {fnj} of{fn} andan
f .T’(f,/) such that

maxX( f:(z),...,. f(z)) 0 as n --+ c
zE

(1.2)

for each compact set E (in C) comprised in f.

Set

ca,(z) sup{f#(z);f ’(f, /3) }, z C f.

It then follows from Theorem 2 that the supremum is the maximum;
f#(z) c,(z) for anfE .T’(f,/). For this extremal function we set

f(w) -f(z)

g(w) eiargf’(z)(1 +f(z)f(w))’

eiarg(1/f)’(z)f(w)

iff(z) # oo;

iff(z) c.

Then g C br(f,/3) with g(z)=0 and O<g’(z)=cn,5(z). Again, g is
extremal.

THEOREM 3 Iff is hyperbolic, then

<_ (1.3)
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at each z E f. Ifthe equality holds in (1.3) at apoint z f, then f is simply
connected. If f is simply connected, then the equality holds in (1.3)
everywhere in f.

We omit the detailed proof of Theorem 3 because we have only to
apply Theorem 2 to an extremal function.

2. PROOF OF THEOREM 1

LEMMA Forf .(D,/3) the inequality holds:

f#(O)2<

The equality holds in (2.1) ifand only if

f(z) =_
az+b

baz
zD,

(2.1)

(2.2)

where a C and b C* are constants with

Readf(z) 1/(az) in case b

This lemma is Dufresnoy’s, the case r0 in [2, Lemma I, (2)]. The
equality condition in the present "if and only if" form is obtained in the
similar manner as in [1, pp. 219-220]. Note that Dufresnoy adopted
the unit sphere ofcenter at the origin in 13 as the Riemann sphere, so that
we need obvious changes.

Proof of Theorem We choose E Proj(f) with z (0) and we
observe thatfo q .T’(D,/3). Since

(fo q)#(O) =f#(z)l’(0)l =f#(z)/Pn(z),
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the inequality (1.1) is a consequence of(2.1). The equality holds in (1.1) at
z if and only if

aw+b
(fo dp)(w) ba-- w’ w E D,

where lal x/C//(Tr /). Hencefis univalent in 9t, so that is univalent
in O. The image f(f) is {(aw + b)/(1- baw); w D} which is the
image of the cap E(0, lal/v/(1 / la12)) by the rotation of C*" T(()
(( + b)/(1 b(), so thatf(ft) is a spherical cap.
Suppose that f E ’(f,/3) maps Ft univalently onto a spherical cap

E(a, X/-/Tr), a C* and set p V//3/(Tr-/3). Then

(w) f_, (.pw
is in Proj(ft). Since

f#(O(w)) p(1 -[wl2)
Pa((w)) + p2[w12

it follows that f#(O(w))= pPa((w)) if and only if w =0. Hence the
equality holds in (1.1) at exactly one point (0), the inverse of a byf.

If z - w, then

X(z, w) <_ arctan
+w fv dX(),

where dX(()= [d(l/(1 + I12) and F is the projection of the shorter of
the great circle passing through, and bisected by z, w; in case z# we
have many I’. Here 0 < arctan p < 7r/2 for 0 < p <

Suppose that/3 A(f) < 7r for a domain ft c C. We then have

dX(z) _< /.Tr -/3/3pa(z)ldzl, zErO.

More precisely,

<i.TrA((f,t).pa(z)-t-Izl2
z e a. (2.3)
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The equality holds in (2.3) at a point z E 9t ifand only iff is a spherical cap

-a(’ ( D

where a E C and ]al v/A(f)/(r A(f)). For the proofwe have only
to follow that of Theorem withf(O (,f E .’(f,/3).

3. PROOF OF THEOREM 2

We begin with the case f D. Sincef# off E .T’(D,/3) is bounded by

7r--/3 1--r2

on {[z[ < r}, 0 < r < 1, it follows that ’(D,/3) is equicontinuous in X on

{]z[ < r}. Hence Or(D,/3) is normal in that sense that given {f} c
-(D,/3), we have a subsequence {fnj} C {fn} andfE AA(D) such that
(1.2) holds for each compact set E comprised in D. To prove that

f E U(D,/3) we may suppose thatfis nonconstant.
For simplicity we suppose that

forfn E (D,/3), n 1,2,... We shall then prove that for each b E D we
have r r(b) > 0 and a natural number N N(b) such thatf(A) cfn(ft)
for all n > N, where

/x {z; Iz- bl < r} c D. (3.1)

Then for each compact set KC D we have n such thatf(K)cfn(ft), so
that A(f(K)) < 3, whencef
We first suppose thatf(b)- o. Then we have rl > 0 and a constant

M1 >0 such that f is pole-free and bounded, Ifl < M, on /X
{z;Iz-b[ _< r} c D. We then find a constant ME > M1 and a natural
number N1 such thatf is pole-free and bounded, ILl< M=, on/x for
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n > N1. Hence

max If(z) -f(z)[ 0
zA

as n . (3.2)

Consequently, for A of (3.1) with 0 < r < rl, we have

sup I(z)-f’(z)l 0 as n o. (3.3)
zEA

To prove that the present A is the requested we suppose that there
exists q E Asuch thatp =f(q) fnj(f) forinfinitelymany nj, nl < n2 <...
Choose R > 0 such that

{z; Iz-ql <- R} C A and pf({z; 0 < Iz- ql < R}),

and set

c {z; Iz- q[- R}.

The argument principle then shows that

[ f’(()
dr.

The right-hand side integral is, with the aid of (3.2) and (3.3), the limit

lim if d=O.nj-o- fn(f)-fn(q)

This is a contradiction.
In the casef(b) c we consider {1/fn} C ’(f,/3) with 1/fE

and arrive at a contradiction again.
For general we fix b Proj(). Then, for each compact set Ein we

may find a compact set E1 C D such that b(E1)= E. Furthermore, q is
automorphic with respect to the universal covering transformation
group q5 b o T, T . Since fn o q (D, fl), we have a subse-
quence {fn } of {f} and g ’(D,/3) such thatf, o b converges to g on
each compact set in D. Since g is then automorphic with respect to , we

havef E A//(f) such thatfo 4=g and thisfis the requested.
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4. CONFORMAL INVARIANT C,,()

Let E be another domain in C and let f be holomorphic in f with
f(f) c E. Then

c,(f(z))lf’(z)l < cn,(z), z t.

In particular, iffis univalent andf(f)= E, then

c,(f(z))lf’(z)l- ca,(z), z t,

so that c,(z)ldz[ is conformally invariant.
Let Bz(f) be the family of allfholomorphic, bounded, If[ < 1, in f,

and further,f(z) O, z E f. Then

"7(z) sup{lf’(z)l; fE/3z(f)}

is called the analytic capacity of f at z. Then 3’(z) is the maximum
7,(z) [f’(z)l =f’(z) for a uniquefE Bz(f) called the Ahlfors function
of f at z. See [3, p. 110]. Since Bz(f) c )r(f, 7r/2), it follows that

"[f’t(Z) Cf’t,Tr/2(Z), Z ".

On the other hand, it follows from (1.3) that

n(z) <_ e.(z), z

Iff E )r(f, fl), then C*\f(F) is of positive spherical area, so that this
set is of positive capacity. Hencefis of uniformly bounded characteri-
stic in f; see [5, Theorem 1] and also [4,6]. Suppose that each function
of uniformly bounded characteristic in f is constant. Thenf ’(f,/3)
is a constant.
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