J. of Inequal. & Appl., 2000, Vol. 5, pp. 191-199 Reprints available directly from the publisher Photocopying permitted by license only

Spherical Derivative of Meromorphic Function with Image of Finite Spherical Area

SHINJI YAMASHITA*

Department of Mathematics, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

(Received 21 April 1999; Revised 18 May 1999)

Let Ω be a domain in the complex plane **C** with the Poincaré metric $P_{\Omega}(z)|dz|$ which is $|dz|/(1-|z|^2)$ if Ω is the open unit disk. Suppose that the Riemann sphere $\mathbf{C} \cup \{\infty\}$ of radius 1/2, so that it has the area π and let $0 < \beta < \pi$. Let $\alpha_{\Omega,\beta}(z), z \in \Omega$, be the supremum of the spherical derivative $|f'(z)|/(1+|f(z)|^2)$ of f meromorphic in Ω such that the spherical area of the image $f(\Omega) \subset \mathbf{C} \cup \{\infty\}$ is not greater than β . Then

$$lpha_{\Omega,eta}(z) \leq \sqrt{rac{eta}{\pi-eta}} P_\Omega(z), \quad z\in\Omega.$$

The equality holds if and only if Ω is simply connected.

Keywords: Chordal distance; Spherical derivative; Spherical area; Poincaré metric

1991 Mathematics Subject Classification: Primary 30D32; Secondary 30F99

1. INTRODUCTION

The complex plane $\mathbf{C} = \mathbf{R}^2$, together with the point ∞ at infinity, is identified with the Riemann sphere \mathbf{C}^* of radius 1/2 touching \mathbf{C} from above at the origin with the aid of the stereographic projection viewed from the north pole of \mathbf{C}^* . The sphere $\mathbf{C}^* = \mathbf{C} \cup \{\infty\}$ is the metric subspace of the Euclidean space \mathbf{R}^3 , so that it has the distance X(z, w)

^{*} E-mail: yamashin@comp.metro-u.ac.jp.

which can be expressed by

$$X(z,w) = rac{|z-w|}{\sqrt{1+|z|^2}\sqrt{1+|w|^2}}, \quad z,w \in \mathbf{C};$$

 $X(z,\infty) = X(\infty,z) = rac{1}{\sqrt{1+|z|^2}}, \quad z \in \mathbf{C}; \qquad X(\infty,\infty) = 0$

The spherical area of a set $E \subset \mathbf{C}^*$ is given by the double integral

$$A(E) = \iint_{E \setminus \{\infty\}} \frac{\mathrm{d}x \, \mathrm{d}y}{(1+|z|^2)^2}, \quad z = x + \mathrm{i}y;$$

here *E* is identified with its projection. For example, the spherical cap $E(a, r) = \{z \in \mathbb{C}^*; X(z, a) < r\}$ of center $a \in \mathbb{C}^*$ and radius, $r, 0 < r \le 1$, has the area πr^2 , so that $A(\mathbb{C}) = A(E(0, 1)) = \pi$. Actually, A(E(a, r)) = A(E(0, r)).

Let $\mathcal{M}(\Omega)$ be the family of all the meromorphic functions in a domain $\Omega \subset \mathbf{C}$; the constant function ∞ is regarded as a member of $\mathcal{M}(\Omega)$. The spherical derivative of $f \in \mathcal{M}(\Omega)$ at $z \in \Omega$ is defined by

$$f^{\#}(z) = \lim_{|w-z| \to 0} \frac{X(f(w), f(z))}{|w-z|};$$

hence $f^{\#}(z) = |f'(z)|/(1 + |f(z)|^2)$ if $f(z) \neq \infty$ and $f^{\#}(z) = |(1/f)'(z)|$ if $f(z) = \infty$. Note that $(\infty)^{\#}(z) \equiv 0$. The set of $w \in \mathbb{C}^*$ assumed by $f \in \mathcal{M}(\Omega)$ at least once in Ω is denoted by $f(\Omega)$; hence $f(\Omega) \subset \mathbb{C}^*$ and $w \in f(\Omega)$ if and only if w = f(z) for a $z \in \Omega$. For a constant β , $0 < \beta < \pi$, we let $\mathcal{F}(\Omega, \beta)$ be the set of all $f \in \mathcal{M}(\Omega)$ such that $A(f(\Omega)) \leq \beta$. Note that $A(f(\Omega)) \leq \int_{\Omega} f^{\#}(z)^2 dx dy$; the right-hand side integral may possibly be $+\infty$.

We suppose that Ω is hyperbolic, namely, $\mathbb{C}\setminus\Omega$ contains at least two points. Let ϕ be a universal covering projection from $D = \{w; |w| < 1\}$ onto $\Omega, \phi \in \operatorname{Proj}(\Omega)$ in notation; ϕ is holomorphic and ϕ' is zero-free. The Poincaré density P_{Ω} is then the function in Ω defined by

$$P_\Omega(z)=rac{1}{\left(1-\left|w
ight|^2
ight)|\phi'(w)|},\quad z\in\Omega,$$

where $z = \phi(w)$; the choice of $\phi \in \operatorname{Proj}(\Omega)$ and w is immaterial as far as $z = \phi(w)$ is satisfied.

We begin with

THEOREM 1 For each $f \in \mathcal{F}(\Omega, \beta)$ for hyperbolic Ω , the estimate holds:

$$f^{\#}(z) \le \sqrt{\frac{\beta}{\pi - \beta}} P_{\Omega}(z) \tag{1.1}$$

at each $z \in \Omega$. If the equality holds in (1.1) at a point $z \in \Omega$, then f maps Ω univalently onto a spherical cap. Conversely if Ω is mapped by a meromorphic function $f \in \mathcal{F}(\Omega, \beta)$ univalently onto a spherical cap, then there exists exactly one point $z \in \Omega$ where the equality holds in (1.1).

THEOREM 2 The family $\mathcal{F}(\Omega, \beta)$ for hyperbolic Ω is compact. Namely, given $f_n \in \mathcal{F}(\Omega, \beta)$, n = 1, 2, ..., we have a subsequence $\{f_{n_j}\}$ of $\{f_n\}$ and an $f \in \mathcal{F}(\Omega, \beta)$ such that

$$\max_{z \in E} X(f_{n_j}(z), f(z)) \to 0 \quad \text{as } n_j \to \infty$$
(1.2)

for each compact set E (in **C**) comprised in Ω .

Set

$$c_{\Omega,\beta}(z) = \sup\{f^{\#}(z); f \in \mathcal{F}(\Omega,\beta)\}, \quad z \in \Omega.$$

It then follows from Theorem 2 that the supremum is the maximum; $f^{\#}(z) = c_{\Omega,\beta}(z)$ for an $f \in \mathcal{F}(\Omega, \beta)$. For this extremal function we set

$$g(w) = \begin{cases} \frac{f(w) - f(z)}{e^{i \arg f'(z)}(1 + \overline{f(z)}f(w))}, & \text{if } f(z) \neq \infty; \\ \frac{1}{e^{i \arg(1/f)'(z)}f(w)}, & \text{if } f(z) = \infty. \end{cases}$$

Then $g \in \mathcal{F}(\Omega, \beta)$ with g(z) = 0 and $0 \le g'(z) = c_{\Omega,\beta}(z)$. Again, g is extremal.

THEOREM 3 If Ω is hyperbolic, then

$$c_{\Omega,\beta}(z) \le \sqrt{\frac{\beta}{\pi - \beta}} P_{\Omega}(z)$$
 (1.3)

S. YAMASHITA

at each $z \in \Omega$. If the equality holds in (1.3) at a point $z \in \Omega$, then Ω is simply connected. If Ω is simply connected, then the equality holds in (1.3) everywhere in Ω .

We omit the detailed proof of Theorem 3 because we have only to apply Theorem 2 to an extremal function.

2. PROOF OF THEOREM 1

LEMMA 1 For $f \in \mathcal{F}(D, \beta)$ the inequality holds:

$$f^{\#}(0)^2 \le \frac{\beta}{\pi - \beta}.$$
 (2.1)

The equality holds in (2.1) if and only if

$$f(z) \equiv \frac{az+b}{1-\bar{b}az}, \quad z \in D,$$
(2.2)

where $a \in \mathbf{C}$ and $b \in \mathbf{C}^*$ are constants with

$$|a| = \sqrt{rac{eta}{\pi - eta}}$$

Read f(z) = -1/(az) in case $b = \infty$.

This lemma is Dufresnoy's, the case $r_0 = 1$ in [2, Lemma I, (2)]. The equality condition in the present "if and only if" form is obtained in the similar manner as in [1, pp. 219–220]. Note that Dufresnoy adopted the unit sphere of center at the origin in \mathbf{R}^3 as the Riemann sphere, so that we need obvious changes.

Proof of Theorem 1 We choose $\phi \in \operatorname{Proj}(\Omega)$ with $z = \phi(0)$ and we observe that $f \circ \phi \in \mathcal{F}(D, \beta)$. Since

$$(f \circ \phi)^{\#}(0) = f^{\#}(z) |\phi'(0)| = f^{\#}(z) / P_{\Omega}(z),$$

194

the inequality (1.1) is a consequence of (2.1). The equality holds in (1.1) at z if and only if

$$(f \circ \phi)(w) = \frac{aw+b}{1-\overline{b}aw}, \quad w \in D,$$

where $|a| = \sqrt{\beta/(\pi - \beta)}$. Hence f is univalent in Ω , so that ϕ is univalent in D. The image $f(\Omega)$ is $\{(aw + b)/(1 - \overline{b}aw); w \in D\}$ which is the image of the cap $E(0, |a|/\sqrt{(1 + |a|^2)})$ by the rotation of \mathbb{C}^* : $T(\zeta) = (\zeta + b)/(1 - \overline{b}\zeta)$, so that $f(\Omega)$ is a spherical cap.

Suppose that $f \in \mathcal{F}(\Omega, \beta)$ maps Ω univalently onto a spherical cap $E(a, \sqrt{\beta/\pi}), a \in \mathbb{C}^*$ and set $\rho = \sqrt{\beta/(\pi - \beta)}$. Then

$$\phi(w) = f^{-1}\left(\frac{\rho w + a}{1 - \bar{a}\rho w}\right)$$

is in $Proj(\Omega)$. Since

$$\frac{f^{\#}(\phi(w))}{P_{\Omega}(\phi(w))} = \frac{\rho(1-|w|^2)}{1+\rho^2|w|^2}$$

it follows that $f^{\#}(\phi(w)) = \rho P_{\Omega}(\phi(w))$ if and only if w = 0. Hence the equality holds in (1.1) at exactly one point $\phi(0)$, the inverse of *a* by *f*.

If $z \neq w$, then

$$X(z,w) \leq \arctan \left| \frac{z-w}{1+\bar{z}w} \right| = \int_{\Gamma} \mathrm{d}X(\zeta),$$

where $dX(\zeta) = |d\zeta|/(1 + |\zeta|^2)$ and Γ is the projection of the shorter of the great circle passing through, and bisected by z, w; in case $z\bar{w} = -1$ we have many Γ . Here $0 < \arctan \rho \le \pi/2$ for $0 < \rho \le +\infty$.

Suppose that $\beta = A(\Omega) < \pi$ for a domain $\Omega \subset \mathbb{C}$. We then have

$$\mathrm{d} X(z) \leq \sqrt{rac{eta}{\pi-eta}} P_\Omega(z) |\mathrm{d} z|, \quad z\in\Omega.$$

More precisely,

$$\frac{1}{1+|z|^2} \le \sqrt{\frac{A(\Omega)}{\pi - A(\Omega)}} P_{\Omega}(z), \quad z \in \Omega.$$
(2.3)

195

The equality holds in (2.3) at a point $z \in \Omega$ if and only if Ω is a spherical cap

$$\bigg\{\frac{a\zeta+z}{1-\bar{z}a\zeta};\,\zeta\in D\bigg\},\,$$

where $a \in \mathbb{C}$ and $|a| = \sqrt{A(\Omega)/(\pi - A(\Omega))}$. For the proof we have only to follow that of Theorem 1 with $f(\zeta) \equiv \zeta, f \in \mathcal{F}(\Omega, \beta)$.

3. PROOF OF THEOREM 2

We begin with the case $\Omega = D$. Since $f^{\#}$ of $f \in \mathcal{F}(D, \beta)$ is bounded by

$$\sqrt{\frac{\beta}{\pi-\beta}}\cdot\frac{1}{1-r^2}$$

on $\{|z| < r\}$, 0 < r < 1, it follows that $\mathcal{F}(D, \beta)$ is equicontinuous in X on $\{|z| < r\}$. Hence $\mathcal{F}(D, \beta)$ is normal in that sense that given $\{f_n\} \subset \mathcal{F}(D, \beta)$, we have a subsequence $\{f_{n_j}\} \subset \{f_n\}$ and $f \in \mathcal{M}(D)$ such that (1.2) holds for each compact set E comprised in D. To prove that $f \in \mathcal{F}(D, \beta)$ we may suppose that f is nonconstant.

For simplicity we suppose that

$$\max_{z\in E} X(f_n(z),f(z))\to 0 \quad \text{as } n\to\infty$$

for $f_n \in \mathcal{F}(D,\beta)$, n = 1, 2, ... We shall then prove that for each $b \in D$ we have r = r(b) > 0 and a natural number N = N(b) such that $f(\Delta) \subset f_n(\Omega)$ for all n > N, where

$$\Delta = \{z; |z-b| < r\} \subset D.$$
(3.1)

Then for each compact set $K \subset D$ we have *n* such that $f(K) \subset f_n(\Omega)$, so that $A(f(K)) \leq \beta$, whence $f \in \mathcal{F}(\Omega, \beta)$.

We first suppose that $f(b) \neq \infty$. Then we have $r_1 > 0$ and a constant $M_1 > 0$ such that f is pole-free and bounded, $|f| < M_1$, on $\Delta_1 = \{z; |z-b| \le r_1\} \subset D$. We then find a constant $M_2 \ge M_1$ and a natural number N_1 such that f_n is pole-free and bounded, $|f_n| < M_2$, on Δ_1 for

196

 $n \ge N_1$. Hence

$$\max_{z \in \Delta_1} |f_n(z) - f(z)| \to 0 \quad \text{as } n \to \infty.$$
(3.2)

Consequently, for Δ of (3.1) with $0 < r < r_1$, we have

$$\sup_{z \in \Delta} |f'_n(z) - f'(z)| \to 0 \quad \text{as } n \to \infty.$$
(3.3)

To prove that the present Δ is the requested we suppose that there exists $q \in \Delta$ such that $p = f(q) \notin f_{n_j}(\Omega)$ for infinitely many $n_j, n_1 < n_2 < \cdots$ Choose R > 0 such that

$$\{z; |z-q| \le R\} \subset \Delta \text{ and } p \notin f(\{z; 0 < |z-q| \le R\}),$$

and set

$$c = \{z; |z - q| = R\}.$$

The argument principle then shows that

$$1 \leq \frac{1}{2\pi \mathrm{i}} \int_c \frac{f'(\zeta)}{f(\zeta) - p} \,\mathrm{d}\zeta.$$

The right-hand side integral is, with the aid of (3.2) and (3.3), the limit

$$\lim_{n_j o\infty}rac{1}{2\pi\mathrm{i}}\int_crac{f_{n_j}'(\zeta)}{f_{n_j}(\zeta)-f_{n_j}(q)}\mathrm{d}\zeta=0.$$

This is a contradiction.

In the case $f(b) = \infty$ we consider $\{1/f_n\} \subset \mathcal{F}(\Omega, \beta)$ with $1/f \in \mathcal{M}(\Omega)$ and arrive at a contradiction again.

For general Ω we fix $\phi \in \operatorname{Proj}(\Omega)$. Then, for each compact set E in Ω we may find a compact set $E_1 \subset D$ such that $\phi(E_1) = E$. Furthermore, ϕ is automorphic with respect to the universal covering transformation group $\mathcal{G} : \phi = \phi \circ T$, $T \in \mathcal{G}$. Since $f_n \circ \phi \in \mathcal{F}(D, \beta)$, we have a subsequence $\{f_{n_j}\}$ of $\{f_n\}$ and $g \in \mathcal{F}(D, \beta)$ such that $f_{n_j} \circ \phi$ converges to g on each compact set in D. Since g is then automorphic with respect to \mathcal{G} , we have $f \in \mathcal{M}(\Omega)$ such that $f \circ \phi = g$ and this f is the requested.

4. CONFORMAL INVARIANT $c_{\Omega,\beta}(z)$

Let Σ be another domain in C and let f be holomorphic in Ω with $f(\Omega) \subset \Sigma$. Then

$$c_{\Sigma,eta}(f(z))|f'(z)|\leq c_{\Omega,eta}(z),\quad z\in\Omega.$$

In particular, if f is univalent and $f(\Omega) = \Sigma$, then

$$c_{\Sigma,\beta}(f(z))|f'(z)| = c_{\Omega,\beta}(z), \quad z \in \Omega,$$

so that $c_{\Omega,\beta}(z)|dz|$ is conformally invariant.

Let $\mathcal{B}_z(\Omega)$ be the family of all *f* holomorphic, bounded, |f| < 1, in Ω , and further, f(z) = 0, $z \in \Omega$. Then

$$\gamma_{\Omega}(z) = \sup\{|f'(z)|; f \in \mathcal{B}_{z}(\Omega)\}$$

is called the analytic capacity of Ω at z. Then $\gamma_{\Omega}(z)$ is the maximum $\gamma_{\Omega}(z) = |f'(z)| = f'(z)$ for a unique $f \in \mathcal{B}_z(\Omega)$ called the Ahlfors function of Ω at z. See [3, p. 110]. Since $\mathcal{B}_z(\Omega) \subset \mathcal{F}(\Omega, \pi/2)$, it follows that

$$\gamma_{\Omega}(z) \leq c_{\Omega,\pi/2}(z), \quad z \in \Omega.$$

On the other hand, it follows from (1.3) that

$$c_{\Omega,\pi/2}(z) \leq P_{\Omega}(z), \quad z \in \Omega.$$

If $f \in \mathcal{F}(\Omega, \beta)$, then $\mathbb{C}^* \setminus f(\Omega)$ is of positive spherical area, so that this set is of positive capacity. Hence f is of uniformly bounded characteristic in Ω ; see [5, Theorem 1] and also [4,6]. Suppose that each function of uniformly bounded characteristic in Ω is constant. Then $f \in \mathcal{F}(\Omega, \beta)$ is a constant.

References

- J. Dufresnoy, Sur les domaines couverts par les valeurs d'une fonction méromorphe ou algèbroïde. Ann. Sci. Ecole Norm. Sup. 58 (1941), 179-259.
- J. Dufresnoy, Sur l'aire sphérique décrite par les valeurs d'une fonction méromorphe. Bull. Sci. Math. 65 (1941), 214-219.
- [3] S.D. Fisher, Function Theory on Planar Domains. John Wiley, New York, 1983.

- [4] S. Yamashita, Functions of uniformly bounded characteristic. Ann. Acad. Sci. Fenn., Ser. A I Math. 7 (1982), 349-367.
- [5] S. Yamashita, Exceptional sets, subordination, and functions of uniformly bounded characteristic. *Math. Scand.* 54 (1984), 242–252.
- [6] S. Yamashita, Functions of uniformly bounded characteristic on Riemann surfaces. Trans. Amer. Math. Soc. 288 (1985), 395-412.