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In thispapernonlinear integral inequalities with weakly singular kernels forfunctions in two
and n independent variables are solved. The obtained results are related to the well known
Gronwall-Bihari and Henry inequalities for functions in one variable and the Wendroff
inequality for functions in two variables. A modification ofOu-Iang-Pachpatte inequality
and inequalities for functions in n independent variables are also treated here.
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1. INTRODUCTION

D. Henry proposed in his book [7] a method to estimate solutions of
linear integral inequality with weakly singular kernel. His inequality
plays the same role in the geometric theory of parabolic partial dif-
ferential equations (see [6,7,18]) as the well known Gronwall inequality
in the theory of ordinary differential equations. In the paper [13] a new
method to estimate solutions for nonlinear integral inequalities with
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288 M. MEDVE

singular kernels of Bihari type is proposed. The resulting estimation
formulas are similar to those for classical integral inequalities (see
[1,2,5,9-12,16]). For instance the estimate of solution of the Henry
inequality is ofexponential form in contrary to the Henry’s estimate (see
[7,18]) by an infinite series of a complicated form. The method has been
applied in the paper [14] in the proof of global existence of solutions and
a stability theorem for a class of parabolic PDEs.

In this paper we use the method proposed by the author in the paper
[13] to obtain an analogue of the Wendroffinequality (see [1,5,9,10]) for
functions in two variables. Thandapani and Agarwal [19] proved inter-
esting results concermng inequalities for functions in n independent
variables. Applying our method ofdesingularization ofweakly singular
inequalities we prove a singular version of one of them. We remark that
the papers [3,4,15,19] contain many results on inequalities of Wendroff
type and applying our desingularization method one can formulate and
prove their singular versions in a similar way as we are doing this
in Section 4. We also present an estimate of solutions of an analogue of
Ou-Iang inequality whose generalization for the nonlinear case has been
given by Pachpatte [16].

2. WENDROFF TYPE INEQUALITIES

First let us recall a definition of a class of functions from the paper [13].

DEFINITION 2.1 Let q > 0 be a real number and 0 < T< cx. We say that
afunction a2" R+ R (R+ (0, )) satisfies a condition (q)/f

e-qt[(u)]q <_ R(t)(e-qtuq) for all u E R+, (0, T), (q)

where R(t) is a continuous, nonnegativefunction.

Examples (see 13])

1. a2(u) Um, m > 0 satisfies the condition (q) with R(t) e(m-1)qt.
2. a2(U) U -b- aum, where 0 < a < 1, m _> satisfies the condition (q) with

R(t) 2q- eqmt.
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We shall need the following well known consequence of the Jensen
inequality:

(A1 + A2 +’" + An) <_ n r-l(A + Ar +... + Am) (1)

(see 8,17]).
We shall study an inequality of the type

f0xf0
y

u(x, y) < a(x, y) + (x s)-1 (y- t)-1

x F(s, t)(u(s, t)) ds dt, (2)

for (x, y) E (0, T)2 (0, T) (0, T) (0 < T< cxz), where c > 0, /3 > 0.
Results on integral inequalities in two variables with regular kernels
(i.e. with c 1,/3 1, F continuous) and a(x, y) constant are contained
in the books 1,5,9,10].

THEOREM 2.2 Let a(x, y) be a nonnegative, C 2-function,

Oa(x,y) ( Oa(x,y) )OZa(x’Y)
>0, >0 or >0 (C)OxOy Ox Oy

on (0, T)2- (0, T) (0, T) (0 < T< cxz), u(x, y), F(x, y) be continuous,
nonnegative functions on (0, T)2 satisfying the inequality (2), where

" R+ R is a nonnegative C-function. Then the following assertions
hoM."

(i) Suppose c > 1/2, fl > 1/2 and satisfies the condition (q) with q 2. Then

u(x,y) <_eX+y{f-IIf(2a(x,y)2
+ 2K F(s, t)2R(s + t) as at (3)

where

1(2/3 1)1-’(2o 1)K=
4o+_1

(x,y) E (0, T1)2 (0, T1) (0, T1),
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[’ is the Gamma function, f(v)= fvVo dy/w(y), vo > O, f1-1 is the
inverse of [2 and T1 > 0 is such that the argument of f- in (3)
belongs to Dom(fU)for all (x, y) E (0, T)2.

(ii) Suppose c fl 1/(z / 1)for some real number z > and w satisfies
the condition (q) with q-z + 2. Then

u(x,y) <ex+y{f-llf(2a(x,y)2
fooXfo

y 1}
1/q

/ Mz F(s, t)qR(s / t) ds at

(x, y) e (0, T2), where

z + 2 (P!! -p5), 2/p z
P z+---f’ M \ p(-p ) --/-z+l’

T2 > 0 is such that the argument off-i belongs to Dom(f-)for all
(x, y)e (o, 7"2).

Proof First let us prove the assertion (i). Using the Cauchy-Schwarz
inequality we obtain from (2)

foXfo
y

u(x,y) < a(x,y) + (x- s)-le’(y- t)e-

x et[e-(S+t)F(s, t)a(u(s, t))] dsdt

[/oX/o<_ a(x,y) + (x s)2’-Ze’(y t):z;-e2t dsdt

x e-(s+t) F(s, t)9-a(u(s, t))2 ds dt (4)

For the first integral in (4) we have the estimate

.x o/.o,(x s)-2e2S(y t) z;-zez’ dsdt

e 2(x+Y) cr2a-2e-2a
Y
r/2-2e-2 dcr dr/
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/o
xe 2(x+y) O’2-2e-r

Y

22(+)_2 r/2-:Ze- drd

e2(X+y)
< 22(+5)_2 r(2/- 1)r’(2- 1).

Therefore we obtain from (4)

u(x,y) < a(x,y) + ex+yK1/2
x YF(s, t)2e-2(s+t)w(u(s, t))2 dsdt

where K is as in Theorem 2.2. Using the inequality (2) with n 2, r 2
and applying the condition (q) with q-2 we obtain

f0xf0
y

v(x, y) < c(x, y) + 2K F(s, t)2R(s + t)co(v(s, t)) dsdt,

where

v(x, y) (e-(x+y)u(x, y))2,
We need the following lemma.

c(x, y) 2a(x, y)2. (6)

LEMMA 2.3 Let co" R+-+ R be a nonnegative, nondecreasing C1-

function, a(x,y) be a nonnegative C Z-function on (0, T)2 (0 < T_< oo)
such that

02a(x’Y) > 0 > 0 or > 0
OxOy Oy Ox

on (0, T)2 (0 < T<_ oo). Let k(x, y) be a continuous, nonnegative C 2-

function and z(x, y) be a continuous, nonnegativefunction on (0, T)2 with

foXfo
y

z(x, y) < a(x, y) + k(s, t)co(z(s, t) ds dt, (7)

(x, y) E (0, T)2. Then

z(x, y) <_ (a(x, y) / k(s, t) ds dt (x, y) E (0, T1)2,

where T1 > 0 is such that the argument of f- in the above inequality
belongs to Oom(f-l)for all (x, y) (0, T1)2.
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Remark If a(x,y) is constant then the lemma is a consequence of
[9, Theorem 7.8]. In this case it suffices to assume that co is contin-
uous only.

Proof Let V(x, y) be the right-hand side of (7). Then

02 V(x, y) 02a(x, y)
OxOy OxOy + k(x,y)co(z(x,y)), (8)

o(v(x, y) , V(x, y) V(x, y) + ,, v(, y)
o V(x, y) o V(x, y)

OxOy OxOy Ox Oy
(9)

Since 9t’(V)- 1/co(V) and f"(V) < 0 we obtain from (8) and (9)

02Ut(V(x, y)) < OZa(x, y) +- k(x, y)OxOy OxOy (v)

O:a(x, y)
OxOy w(a(x, y)) + k(x, y). (10)

However

OxOy
0 fa(x,y) dcr

f(a(x, y))
OxOy Jo co(a)
0 Oa(x, y)
0-- Oy co(a(x, y))
02a(x,y) co’(a(x,y))
OxOy

O:a(x, y)>
OxOy co(a(x,y))’

Oa(x,y)
Ox co(a(x,y))2

ioe.

0 02a(x,y)
Ox-y a(a(x, y)) >_

OxOy co(a(x, y)) (ll)
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(If Oa/Oy > 0 then one can obtain (11) by estimating (O/OxOy)f(a(x, y)).)
Thus we obtain from (10) and (11)

Oza(v(x,Y)) < 029t(a(x,Y))
OxOy OxOy

and this yields

foXfo
y

f’t(v(x, y)) < a(a(x, y)) + k(s, t) ds dt.

From this inequality we obtain

z(x,y) < V(x,y) < a- f2(a(x,y)) + k(s,t)dsdt

Now let us continue the proof of Theorem 2.2. Applying Lemma 2.3
to the inequality (5) we obtain

v(x, y) <_ a- 9t(a(x, y)) + 2K F(s, t)2R(s + t) at d

Using (6) we obtain

u(x,y) <_ e x+y Ft- f(2a(x,y)2 + 2K F(s,t)2R(t + s)dtd

Now we shall prove the assertion (ii). Let p=(z+2)/(z+ 1),
q--- z + 2. Then

u(x, y) <_ a(x, y) + (x s) -p6eps y t) -p6ept ds dt

x Ifoo
x fooYe-q(s+t)f(s,t)qw(u(s,t))qdtds] 1/q.
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We have

o

x Y(x s) -p6em y t) -p6ept ds dt

fo
x

/o(x s)-eem y t) -ee-e dt ds

eY fO
x

< P(1 p5) (x s)-P6eps dspl-p6

e x+y
< p--2(-p6)

p p5).
Thus we have

u(x,y)

<_ a(x, y) 4- Ke x+y F(s, t)qR(t 4- s)(e-q(s+t)u(s, t)q) ds dt

and this yields

v(x,y) <_ a(x,y) + 2K F(s,t)qR(t + s)a;(v(s,.t)) dsdt,

where

a(x, y) 2a(x, y)2, v(x, y) (e-(x+y)u(x, y))q,

Mz -_p5) 2/p

pl-p

and this yields the inequality for u(x, y) from the assertion (ii).
If a -/3, a,/3 < 1/2, then there are some technical problems and we omit

this case.

THEOREM 2.4 Letfunctions a, F be as in Theorem 2.2 and u(x, y) be a

continuous, nonnegativefunction on (0, T)2 satisfying the inequality

u(x, y) <_ a(x, y) + (x s);-’

(y t);-s’-lt’>F(s,t)u(s,t)dsdt, (12)
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where/3 > 0, ’y > 0. Then thefollowing assertions hold:

(i) If > 1/2, / > (1/2p) then

u(x, y) <_ eX+Y+(x, y), (13)

for (x, y) E (0, T), where

[4q-1

Jo’Xfoo
y

(I)(x, y) 21-(1/2q) exp KqLq F(s, t)2qeq(s+t) ds dt

(14)

K & as in Theorem 2.2,

L-(.’((2"7-2)p+1)) 2/q

p(2,-2)p+l
p_>l, q>_l, -+---1.

P q

(ii) Let /3- 1/(z / 1) for some real number z >_ 1, p- (z / 2)/(z / 1),
q z + 1, "), > 1/r;q, where t > 1. Then

u(x, y) <_ ex+y (x, y),

where

[QrqjiX fooY(x, y) 21-1/rqa(x, y) exp er(+t)F(s, t) rq ds dt
k rq

r > & such that 1/t / 1/r= 1, Q MzP, Mz is as & Theorem 2.2,
P- [l-’(sq(’),- 1)/ 1)]2/ and a--z/(z + 1)=/3- 1.

Proof We shall prove the assertion (i). From

u(x,y) < a(x,y) + (x s)2"-2e2S(y t)2-2e2t dsdt

x
0

s:-2tz’-2f(s’ t)2 (e-(S+t)u(s, t)): ds dt

<_ a(x, y) + eX+K/

[/oX/ox s:-zt’-ZF(s,t):(e-(S+)u(s,t))2 dsdt
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where Kis as in Theorem 2.2. This yields

foXfo
y

v(x, y) < c(x, y) + 2K s2"-9tg"-2F(s, t)2v(s, t) ds dt, (16)

where

v(x, y) (e-(X+y)u(x, y))2, c(x, y) 2a(x, y)2. (17)

From (16)we have

v(x, y) <_ c(x, y) + 2K S(27-2)p (2"-2)Pe-p(s+t) ds dt

X F(s,t)2qeq(s+t)v(s,t) q dsdt (18)

where p, q are as in theorem. For the first integral in (18) we have

o

x

0
y

S(2’-2)p t(2"-2)Pe-P(S+t) ds dt

cr(27-2)Pe-a 7-(27-2)pe dr der
(p(27-2)p+l) 2

< (.F((27-2)p + 1))
2

p(2-y-2)p+

and thus we obtain from (18) that

v(x, y) < c(x, y) + 2KL F(s, t)2qeq(s+t) V(S, t) q ds dt, (19)

where L is defined in theorem. This yields

V(X,y)q < 2q-1 c(x,y)q -+-2qKqLq F(s,t)2qeq(s+t)v(s,t) q dsdt

(20)
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One can check that from the assumptions of theorem it follows that

Oc(x, y) > O,
OxOy

Oc(x,y)Oc(x,Y)>o or >0
Ox Oy

Thus from Lemma 2.3 and (20) we obtain

/0 /0v(x, y)q <_ 2q-1 c(x, y)q exp KqLq F(s, t)2qeq(s+t) ds dt

and the equalities (17) yield (20).
Now let us prove the assertion (ii). From the inequality (12) we obtain

u(x,y) < a(x,y) + (x- s)-PC(y- t)-Paep(s+t) dsdt

[/x/y ]l/qS q(’/-1) tq(’-l)e-q(s+t)F(s, t)qu(s, t) q ds dt

< a(x, + eX+Y (F(-;1-- P))
x s sq(/-) tq(’-)e-(S+t) ds dt

x Y
r(,+lF(s, t)q(e-(’+)u(s, t)q ds dt

<_ a(x,y) +eX+yQ er(S+t)F(s,t)rq(e-(S+)u(s,t))rqdsdt
LJO JO

where Q MzP, Mz is as in Theorem 2.2, P is as in theorem and r, are
as in the assertion (ii). The above inequality yields

V(X, y) "5. 2qr-1 a(x, y)rq + Qrq e

where

v(x, y) (e-(x+y) u(x, y))rq. (21)
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Therefore we have

V(X, y) <_ 2qr-1 a(x, y)rq exp Qrq e

and using (21) we obtain (15).

3. OU-IANG-PACHPATTE TYPE INEQUALITY

We shall prove a theorem corresponding to an analog of Ou-Iang-
Pachpatte inequality (see [13,16]).

THEOREM 3.1 Let T>O, Fandcobeasin Theorem2.2andabeapositive
constant. Let u(x,y) be a continuous, nonnegative function on (0, T)2

satisfying the inequality

foXfo
y

u(x,y)- < a+ (x-s)-l(y t)9-1F(s,t)co(u(s,t))dsdt, (22)

(x, y) E (0, T)2. Then thefollowing assertions hold."

(i) Suppose c >1/2, /3 > 1/2 and co satisfies the condition (q) with q--2.
Then

u(x, y) <_ e x+(x, y), (x, y) (0, T ), (23)

where

( foXfoY )]1/4q(x, y) A- A(2a 2) + 2K F(s, t)2R(s + t)ds dt

(x, y) (o, T,

K is the numberfrom Theorem 2.2 and A(v) fv dcr/co(v/-d), v0 > 0,
T1 > 0 is such that the argument ofA-1 belongs to Dom(A-) for all

(0, T1)2.
(ii) Suppose c=/3-1/(z + 1)for some real numbers z >_ and let

p (z + 2)/(z + 1), q z + 2. Assume that co satisfies the condition
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(q) with q z + 2. Then

u(x, y) < eX+y(x, y), (x, y) E (0, T2)9, (24)

where

(x,y)= -(A(2q-a)) + 2q- F(s,t)qR(s + t)dsdt

(x, y) IO, T), Ta > 0 is such that the argument ofA- in the above
inequality belongs to Dom(A-) for all (x,y) (0, T), M is as in

Theorem 2.2.

Proof Let us prove (ii). Using the Cauchy-Schwarz inequality and
inequality (1) we obtain

fxfy(x_ s)- t)-le (s+t)u(x,y)2 a+ (y-- S+tF(s,t)e- (u(s,t))dsdt

x y

S)2-2 t)2-2e2(s+t)a + (x (y ds dt

x F(s, t)R(s + t)(e-2(s+t)u(s, t)2) ds dt

a + Ke-(x+y) F(s, t) R(s + t)(e-(s+t)u(s, t)) ds dj/2,

where K is as in Theorem 2.2. Applying the inequality (1) similarly as in
the proof of Theorem 2.2 we obtain the inequality

e-(+lu(x,y) 2a + 2 F(s,t)R(s + t)(e-(S+u(s,t))dsdt,

where K is an in Theorem 2.2. This yields

Zx .,v(x, y) c + 2K F(s, t)R(s + t)(v(s, t)) ds dr, (25)

where

(, (e-(X+,(,), a.
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Let V(x, y) be the right-hand side of (25). Then

v(x,y) <_ v/v(,y), (v(x,)) <_ (v/V(x,y)). (27)

We have

02 V(x, y) 2KF(x, y)9R(x + y)(v(x, y))
OxOy (28)

and

0 foo
v(x’y) dt

OxOy o(
o o V(x, y)/Oy
Ox(v/V(x, y)
02V(x,y)
OxOy (v/V(x, y))

or(x, y) or(x, y)
Oy Ox

o2v(x,y)<
OxOy (v/V(x,y))

’ v/ V(x, y)
2V V(x, y)w(V V(x, y))2

i.eo

0 2 02V(x,y)
A( V(x, y)) <_ (29)OxOy OxOy (v/ V(x, y)

From this inequality and (28) we have

OxOyA(V(x,y)) <_ 2K F(s,t)ZR(s + t)dsdt

and using (26), (27) we obtain the inequality (22).
Now let us prove (ii). Following the proof of the assertion (ii) of

Theorem 2.2 one can show that

x

00
y

w(x, y)2 < c + 2K2 F(s, t)qR(S + I)CO(W(S, l)) ds dt, (30)

where

ct- 2a2, w(x, y) (e-(X+Y)u(x, y))q.
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Applying the same procedure to (30) as we have used in the proofof the
assertion (ii) as well as that one from the proofof (ii) ofTheorem 2.2 one
can prove the inequality (24).

4. ON A LINEAR INTEGRAL INEQUALITY IN
n INDEPENDENT VARIABLES

In this section we state and prove a result on a singular integral inequal-
ity in n variable. In the proof of this result we apply our method of
desingularization of weakly singular inequalities and the well known
result by Thandapani and Agarwal [19, Theorem 2.3]. First let us formu-
late this result.

Let 9Z c R be an open bounded set and let a point (x,..., x) E f be
denoted by x i. Lety (Yl, Yn), x (xl,..., x) E f (y < x, i.e. Yi < xi,

1,2,..., n) and denote by D parallelepiped defined by y < s < x. The

fff.ds indicates the n-fold integral fyX,’...fyX" .dsl...ds, and Ux(X)
denotes Onu(x)/(Ox Ox,,).

THEOREM 4.1 [19, Theorem 2.3]
characteristic initial value problem

Let V(s,x) be the solution of

m

Vs( , e; (s, b) V(s, o
r=l

in f, (31)

V(s,x) on S Xi, < <_ n (32)

andletD+ be a connectedsubdomain off containingx such that V(s, x) >_ 0
for s D+. Let D C D+ be aparallelepiped and u D+ R be a continuous

function satisfying the inequality

m

u(x) <_ a(x) + b(x) Z Er(x’ u), x D, (33)
r=l

where

X Xr-I

Er(X’U) fy frl(Xl)J!xlfr2(x2)’’" ayl frr(xr)u(xr)dxr"’dx"

(34)
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a, b,frj :D+ R, j-- 1,2,..., r are continuous, nonnegative functions.
Then

u(x) <_ a(x) + b(x) Z E2(s’a)V(s,x)as, x E D. (35)
r=l

In the sequel we use the notations" e := elXl, x " x x2"2 x,’n for
x=(xl,x2,...,x,)eR", "),--(’1,72,...,%) e R_ {(kl,k,...,k,)
ki R, ki >_ 0, 1,2,...,n},where Ixl =x +x2+ +x,. We also
denote by [/3] the vector (/3,/3,...,/3) Rn, by 1,2,... the vectors

(1, 1,..., l) Rn, (2, 2,..., 2)E Rn, and by p[el we mean the vector

(p/q,... ,p/q).

THEOREM 4.2 Let , D, D+, V(s, x), a(x), b(x),fi(x),... ,fir(x) be as

in Theorem 4.1 and let a (a an) R_, 0 < a < (i.e. 0 < ai < 1,
i--1,2,... ,n). Let u:D+-- R be a continuous, nonnegative function
satisfying the inequality

m

u(x) <_ a(x) + b(x) Z Fr(x’ u),

where

r=l

Fr (x, u)
xr-1X X

Then thefollowing assertions hold."

(i) Suppose a (a l,..., a) > . Then

x _> 0, (36)

xr)-lfrr(Xr)U(X r) dxr dx1"

(37)

u(x) <_ e x 2a(x)2 + 4b(x)2S2 Z frj(a)2 dcr
r=l j=l

xl. x 2Lr(xr_ 1)2a(xr-1)2 dxr-1 dxr-1

X W(x1, x) dxl I 1/2

(38)
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where

2211_9. 1"(2ci 1)
i=1

and W(s, x) is the solution ofcharacteristic initial value problem

m

(-- l)n Ws(S X) ZK; (s, B) W(s, x) 0
r=l

in a (39)

W(S, X) On Si Xi, 1,2,..., n, (40)

 b(x)

)<

x x Ifrr(xr)2B(xr)2 dx dx

(ii) Suppose c [1/(z + 1)] for a real number z > and let q z + 2,
p (z + 2)/(z + 1), i.e. 1/p + 1/q 1. Then

u(x) <_ 2’-l/qe x a(x)q + b(x)qT or)p dr
r=l j=l

x fo fr(xr)q2q-la(x)q dxr’" "dx:

x Z(x x) dx]
/q

where

(r(1 p6)") lip

(41)

(42)
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Z(s, x) is the solution ofcharacteristic &itial value problem

(- 1)"Zs(s, x) R(s, C )Z(s, x) 0
r=l

in f (43)

Z(s, x) O on si xi, --1, 2, n, (44)

where C(x) 2q-1 a(x)q,

Rr(s,x) rqp frj(O’)p dcr
j=l

(fo fo - )x’ x

b(xr) q dx dx 2 dx[’..r_xr_q2q-1

Proof We shall prove (i). Let us estimate the function Fr(x, u) using the
Cauchy-Schwarz inequality and the inequality

X(x cr)-e:" do < eXS,

where S is as in theorem.
We have

X X

F(x, u) <_ fr xl fr2(X2) frr-1

/

(X r-1 xr)(2a-2)e2X dx

frr(Xr)2e-2Xrtl(xr)2 dx
1/2

dx r-1 dx

X X
__

sl/2e x frl(X frz(X 2) frr-1

frr(xr)2e-2xrbt(xr)2 dx dx r-1 dx
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xr-3X X

.10

X frr-1 xr-1 )2 dxr-1

x

u dx dx dxX frr(Xr)2e-2Xr (xr)2 r-1 r-2

(/ox<_ S1/2e x frr-1 (a) dcr

x’
(x)

x f_(x_x f(x) f

(foX- [ ) dx ...dx
xr_ 1/2

X frr(Xr)2e-2xu(xr)2 dxr-1 r-2

dO

Proceeding in this way using the Cauchy-Schwarz inequality one can
prove that

F(x, u) <_ S/2e x fj(r)2 dcr
j=l

]
1/2

fO
x frr(xr)2e-2Xru(xr)2 dx dxr-1.., dx

From this inequality and (36) we have

v(x) <_ a(x) + S1/2eXb(x) Z frj(o’) 2 do
r=l j=l

x’
frr(Xr)2v(xr)2 dx dxX [xr_

1/2

,/0
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where v(x)= e-Xu(x). Then using the Jensen inequality (1) we obtain

v(x)2 _< 2a(x)2 + 2Sb(x)Zy fj(cr) dcr
r=l j=l

X X X r-I

X o/0" fO0 f frr(xr-1)2v(xr)2dxr’"dxl.

From Theorem 4.1 it follows that

where W(s, x) is as in theorem and from definition of v(x) we obtain
the inequality (38).
Now let us prove the assertion (ii). We shall estimate the function

Fr(x, u) using the H61der inequality:
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where Tp is as in theorem. Similarly as in the case (i) using the H61der
inequality one can prove that

Fr(x, u)<_ Tpe x f.j(s)p ds
j=l ,/0

xr_ ]
1/q

0" frr(Xr)ql(xr)q dxr" dxl

From this inequality, (36) and the Jensen inequality (1) it follows that

V(X)q <_ 2q-1 a(x)q + b(x)qTqp frj(Cr)p dcr
r=l j=l

X fO0
X

fo
xl

f,jO
xr-I frr(xr)qv(xr)qdxr...dxl]

and from Theorem 4.1 we have

I __(_fx )q/PY(X) q 2q-1 a(x) q + b(x)qTt frj(O’)p dr
r=l j=l ,/0

frr(Xr)q (2q-1 a(xr)q) dzr... dxZ)Z(x x) dx
,l o ,!o

where Z(s, x) is as in theorem and from definition of v(x) we obtain the
inequality (41).

Remark The case a < 1/2, a not equal to some [/3], is much more
complicated than the case (ii) from the above theorem and we do not
solve it.

I wish to express my gratitude to Professor Ravi P. Agarwal for the
information on papers containing results on integral inequalities in n
variables.
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