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Two 1-D Poincarr-like inequalities are proved under the mild assumption that the
integrand function is zero atjust onepoint. These results are used to derive a 2-D generalized
Poincar6 inequality in which the integrand function is zero on a suitable arc contained in
the domain (instead of the whole boundary). As an application, it is shown that a set of
boundary conditions for the quasi geostrophic equation of order four are compatible with
general physical constraints dictated by the dissipation of kinetic energy.

Keywords." Inequalities; Quasi-geostrophic equations; Boundary conditions

AMS Subject Classification: 46E20, 86A05

1 INTRODUCTION

Very roughly speaking, Poincar6 inequality states that the L2-norm of
a function is less than the LE-norm of its gradient, provided that the
function fulfills some general requirements. Usually, Poincar6 inequality
is formulated in terms ofa class offunctions that are equal to zero on the
boundary ofa finite domain, and is typically applied outside functional
analysis to stability problems in continuum mechanics (e.g., [1]).

In this work, by focusing on one- and two-dimensional situations, we
give sharper results in that the involved functions are assumed to be zero
only on a part of the boundary (or on a topologically equivalent part of
the interior). Moreover, we motivate and illustrate the relevance ofthese
results with an application to an important problem in (geophysical)
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fluid dynamics, namely, that of finding physically admissible boundary
conditions for the quasi-geostrophic equations when the turbulence is
parametrized by means oflateral diffusion ofvorticity, thus giving rise to
fourth-order spatial derivatives.

POINCARI INEQUALITIES WITH NONZERO
BOUNDARY CONDITIONS

In the following lemmata, a prime (’) denotes differentiation.

LEMMA If c [a, b] -- is a smooth function such that q[c] 0 for a

given c E [a, b], then

f fa )
b

b2[x] dx _< 4(b a)2 (b’[x] dx. (1)

Proof Using the assumption b[c] O, we get the identity

x

42[x] 2 Vx E [a, b].

Hence, because of Schwarz inequality,

b2[x] _< 2
1/2 1/2x(,)2

and, afortiori,

Integrating with respect to x, we obtain

fab O2

_
2(b a) (fab qb2)

l/2 (ab(t)2) l/2.

Simplifying and squaring yields inequality (1).
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LEMMh 2 If 0 < a, and dp :[a, b] N is a smooth function such that
q[c] 0for a given e E [a, b], then

b

C2[X]x dx < 4
b
(b a) (b’[x])x dx.

a
(2)

Proof From the obvious inequality

fa fa6[x]xx <_ b [x] x

we get, using Lemma 1,

f fab )
b

bZ[x]x dx _< 4b(b a)2 (4[x] dx.

The integral in the right-hand side ofthis inequality may be estimated as

b fab(’[x])2 dx _< (’[x])2x dx.
a

Our claim follows from the last two inequalities.

The following Theorem is the main mathematical result of this
paper. Its statement, perhaps a little obscure at a first reading, becomes
much clearer after looking at Fig. 1. Point c of Fig. 1, although not
explicitly mentioned in Theorem 1, corresponds to point c of Lemma
and Lemma 2. Obviously, any bounded convex domain D satisfies the
assumptions of Theorem 1.

THEOREM LetD C2be a boundedset whose boundary OD is a Jordan
curve. Assume there is a point 0 external to OD such that the intersection
between D and any line through 0 is either empty or a segment. Assume

further that there is a continuous arc AB C D such that the angle AOB
contains D. Then there is a constant C such that

(3)

for any smoothfunction equal to zero on arc AB.
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FIGURE Heuristic illustration of the symbols appearing in the statement of
Theorem 1. In the application to quasi-geostrophic equations, the curved arcs (straight-
line segments) in the boundary of D represent the coastlines (zonal boundaries where
the wind forcing vanishes) of the subtropical North Atlantic ocean.

Proof Let (r, 0) be polar coordinates with origin O, and let [a, b] denote
the intersection (when nonempty) of D with a straight line through O,
where a a[O] and b b[O]. Defining [r, 0] [r cos[0], r sin[0]], we may
apply Lemma 2 to the function r H [r, 0] obtaining

where

b[0]
2[r, O]r dr < K[O] r dr,

./a[0l da[O

Hence, a fortiori,

fb[ol [r, O]r dr dO
Ja[O]

b[O] (b[0]- a[0]) 2.K[O] 4 [0]

< gmax + r dr dO,
,I a[O] -where Kmax is the constant defined by

Kmax max{K[O]: O _< 0 _< Os},

which is well defined because O is assumed to be external to OD. Passing
from polar to Cartesian coordinates in the last inequality, our claim.
follows with C- Kmax.
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3 AN APPLICATION TO OCEAN CIRCULATION

The large-scale circulation in the upper oceanic layer is described by the
quasi-geostrophic equation [2, p. 32]

0 O (curl0-7v2 + J[’’ v2] + b-Yx (4)

where b [x, y] is the stream function, J is the Jacobian (or Poisson
bracket) operator defined by J[a, b] div[aVb x k], is wind stress, R
and e are positive constants, is time, and x, y, z are Cartesian coordinates
with k the unit vector along z-direction. Since Eq. (4) is of order four
in space, one more boundary condition is needed besides the obvious
no-mass flux condition:

e[x, y, t] o, V{x,y} e oz:,, vt.

The problem of finding a physically appropriate auxiliary (so-called
"dynamic") boundary condition is far from being trivial, because
boundary conditions affect also the qualitative behavior of the flow,
which must fulfill general energy-related constraints. In the following, we
shall use Theorem to show that, if the "ocean" D satisfies the
assumptions of Theorem (see also Fig. 1), then the solution arising
from the mixed boundary condition

0
o-V% o

V2b= 0

on the coastline, (6)

on the sea boundary (7)

successfully passes the following tests:

(1) The kinetic energy ofany flow is bounded ifthe forcing term is in L2.
(2) The kinetic energy of any flow with zero forcing tends to zero

for t---, oc.

Multiplying Eq. (4) by the relative vorticity 72, and integrating over
the domain D, we have

N+ R J[g" ’] + xx (curl r)z + e (V:z(. (8)
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We see immediately that

( -- ( (9)

Straightforward computations (using the identity bJ[a, b] J[a, b2]/2
and the 2-D divergence theorem fD div fOP n. with boundary condi-
tion (5)) show that

( J [, (]-0. (10)

Integrating over D the identityV div(V)- 1712, applying the
2-D divergence theorem, and using our mixed boundary conditions
yields

fD " V2" fD IVy’] 2 (11)

Substituting Eqs. (9)-(11) into Eq. (8) gives

mot x (ur-r) IVl. (12)

Integrating over D the identity

and applying Green’s formula fz Ox fop dy, together with boundary
condition (5), we get

&p j dylWPl > 0. (13)o-=
From (12) and (13), using Theorem 1, we obtain

0 2 < (curlr)z20t

We point out that in this case the arc AB of Theorem coincides with
segment AB of Fig. 1, where ( 0 because of (7). Denoting the L2-norm



GENERALIZED 2-D POINCARI INEQUALITY 349

by II’ll, using the Schwarz inequality, and simplifying, the previous
relation may be rearranged as

which implies

e C
(curl )zll +--II (curlII[t]ll exp -t I1[0]11 -On the other hand Crisciani and Purini [3] show that

E[t] -- I[[t]ll =,

where E[t]=(1/2)llX7b[t]l[ 2 represents the kinetic energy, and A is a
constant. From the last two inequalities we get

( e ]( Cll(curlr)zll )E[t] <__ exp II[0]ll

/-II (curl r)zll

and hence

limE[t] =1 (C- ll(curl)ll

whence we immediately deduce that our mixed boundary condition has
successfully passed both the tests previously stated.
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