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A bounded linear operator T on a Hilbert space H is said to be p-hyponormal forp > 0 if
(T* T)p > (TT*)P, and T is said to be log-hyponormal if T is invertible and log T*T >
log TT*. Firstly, we shall show the following extension of our previous result: If T is p-

(+l)/n> > (p+l)/2 p+lhyponormal for pE(0,1], then (T’T) _"’_(T’T) >(T T) and
P+] (p+l)/2 (p+l)/nTT > T T > > T T *) hold for all positive integer n. Secondly,

we shall discuss the best possibilities of the following parallel result for log-hponormal
operators by Yamazaki: If T is log-hyponormal, then (Tn,Tn)/n >... >

1/2 1/2 l/n(T’T) > r r and TT >(r T*) >...> (T T*) hold for all ffositiv
integer n.
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1 INTRODUCTION

A capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (denoted by T> 0) if
(Tx, x)>_ 0 for all x EH and also an operator T is said to be strictly
positive (denoted by T> 0) if T is positive and invertible.
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An operator Tis said to bep-hyponormal forp > Oif(T*T) p >_ (TT*) p

and an operator T is said to be log-hyponormal if T is invertible and
log T* T_> log TT*. p-Hyponormal and log-hyponormal operators are
defined as extensions of hyponormal one, i.e., T’T>_ TT*. It is
easily obtained that every p-hyponormal operator is q-hyponormal
for p._> q > 0 by the celebrated L6wner-Heinz theorem "A _> B > 0
ensures A > B for any a E [0, ]," and every invertible p-hyponormal
operator is log-hyponormal since log is an operatormonotone function.
We remark that (Ap- 1)/p log A as p +0 for positive invertible
operator A > 0, so that p-hyponormality of T approaches log-hypo-
normality of T as p +0. In this sense, log-hyponormal can be
considered as 0-hyponormal.

Recently, Aluthge and Wang [2] showed the following results.

THEOREM A [2] Let T be ap-hyponormal operatorforp E (O, 1]. Then

(rn rn)p/n >_ (T’T)p >_ (TT*)p >_ (Tnrn*)p/n (1.1)

hoM, that is, T" is (p/n)-hyponormalfor allpositive integer n.

It is well known that even if T is hyponormal, T2 is not hyponormal
in general [9, Problem 209], but paranormal [4], i.e., [[T2x[[ _> Tx[[ 2
holds for every unit vector x. Now it turns out by Theorem A that T2 is
(1/2)-hyponormal for every hyponormal operator T, which is more

precise since (1/2)-hyponormality ensures paranormality [1,7].
Very recently, in [8], we showed an extension ofTheoremA as follows.

THEOREM B Let T be ap-hyponormal operatorforp (0, 1]. Then

(Tn*Tn) (p+l)/n >_ (T’T)p+I (1.2)

and
(TT*)p+I >_ (TnTn*)(p+)/n

holdfor all positive integer n.

(1.3)

We also discussed the best possibilities ofTheorem and Theorem A.
On the other hand, Yamazaki [12] showed another extension of

Theorem A as follows.

THEOREM C [12] Let Tbe ap-hyponormal operatorforp (0, 1]. Then

(Tn* Tn) 1/n

_
>_ (T2. T2) 1/2

_
T*T (1.4)
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and

TT* (T2T2*) 1/2 ... (TnTn*) 1In (1.5)

holdfor allpositive integer n.

We remark that Theorem A follows from Theorem B (or Theorem C)
obviously. In fact, the first and third inequalities of (1.1) hold by (1.2)
and (1.3) of Theorem B (or (1.4) and (1.5) ofTheorem C) and L6wner-
Heinz theorem, and the second inequality of (1.1) holds since T is
p-hyponormal.

Yamazaki [12] also showed the following TheoremD and Corollary E
for log-hyponormal operators which are parallel results to Theorem C
and Theorem A for p-hyponormal operators, respectively.

THEOREM D [12] Let T be a log-hyponormal operator. Then

(Tn*Tn) 1In (r2*r2) 1/2 r*r (1.6)

and

TT* >_ (T2T2*) 1/2 >_... >_ (TnTn*) 1/n

holdfor allpositive integer n.

COP,OLLARY E [12] Let Tbe a log-hyponormal operator. Then

log(Tn*Tn) 1/n >_ log T’T>_ log TT* >_ log(TnTn*) 1/n

hold, that is, T" is also log-hyponormalfor allpositive integer n.

(1.7)

(1.8)

We remark that Corollary E is more general than the following
result by Aluthge and Wang [1] "If T is log-hyponormal, then T2"is
log-hyponormalfor any positive integer n."

In this paper, we shall show Theorem stated below which is an
extension of both Theorem B and Theorem C. We shall also discuss the
best possibilities of Theorem D and Corollary E.

2 AN EXTENSION OF BOTH THEOREM B AND THEOREM C

THEOREM Let T be a p-hyponormal operatorforp E (0, 1]. Then

(Tn* Tn)(p+l)/n >_... >_ (T2. T2)(p+I)/2 >_ (T’T)p+I (2.1)
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and

(TT*)p+l >_ (T2T2*) (p+1)/2 >_... >_ (T"Tn*) (p+l)/" (2.2)

holdfor all/)ositive integer n.

We remark that Theorem B follows from Theorem by comparing the
first and last terms of each of the inequalities, and Theorem C also
follows from Theorem 1 by L6wner-Heinz theorem. It is interesting to
remark that Theorem Djust corresponds to Theorem in case/) 0 since
log-hyponormal can be considered as 0-hyponormal as mentioned in
Section 1.

In order to give a proofofTheorem 1, we use the following Theorem F.

THEOREM F (Furuta inequality [5]) IfA >_ B >_ O, thenfor each r >_ O,

(i) (Br/2APBr/2) 1/q >_ (Br/2BPBr/2) 1/q and
(ii) (Ar/2APAr/2)I/q

_
(Ar/2BPBr/2) 1/q

holdforp >_ 0 and q > with (1 + r) q >_ p + r.

We remark that Theorem F yields L6wner-Heinz theorem when we
put r 0 in (i) or (ii) stated above. Alternative proofs of Theorem F are
given in [3,10] and also an elementary one-page proof in [6]. It is shown
in [11] that the domain drawn for p, q and r in Fig. is the best possible
for Theorem F.

(0, -r)

(1 + r)q p + r

(1,1)

(1,0)

FIGURE
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We also use the following result which is an application ofTheorem F.

THEOREM F’ IfA >_ B >_ 0, then thefollowing assertions hold."

(i) for each q >_ 0 and r >_ O, f(s)= (Br/)ASBr/2)(q+r)/( + r) is increasing
fors>_q.

(ii) for each q >_ 0 and r >_ O, g(s) (Ar/ZBSAr/2)(q + r)/(s + r) is decreasing
fors>_q.

Proof of Theorem 1 Let T= UITI be the polar decomposition of T.
Then it is well known that the polar decomposition of T* is T* U*I T*[.
Put An=(Tn*Tn)p/n= [Tn[2p/n and Bn=(TnTn*)p/n= IT"*[2p/" for each
positive integer n.

Proof of (2.1) We shall prove that the following (2.3) holds for all
positive integer n, which is equivalent to (2.1) obviously:

(Tn+l*Tn+l)(p+l)/(n+l) (Tn* Tn) (p+l)/n. (2.3)

(i) Firstly, we prove that (2.3) holds for n 1, that is,

(T2. T2)(p+I)/: >_ (T’T)p+I (2.4)

A1--(T*T)P>_(TT*)P=B1 holds since T is p-hyponormal. By
applying (i) ofTheorem F to A1 and B for lip >_ O, we have

(T2. T2)(p+l)/2

U*([T*[T*TIT*I)(P+I)/2U
U*(BI/2pAI/PBI/2p)(I+I/P)/(1/p+I/p) u

U’B]+l/p U

U*IT*I2(p+I) U

IT[2(p+l)

(T’T)p+I,

so that (2.4) is proved.
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(ii) Secondly, in order to prove that (2.3) holds for n _> 2, we prove the
following (2.5) by induction:

(Tn+l* Tn+l)n/(n+l) T’* T" for all positive integer n. (2.5)

We remark that (2.5) implies that (2.3) holds for n > 2 by applying
L6wner-Heinz theorem to (2.5) for (p + 1)/n E (0, 1].
(2.5) holds for n by (2.4) and L6wner-Heinz theorem. Assume that
(2.5) holds for n- 1, 2,..., k- 1. By applying L6wner-Heinz theorem
to (2.5) forp/n E (0, 1], we have (T+* Tn+l)p/(n+l)

_
(T* Tn)p/n, so that

Ak (Tk* rk)p/k
_

(r2. T2)p/2 >_ (T’T)p >_ (TT*)p B.

The last inequality holds since T is p-hyponormal. Put ql =(k- 1)/
p>0 and rl=l/p>O. Then by (i) of Theorem F’, f(s)--
ictr/2As .or,/2 (q,+r)/(s+r,) lI/2pAs .ol/2p
"1 ’k’l --k"l ’k’l )k/(ps+l) is increasing for

s >_ q (k 1)/p, so that we have

Tk* Tk.

The last inequality holds since we assume that (2.5) holds for n k- 1.
Hence (2.5) also holds for n- k, so that it is proved that (2.5) holds for
all positive integer n.

Consequently, the proofof (2.1) is complete by combining (i) and (ii).
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Proof of (2.2) We shall prove that the following (2.6) holds for all
positive integer n, which is equivalent to (2.2) obviously:

(TnTn*) (p+l)/n (Tn+lTn+l*) (p+l)/(n+l). (2.6)

(i) Firstly, we prove that (2.6) holds for n 1, that is,

(TT*)+ >_ (T:T*)(+1)/2. (2.7)

AI-(T*T)P>_(TT*)P--B1 holds since T is p-hyponormal. By
applying (ii) of Theorem F to A and B for 1/p > 0, we have

(T2T2*)(P+l)/2= (UITITT*ITIU*)(P+/
U(ITITT*ITI)(P+I/U
U(A1/2pR1/pA1/2p)(I+I/P)/(1/p+I/P) U*"1

I+I/Pu,<<_ UA

UIT[2(p+1) U*

--[T*[2(p+1)

(TT*)P+1

so that (2.7) is proved.
(ii) Secondly, in order to prove that (2.6) holds for n _> 2, we prove

the following (2.8) by induction:

TnTn*

_
(Tn+lTn+l*)n/(n+l) for all positive integer n. (2.8)

We remark that (2.8) implies that (2.6) holds for n > 2 by applying
L6wner-Heinz theorem to (2.8) for (p + 1)/n E (0, 1].

(2.8) holds for n by (2.7) and L6wner-Heinz theorem. Assume that
(2.8) holds for n-- 1, 2,..., k- 1. By applying L6wner-Heinz theorem
to (2.8) forp/n E (0, 1], we have (TnTn*)p/n >_ (Tn+l Tn+l*)p/(n+l), so that

A1 (T’T)p >_ (TT*)p >_ (TT2*)ply >_"" >_ (TITk*)p/I BI.
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The first inequality holds since T is p-hyponormal. Put ql--(k- 1)/
p>0 and rl=l/p>O. Then by (ii) of Theorem F’, g(s)-
(Al/2BcAl/2)(q’+ri)/(s+r’)--(A1/2pRsA1/2p)k/(ps+l)--"k"l is decreasing for
s >_ ql (k 1)/p, so that we have

TkTk"

The last inequality holds since we assume that (2.8) holds for n--k- 1.
Hence (2.8) also holds for n k, so that it is proved that (2.8) holds for all
positive integer n.

Consequently, the proof of (2.2) is complete by combining (i) and (ii).

BEST POSSIBILITIES OF THEOREM D AND
COROLLARY E

The following Theorem 2 asserts the best possibility of Theorem D.

THEOREM 2 Let n >_ 2 and > 1. The thefollowing hold:

(i) there exists a log-hyponormal operator T such that (Tn*Tn)/n
(T’T).

(ii) there exists a log-hyponormal operator T such that (TT*)_
(TnTn*)dn.
We remark that A > B for 6 > 0 approaches log A > log B as 6 +0

for positive invertible operators A and B. In this sense, the following
Theorem 3 asserts the best possibilities of all the inequalities of (1.8)
in Corollary E.
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THEOREM 3 Let n >_ and a > O. Then thefollowing hold."

(i) there exists a log-hyponormal operator T such that (Tn*T")/n_

(ii) there exists a log-hyponormal operator T such that (T"*T")/"_
(,).

(iii) there exists a log-hyponormal operator T such that (T*T)_
(TnTn*)celn.

To give proofs of Theorem 2 and Theorem 3, we use the following
results.

PROPOSITION [13] Let p > 0, q > 0 and r > O. If rq <p + r, then the
following assertions hold."

(i) there exist positive invertible operators A and B on I2 such that
log A > log B and

(Brl2APBr/2) 1/q B(p+r)/q.

(ii) there exbct positive invertible operators A and B on ]2 such that
log A _> log B and

A(p+r)lq (Arl2BpArl2) llq.

LEMMA Forpositive operators A andB on H, define the operator Ton

(R)k_oH asfollows."

0
Bll2 0

Bll2
.41/2 0

All2 0

(3.1)

where [-q shows the place of the (0, O) matrix element. Then thefollow&g
assertions hold:
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(i) T is p-hyponormalforp > 0 ifand only ifAp >_ Bp.
(ii) T is log-hyponormal if and only if A and B are invertible and

log A _> log B.

Furthermore, thefollowing assertions holdfor > 0 and integers n >_ 2:

(iii) (Tn* Tn)/n >_ (T, T) ifand only if

(Bk/2An-kBk/2)e/n >_ Be holds for k 1,2,... ,n- 1.

(iv) (TT*) >_ (T"T"*)/n ifand only if

Ae >_ (Ak/VBn-kAk/)e/n holds for k 1, 2,..., n 1.

(v) (Tn*Tn)/n >_ (TnTn*)/n ifand only if
A >_ Be holds and

(Bk/2An-kBk/2)e/n >_ Be
Ae >_ (A/Bn-gAk/2)/n

and
holdfor k 1,2,...,n- 1.

(3.2)

(3.3)

(3.4)

Proof By easy calculation, we have

B
B

T*T-

and

TT*

B

A

A

A

A

.j



p-HYPONORMAL AND LOG-HYPONORMAL OPERATORS 377

so that (i) and (ii) are obvious by comparing the two (0, 0) elements of
T*Tand TT*. Furthermore, the following hold for n > 2:

B(n- /2AB(n-O/

BIA.-kBkI

B/ZAn-IB1/

and

T Tn

/.

B

AI/2Bn-I B1/2

Ak/2Bn-kAk/2

A(n-I)/2BA(n-1)/2

A

A

so that we have (iii), (iv) and (v) by comparing the corresponding
elements of T"*T" and TnTn*.

Proof of Theorem 2 Put Pl--n- > O, ql-----n/a > 0 and rl-- > O,
then we have rlql n/a > n =pl + r.
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Proof of (i) By (i) of Proposition 1, there exist positive invertible
operators A and B on H such that

log.4 _> log B (3.5)

and (Br/2ApBr/2) 1/q B(Pl+r)/q, that is,

(B1/2An-lB1/2)a/n
_
B. (3.6)

Define an operator Ton (R)k=_Has (3.1). Then Tis log-hyponormal by
(3.5) and (ii) of Lemma 1, and (T"*T")/"

_
(T’T) by (iii) of Lemma

since the case k of (3.2) does not hold for/3 a by (3.6).

Proof of (ii) By (ii) of Proposition 1, there exist positive invertible
operators A and B on H such that

log A > log B (3.7)

and A(p+r’)/q

_
(Ar/2BP’Ar,/2) 1/q’ that is,

A (A1/2Bn-IA1/2)/n. (3.8)

Define an operator Ton @k=_Has (3.1). Then Tis log-hyponormal by
(3.7) and (ii) of Lemma 1, and (TT*)

_
(T"T’*)/" by (iv) of Lemma

since the case k of (3.3) does not hold for/3 c by (3.8).

Proof of Theorem 3

Proof of (i) It is well known that there exist positive invertible
operators A and B on H such that

log A _> log B (3.9)

and

A_B’. (3.10)

Define an operator T on (R)=_H as (3.1). Then T is log-hyponormal
by (3.9) and (ii) ofLemma 1, and (T"* T")/"

_
(TnTn*)a/n for n _> 2 by (v)

of Lemma since the first inequality of (3.4) does not hold for/3 c

by (3.10), and (T’T) (TT*) by (3.10) and (i) of Lemma 1.
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Proof of (ii) We have only to prove the case > a > 0 by L6wner-
Heinz theorem. Assume

(Tn Tn)c/n >_ (TT*). (3.11)

Then we have

(Tn Tn)a/n (TT*) (TnTn*)/n.

The first inequality is (3.11) itself, and the second inequality holds by
(1.7) in Theorem D and L6wner-Heinz theorem. This is a contradiction
to (i) of Theorem 3.

Proof of (iii) We have only to prove the case 1 > a > 0 by L6wner-
Heinz theorem. Assume

(T’T) >_ (TnTn*)a/n. (3.12)

Then we have

(Tn*Tn)/n >_ (T’T)’ >_ (TnTn*)a/n.

The first inequality holds by (1.6) in Theorem D and L6wner-Heinz
theorem, and the second inequality is (3.12) itself. This is a contradiction
to (i) of Theorem 3.
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