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1. INTRODUCTION

The numerous applications and generalizations of John von Neumann’s
classical minimax theorem [4] constitute an important branch of modern
convex analysis. One of the main purposes of these generalizations
was to eliminate the underlying convexity structure from the original
hypothesis.

On the other hand, the convexity of subsets of topological vector spaces
was extended to convex spaces by Lassonde, to C-spaces (or H-spaces)
by Horvath, and to G-convex spaces (or generalized convex spaces) by
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the second author; for the literature, see [6—9]. It is known that the KKM
theory, fixed point theory, and other equilibrium results are now well-
developed in these abstract convexities.

In the present paper, from a coincidence theorem due to Park and
H. Kim [7, Theorem 1], we deduce saddle point theorems on G-convex
spaces. The coincidence theorem is a far-reaching generalized form of
the Fan-Browder fixed point theorem [1, Theorem 1] and Browder’s
coincidence theorem [1, Theorem 7). This was used by Komiya [3] to
obtain a saddle point theorem. We show that Komiya’s theorem can be
sharpened in several aspects; namely, under less restrictive hypothesis we
can obtain the same conclusion for a generalized convex space.

2. PRELIMINARIES

A generalized convex space or a G-convex space (X, D;T") consists of
a topological space X, a nonempty set D, and a multimap I': (D) —o X
such that for each 4 € (D) with the cardinality |4| =n+ 1, there exists a
continuous function ®4: A, — X such that ®,(A;) cI'(J) for every
J € (4). Note that @ 4|, can be regarded as @,.

Here, (D) denotes the set of all nonempty finite subsets of D, A, the
standard n-simplex, and A; the face of A, corresponding to J € (4).
WewriteT', =T'(4) foreach 4 € (D) and (X; ") = (X, X; I"). A subset K of
X is said to be I'-convex if for each 4 € (D), A C K implies "4 C K. For
details on G-convex spaces, see [5—9], where basic theory was extensively
developed.

Major examples of other G-convex spaces than convex spaces or
H-spaces are metric spaces with Michael’s convex structure, Pasicki’s
S-contractiblespaces, Horvath’s pseudoconvex spaces, Komiya’sconvex
spaces, Bielawski’s simplicial convexities, Joo’s pseudoconvex spaces,
topological semilattices with path connected intervals, and so on. For the
literature, see [6—8].

Recently, the second author [5] gave new examples of G-convex spaces
and, simultaneously, showed that some abstract convexities of other
authors are simple particular examples of our G-convexity. Such
examples are L-spaces of Ben-El-Mechaiekh e al., continuous images
of G-convex spaces, Verma’s generalized H-spaces, Kulpa’s simplicial
structures, P, ;-spaces of Forgo and Joo, generalized H-spaces of
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Stacho, and Llinares’s mc-spaces. Further examples of L-spaces are
spaces with B'-simplicial convexity, hyperconvex metric spaces due to
Aronszajn and Panitchpakdi, and Takahashi’s convexity in metric
spaces. For the literature, see [5].

A nonempty topological space is acyclic if all of its reduced Cech
homology groups over rationals vanish. For topological spaces X and Y
a multimap 7: X —o Y is called an acyclic map if it is upper semicontin-
uous with compact acyclic values.

The following coincidence theorem is a particular form of Park and
H. Kim [7, Theorem 1]:

THEOREM 1 Let X be a Hausdorff compact topological space, (Y, D;T")
a G-convex space,and F: X —o Y, G: X —o D multimaps and T: Y —o X an
acyclic map such that

(1) foreach x € X, A € (Gx) impliesT 4 C Fx;
(2) X={IntxG™y: y € D}, where Inty A denotes the interior of A in X.

Then there exist points xg € X and yo € Y such that yo € Fxo and xo € Ty,.

Note that if Y= D is a convex space, I'= co, the convex hull, and T
has convex values, then Theorem 1 reduces to Browder [1, Theorem 7];
and further if X = Y and T = idy, the identity map of X, then Theorem 1
reduces to a generalized form of the Fan—Browder fixed point theorem
[1, Theorem 1].

3. THE SADDLE POINT THEOREM

We begin with the following lemma:

LEMMA Let X and Y be topological spaces, f: X x Y — R a real function
on the product space X x Y, and

h(x) := J1')16111;f(x,y) and Fx :={ye€Y: f(x,y) =h(x)} forx¢eX.

(1) Iff(., ) is upper semicontinuous on X for each y € Y andinf,cy f(x,y)
exists for each x € X, then h: X — R is upper semicontinuous.

) If f(-,y) is upper semicontinuous on X for each y € Y and f is lower
semicontinuous on X X Y and if Y is a Hausdorff compact space, then
F: X —o Y is upper semicontinuous.
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) If f(x,-) is lower semicontinuous on Y for each x€X and
g(y) :=sup,exf(x,y) exists for each y€ Y, then g: Y — R is lower
semicontinuous.

Proof (1)Letxq€ X and r € R such that i(xp) < r. Then there is a point
¥o € Y such that f(xo, yo) < r. Since f(-, yo) is upper semicontinuous on
X, there exists a neighborhood U of x, in X such that f(x, yo) <r for
all xe U and hence h(x) <f(x,yo) <r for all xe U. Thus & is upper
semicontinuous.

(2) Since f(x,-) is lower semicontinuous on the compact set Y,
inf, ¢ yf(x, y) exists for each x € X. We first claim that F has a closed
graph. Let (x,,»,) be a net in the graph Gr(F) of F such that
(Xas Vo) — (X0, ¥0). Since f is lower semicontinuous on X x Y,
(Xa» Vo) € Gr(F), and h is upper semicontinuous, we have

f(x0>y0) < liminff(xaa})a) < lim Suph(xa)

< h(x0) < f(x0,0)

and hence f(xg, yo) = h(xo); that is (xg, yo) € Gr(F). Thus F has closed
graph. Since Y is compact, it is well known that F is upper
semicontinuous.

(3) Let yg € Yand r € Rsuch that g( yo) > r. Then thereis a point xg € X
such that f(xg, yo) > r. Since f(xo, -) is lower semicontinuous on Y, there
exists a neighborhood V of y in Y such that f(xo,y) >r for all ye V
and hence g(y) >f(xg,y)>r for all ye V. Hence g: Y —R is lower
semicontinuous. This completes the proof.

Motivated by [3], we obtain the following:

THEOREM 2 Let (X;I') be a G-convex space and Y a Hausdorff
compact space. Let f: X x Y — R be a lower semicontinuous real function
such that

(1) foreachye€ Y, supxexf(x,y) exists,

(2) foreachy€ Y, f(-,y) is upper semicontinuous-on X;

(3) foreachyc Y andt e R, the set {x € X: f(x, y) > t} is I'-convex;

4) foreach x€ X, f(x,-) — supyexf(x, ) is lower semicontinuous on Y,
(5) foreachx e X, the set {y € Y: f(x,y) =min,cyf(x,y)} is acyclic; and
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(6) for each sequence {x;}xen in X, there exist a subsequence {x, },cn
of {Xi}ren and a point X € X such that

f(%,y) > limsupf(x,y) forallyeY.
n—00
Then f has a saddle point (xg, yo) € X X Y, that is,

max f(x, yo) = f (%o, y0) = r;lei;lf (x0,¥)-

Proof 1. Define a multimap 4: X —o Y by

Ax:={yeY: f(x,) =I;n€ill}f(x,y)}-

Since Y is compact, 4 is upper semicontinuous by (2) and Lemma, and
A has closed acyclic values by (5).
Define a function g: Y — R by

g(y) = supf(x,y).
xeX

Then gislower semicontinuous by (1) and Lemma because f(x, -) is lower
semicontinuous on Y for each x € X.
For any k € N, let a multimap By : Y —o X be defined by

By ={x € X:f(x,y) > g(y) — 1/k}.

Then By has I'-convex values by (3) and open fibers since f(x, -) — g() is
lower semicontinuous by (4). By Theorem 1, there exist points x; € X and
Vi € Y such that y; € Ax; and x; € B y,. Hence we have

SO, y) = f(xrsyx) > g(yx) —1/k forallkeN and ally € Y.

I1. By (6), there exist a subsequence {xx, } ,cn Of {Xk}xen and a point
Xo € X such that

S (x0,y) > limsup f(xx,,y) forallye Y.
n—00

Since Y is compact there are a subnet {y,} of {yx, },cy and apoint yo € ¥
such that y, — y,. Since minycy f(Xo,y) = f(xo, y) for some y € Y and
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S (%0, 7) > g(ya) —1/aforall @, and g is lower semicontinuous, it follows
that

f(x()a yO)
> mip £(x0,3) = (¥5) 2 lm sup (x,,5) > lim sup//(xs, )

> liminf (g(ya) — 1/a) > g(r0) > f (%0, y0)

and hencef (Xo, yo) = minyeyf (X0, ) = &(¥o) = supxexf (x, yo). Thiscom-
pletes the proof.

Thefollowingsaddle point theoremisa generalization of [3, Theorem 3]
to G-convex spaces.

THEOREM 3  Let (X;T) be a G-convex space and Y a Hausdorff compact
connected space. Let - X x Y — R be a lower semicontinuous real function
and minye y Supxex.f (X, y) < 400 such that

(1) foreachy€ Y, f(-,y) is upper semicontinuous on X,

(2) foreachye Y andteR, the set {x € X: f(x,y) > t} is I'-convex;

(3) foreachx € X, the set {y € Y: f(x, y) =min,cyf(x,y)} is acyclic; and

@) {f(x,-):x € X}isequicontinuous and closedin C(Y), where C(Y) is the
Banach space of all continuous real functions defined on Y equipped
with the supremum norm.

Then f has a saddle point (xg, yo) in X x Y.

Proof 1. Since {f(x,-): x€ X} is equicontinuous, Y is compact and
connected, and min, e y SUpxexf(x, ¥) <400, it follows that fis bounded
from above (see the proof of [3, Theorem 3]); thatis, thereis a real number
M such that

flx,y) <M forall (x,y)e Xx Y.
II. Define a multimap 4 : X —o Y by

Ax:={y € Y: f(x,y) = min f(x,7)}.

Then A is upper semicontinuous by (1) and Lemma, and 4 has closed
acyclic values by (3). A function g: Y — R defined by

g(y) :==supf(x,y)
xeX
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is continuous by the equicontinuity of {f(x,-): x € X'}. For any k€N,
let a multimap By : Y —o X be defined by

Byy :={x € X: f(x,y) >g(y) —1/k}.

Then By has I'-convex values by (2) and open fibers since f(x, -) — g(-) is
continuous. By Theorem 1, there exist points x; € X and y; € Y such that
Yr € Ax; and x; € Byyx. Hence we have

M > f(xg,y) > f(xksyx) > 8(yx) — 1/k forallke Nandallye Y.

Since g is continuous on the compact set Y, {g(yx) — 1/k: k€N} is
bounded (from below). Therefore, { f(xy, -): kK € N} is bounded in C(Y).

II1. Since { f (xx, -): k € N} is equicontinuous and bounded in C(Y), by
the Arzela—Ascoli Theorem, {f(xi,-): k € N} is relatively compact in
C(Y). We may suppose that { f(xx, ) }xen cOnverges uniformly to f'(xo, -)
forsome xo € X and { y;}renconverges to a point yg € Y (because { f(x, -):
x € X} is closed in C(Y') and Y is compact).

Since minycyf(Xo,y) = f(xp,¥) for some y € Y and the inequality
S (xk,7) > g(yi) — 1/k for all k € N, it follows that

S (x0,30) > Iyneipf(xo,y) = f(x0,7) = klilgof(xkaf)
> kli_{glo(g(yk) — 1/k) = g(yo0) > f (X0, 0)-

Therefore, (x, yo) is a saddle point of f. This completes the proof.

COROLLARY Let X be a convex space and Y a Hausdorff compact
connected space. Let f: X x Y — R be a continuous real function which is
quasiconcave in its first variable and quasiconvex in its second variable and
satisfies min,c y Supyexf(x,y) < +oo. Let the family {f(x,-): x€ X} be
equicontinuous and closed in C(Y). Then f has a saddle point in X x Y.

Note that Theorem 3 generalizes the result [3, Theorem 3] for convex
setsin topological vector spaces in several points of view. Here, convexity
of the involved sets can be replaced by I'-convexity or acyclicity, and
continuity of the involved functions by upper semicontinuity in some
variable or lower semicontinuity. Moreover, Corollary is a special case of
Theorem 3 for convex spaces due to Lassonde.
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If condition (4) of Theorem 3 is replaced by
@) {f(x,-): xe X} C C(Y) is sequentially compact,
then Theorem 3 can be deduced from Theorem 2.

THEOREM 4  Under the hypotheses of Theorem 2, we have the minimax
theorem

min su X,y) = supmin f(x, y).
yeyxegf( ¥) xe)gyeyf( »)

Proof Theorem 2 implies that there exists a point (xo, yo) € X X Y such
that

sup f(x,30) =f(x0,0) = ryrglylf (%0,¥)-

As in the proof of Theorem 2, sup,exf(x,-) is lower semicontinuous
on the compact set Y and min,cy/f (-, y) is upper semicontinuous on X,
and hence we conclude that

minsup f(x,y) < sup f(x,y0) = min f(xg,y) < supmin f(x,y).
YeY xex xeX yey xeXx YeY

The inequality min,c y Supxexf(x, ) > supyex min,c yf (x, y) is obvious.
This completes the proof.

We have seen that the minimax theorem can be deduced from the
saddle point theorem. For minimax theorems on convex sets in topo-
logical vector spaces, see [2, Theorem 4].
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