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1. INTRODUCTION

The numerous applications and generalizations ofJohn von Neumann’s
classical minimax theorem [4] constitute an important branch ofmodern
convex analysis. One of the main purposes of these generalizations
was to eliminate the underlying convexity structure from the original
hypothesis.
On the otherhand, theconvexity ofsubsets oftopological vector spaces

was extended to convex spaces by Lassonde, to C-spaces (or H-spaces)
by Horvath, and to G-convex spaces (or generalized convex spaces) by
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the second author; for the literature, see [6-9]. It is known that the KKM
theory, fixed point theory, and other equilibrium results are now well-
developed in these abstract convexities.

In the present paper, from a coincidence theorem due to Park and
H. Kim [7, Theorem 1], we deduce saddle point theorems on G-convex
spaces. The coincidence theorem is a far-reaching generalized form of
the Fan-Browder fixed point theorem [1, Theorem 1] and Browder’s
coincidence theorem [1, Theorem 7]. This was used by Komiya [3] to
obtain a saddle point theorem. We show that Komiya’s theorem can be
sharpened in several aspects; namely, under less restrictive hypothesis we
can obtain the same conclusion for a generalized convex space.

2. PRELIMINARIES

A generalized convex space or a G-convex space (X, D; P) consists of
a topological space X, a nonempty set D, and a multimap 1 (D) --o X
such that for each A E (D) with the cardinality IA[ n / 1, there exists a
continuous function ffA:An X such that A(Aj)C 1"(J) for every
JE (A). Note that ffA I/x can be regarded as j.

Here, (D) denotes the set of all nonempty finite subsets of D, An the
standard n-simplex, and Aj the face of An corresponding to J
Wewrite 1" 1"(A) for eachA (D) and (X; 1") (X, X; 1"). A subset Kof
X is said to be F-convex if for each A (D), A C K implies 1a C K. For
details on G-convex spaces, see [5-9], where basic theory was extensively
developed.
Major examples of other G-convex spaces than convex spaces or

H-spaces are metric spaces with Michael’s convex structure, Pasicki’s
S-contractible spaces,Horvath’s pseudoconvex spaces,Komiya’s convex
spaces, Bielawski’s simplicial convexities, Joo’s pseudoconvex spaces,
topological semilattices with path connected intervals, and so on. For the
literature, see [6-8].

Recently, the second author [5] gave new examples ofG-convex spaces
and, simultaneously, showed that some abstract convexities of other
authors are simple particular examples of our G-convexity. Such
examples are L-spaces of Ben-E1-Mechaiekh et al., continuous images
of G-convex spaces, Verma’s generalized H-spaces, Kulpa’s simplicial
structures, P1,]-spaces of Forgo and Jo6, generalized H-spaces of
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Stach6, and Llinares’s mc-spaces. Further examples of L-spaces are
spaces with B’-simplicial convexity, hyperconvex metric spaces due to

Aronszajn and Panitchpakdi, and Takahashi’s convexity in metric
spaces. For the literature, see [5].
A nonempty topological space is acyclic if all of its reduced (ech

homology groups over rationals vanish. For topological spaces Xand Y
a multimap T: X--o Y is called an acyclic map if it is upper semicontin-
uous with compact acyclic values.
The following coincidence theorem is a particular form of Park and

H. Kim [7, Theorem 1]:

THEOREM Let Xbe a Hausdorffcompact topological space, ( Y, D; F)
a G-convex space, andF: X-o Y, G X-oD multimaps and T: Y--o Xan

acyclic map such that

(1) for each x E X, A (Gx) implies FA C Fx;
(2) X=U{IntxG-y:y D}, where IntxA denotes the interior ofA in X.

Then there exist points Xo XandYo Ysuch that Yo Fxo and Xo Tyo.

Note that if Y=D is a convex space, F- co, the convex hull, and T
has convex values, then Theorem reduces to Browder [1, Theorem 7];
and further ifX Yand T- idx, the identity map ofX, then Theorem
reduces to a generalized form of the Fan-Browder fixed point theorem
[1, Theorem ].

3. THE SADDLE POINT THEOREM

We begin with the following lemma:

LEMMA Let Xand Ybe topological spaces,f: X x Y-- IR a realfunction
on the product space X x Y, and

h(x) := inf f(x,y) and Fx := ,[y Y: f(x, y) h(x)} for x X.
yEY

(1) Iff(., y) is upper semicontinuous on Xfor each y Yandinfyrf(x, y)
existsfor each x X, then h X--+ I is upper semicontinuous.

(2) Iff(.,y) is upper semicontinuous on Xfor each y Y andf is lower
semicontinuous on X x Yand if Y is a Hausdorffcompact space, then
F: X--o Y is upper semicontinuous.
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(3) If f(x,.) is lower semicontinuous on Y for each x EX and
g(y) := supxxf(x, y) exists for each y Y, then g" Y IR is lower
semicontinuous.

Proof (1) Let Xo E Xand r E I such that h(xo) < r. Then there is a point
y0 E Y such that f(xo, yo) < r. Since f(., Y0) is upper semicontinuous on
X, there exists a neighborhood U of x0 in X such that f(x, Yo) < r for
all x E U and hence h(x)<f(x, Yo)< r for all x E U. Thus h is upper
semicontinuous.

(2) Since f(x,.) is lower semicontinuous on the compact set Y,
infy yf(x, y) exists for each x E X. We first claim that F has a closed
graph. Let (x,y) be a net in the graph Gr(F) of F such that
(x,y) (x0,Yo). Since f is lower semicontinuous on X x Y,
(x,y) Gr(F), and h is upper semicontinuous, we have

f(xo,yo) <_ liminff(x,y) <_ limsuph(x)

<_ h(xo) <_f(xo,Yo)

and hence f(xo, Yo) h(xo); that is (Xo, Yo) Gr(F). Thus F has closed
graph. Since Y is compact, it is well known that F is upper
semicontinuous.

(3) LetY0 Yand r E II such that g(y0) > r. Then there is a point Xo X
such thatf(x0, Yo) > r. Sincef(xo, .) is lower semicontinuous on Y, there
exists a neighborhood V of Y0 in Y such that f(xo, y) > r for all y V
and hence g(y)>f(xo, y)> r for all y V. Hence g: YIt is lower
semicontinuous. This completes the proof.

Motivated by [3], we obtain the following:

THEOREM 2 Let (X;I’) be a G-convex space and Y a Hausdorff
compact space. Letf: X x Y-- I be a lower semicontinuous realfunction
such that

(1) for each y Y, SUpxxf(x, y) exists;
(2) for each y Y,f(., y) is upper semicontinuous,on X;
(3) for each y Y and I, the set {x X:f(x, y) > t} is F-convex;
(4) for each x X,f(x, .) SUpxxf(x, .) is lower semicontinuous on Y;
(5) for each x X, the set {y Y:f(x, y) miny,f(x,y)} is acyclic; and
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(6) for each sequence {xk}kr in X, there exist a subsequence
of{x}r and a point Yc E Xsuch that

f(, y) >_ lim supf(xk,, y) for all y E Y.

Thenfhas a saddle point (Xo, yo) X x Y; that is,

max f(x, yo) f(xo, Yo) min f(xo, y).
xX yY

Proof I. Define a multimap A’X-o Yby

Ax {y Y: f(x, y) min f(x, y)}.
yaY

Since Y is compact, A is upper semicontinuous by (2) and Lemma, and
A has closed acyclic values by (5).

Define a function g" Y- ]R by

g( y) supf(x, y).
xGX

Thengis lower semicontinuous by (1) and Lemma becausef(x, .) is lower
semicontinuous on Y for each x X.
For any k 11, let a multimap Bk" Y--o X be defined by

Bky := {x E X: f(x, y) > g(y) 1/k}.

Then B has I’-convex values by (3) and open fibers sincef(x, .) g(.) is
lower semicontinuous by (4). By Theorem 1, there exist pointsx E Xand
yk E Y such thaty Axe, and x Byk. Hence we have

f(xk,y) >f(xk, y) > g(y:) 1/k for all k E N and all y Y.

II. By (6), there exist a subsequence {xg, }nll of {x}ger and a point
x0 X such that

f(xo, y) >_ lim supf(xk,,y) for all y Y.

Since Yis compact there are a subnet {y} of {Y, }hen and a point y0 Y
such that y Yo. Since minyerf(xo, y) f(xo,) for some j7 E Y and
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f(x, y) > g(y) 1/a for all a, and gis lower semicontinuous, it follows
that

f(xo,Yo)
>_ min f(xo, y) f(xo,) >_ lim supf(xg,, p) > lim supf(x, 37)

yE Y n--c a

>_ liminf(g(y)- l/a)>_ g(Yo) >_f(xo,Yo)

andhencef(x0, Y0) minyrf(x0, y) g(Yo) SUpxxf(x, Yo). Thiscom-
pletes the proof.

Thefollowing saddlepointtheoremis a generalization of[3, Theorem 3]
to G-convex spaces.

THEOREM 3 Let (X; I’) be a G-convex space and Ya Hausdorffcompact
connectedspace. Letf: X x Y It be a lower semicontinuous realfunction
andminy rSUpxxf(x, y) < +o such that

(1) for each y Y,f(., y) is upper semieontinuous on X;
(2) for each y Yand ., the set {x X:f(x, y) > t} is F-convex;
(3) for each x X, the set {y Y:f(x, y) minyrf(x, y)} is acyelic; and
(4) {f(x, .): x X} is equicontinuous anddosedin C(Y), where C(Y) is the

Banaeh space of all continuous realfunctions defined on Y equipped
with the supremum norm.

Thenfhas a saddle point (Xo, Yo) in X x Y.

Proof I. Since {f(x, .): x X} is equicontinuous, Y is compact and
connected, and minyrSUpxxf(x, y) < +c, it follows thatfis bounded
from above (see the proofof[3, Theorem 3]); that is, there is a real number
M such that

f(x, y) <_ M for all (x, y) E X x Y.

II. Define a multimap A :X-o Yby

Ax {y Y" f(x, y) min f(x, y)}.
yEY

Then A is upper semicontinuous by (1) and Lemma, and A has closed
acyclic values by (3). A function g: Y I defined by

g(y) := supf(x, y)
xX



SADDLE POINT THEOREMS 403

is continuous by the equicontinuity of {f(x, .)" x E X}. For any k E N,
let a multimap Bk" Y-o J(be defined by

Bky := {x X: f(x, y) > g( y) l/k}.

Then B has F-convex values by (2) and open fibers sincef(x, .) g(.) is
continuous. By Theorem 1, there exist pointsx E Xand yk E Ysuch that

Yk AXk and x, B,yk. Hence we have

M >_f(xk,y) >_f(xk, y) > g(yk) 1/k for all k @ It and all y Y.

Since g is continuous on the compact set Y, {g(Yk)- l/k: k lt} is
bounded (from below). Therefore, {f(xk, "): k NI} is bounded in C(Y).

III. Since {f(xk, .): k E NI} is equicontinuous and bounded in C(Y), by
the Arzelt-Ascoli Theorem, {f(x,, .): k ll} is relatively compact in
C(Y). We may suppose that {f(Xk, .)}kr converges uniformly tof(x0, ")
for some x0 Xand {yk}krconverges to a pointy0 Y(because {f(x, .):
x X} is closed in C(Y) and Y is compact).

Since minyerf(xo,y)=f(xo,p) for some E Y and the inequality
f(xk,) > g(Yk) 1/k for all k NI, it follows that

lim f(xk,)f(xo,Yo) >_ min f(xo,y) f(x0,)
yEY

>_ lim (g(yg) l/k) g(Yo) >_f(xo,Yo).
k---cz

Therefore, (x0, Y0) is a saddle point off. This completes the proof.

COROLLARY Let X be a convex space and Y a Hausdorff compact
connected space. Letf: X x Y--. I be a continuous realfunction which is

quasiconcave in itsfirst variable andquasiconvex in its second variable and

satisfies miny rSUpxxf(x, y) < +cxz. Let the family {f(x, .): x X) be
equicontinuous and closed in C( Y). Thenfhas a saddle point in X Y.

Note that Theorem 3 generalizes the result [3, Theorem 3] for convex
sets in topological vector spaces in several points ofview. Here, convexity
of the involved sets can be replaced by F-convexity or acyclicity, and
continuity of the involved functions by upper semicontinuity in some
variable or lower semicontinuity. Moreover, Corollary is a special case of
Theorem 3 for convex spaces due to Lassonde.
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If condition (4) of Theorem 3 is replaced by
(4’) {f(x, .): x X} c C(Y) is sequentially compact,

then Theorem 3 can be deduced from Theorem 2.

THEOREM 4
theorem

Under the hypotheses of Theorem 2, we have the minimax

min sup f(x, y) sup min f(x, y).
yE Y xEX xX YY

Proof Theorem 2 implies that there exists a point (x0, Y0) X Ysuch
that

sup f(x, yo) f(xo,Yo) min f(xo,y).
xX YY

As in the proof of Theorem 2, SUpxExf(x, .) is lower semicontinuous
on the compact set Y and miny ,f(., y) is upper semicontinuous on X,
and hence we conclude that

min sup f(x, y) < sup f(x, Y0) min f(x0, y) < sup min f(x, y).
Y Y xX xX YY xEX YY

The inequality minyrsupxf(x, y) >_ SUpxxminyyf(x, y) is obvious.
This completes the proof.

We have seen that the minimax theorem can be deduced from the
saddle point theorem. For minimax theorems on convex sets in topo-
logical vector spaces, see [2, Theorem 4].
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