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An attempt is made to study the problem of existence of singular solutions to singular
differential equations of the type

(ly’l-) + q(t)lyl O, (,)

which have never been touched in the literature. Here a and/3 are positive constants and
q(t) is a positive continuous function on [0, oo). A solution with initial conditions given at

0 is called singular if it ceases to exist at some finite point TE (0, oo). Remarkably
enough, it is observed that the equation (,) may admit, in addition to a usual blowing-up
singular solution, a completely new type of singular solution y(t) with the property that

lim ly(t)l < and lim ""lY’t)l o.
t--*T-O t---*T-O

Such a solution is named a black hole solution in view ofits specific behavior at T. It is
shown in particular that there does exist a situation in which all solutions of (,) are black
hole solutions.
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0. INTRODUCTION

This paper is concerned with the singular differential equation

([y’l-) + q(t)lYl O, O, (A)

where a and /3 are positive constants, and q: [0, )(0, cx) is a
continuous function. There has been an increasing interest in the
qualitative study of singular differential equations (see e.g. [1-4]), but
nothing is known about singular equations with singularities in the
principal differential operators, of which (A) is a prototype.
Our purpose here is to make a detailed analysis of the behavior of

solutions of (A), thereby demonstrating that (A) may have a class of
strange solutions, called black hole solutions, which have never appeared
in the literature.

Let Y0 E and Yl E IR\{0} be any given constants and let y(t) denote
the solution of (A) satisfying the initial conditions

y(0) Y0, y’(0) Yl- (1)

It is easy to see that y(t) is uniquely determined at least locally and is
strictly monotone as long as it exists. Let [0, Ty) denote the maximal
interval of existence ofy(t). The solution y(t) is called proper or singular
according as Ty o or Ty < o. There are two possible cases for singular
solutions y(t) of (A): Either

or

lim [y(t)[ c, lim ly’(t)[ , (2)
t--Ty-O t-- Ty-O

lim ly(t)[< o, lim [y’(t)[--o. (3)
t--- Ty-O t--- Ty-O

A singular solution satisfying (2) or (3) is referred to as a blowing-up
solution or a black hole solution, respectively. The latter is a new type of
solution totally unknown in the textbooks or research articles.
The existence of these two types of singular solutions of (A) is

established in Section 2, which is preceded by an analysis of proper
solutions of (A) made in Section 1. In Section 3 an attempt is made to
extend the results for (A) to a slightly more general singular equations of
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the form

(p(t) lY’l-) + q(t)lYl 0, _> 0,

wherep" [0, c) (0, cx) is a continuous function.

(B)

1. PROPER SOLUTIONS

Our first task is to discuss the problem of existence of proper solutions
for the Eq. (A).

THEOREM The Eq. (A) has aproper solution ifand only if

" tq(t) dt < o. (4)

Proof (The "only if" part) Suppose that (A) has a proper solution y(t).
Since ly’(t)[ is increasing on [0, c) by (A), y(t) is either increasing and
eventually positive or decreasing and eventually negative. It suffices
to deal with the former case. Let to _> 0 be such that y(t) > 0 and y’(t) > 0
for > to. Then

y’(t) > y’(to) and y(t) > y(to) + y’(to)(t- to), t>_ to. (5)

Integrating (A) on [to, t] and letting -- , we obtain

q(t)(y(t)) dt <

This combined with the second inequality of (5) shows that

(y’(to)) (t- to)q(t)dt <_ q(t)(y(t)) dt < o,

which implies (4)
(The "if" part) Assume that (4) holds. LetY0 > 0 be an arbitrarily fixed

constant. We show that (A) has both increasing and decreasing proper
solutions emanating from the initial point (0, Y0).
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Choose first a constant ]1 > 0 sufficiently small so that

(Yo + r/ t)q(t) dt <_ (2 1)r/]-, (6)

and define the set Yc C[0, o) and the integral operator ’" Y C[0,)
by

{Y= y E C[0, o)" Yo +-f < y(t) < Yo + 71t, >_ 0 (7)

and

(.y)(t) Yo + fo + q(r)(y(r)) dr ds, > O, (8)

respectively. That .T maps Yinto itself is guaranteed by (6). It is easy to
show that .T is a continuous mapping and .T(Y) is a relatively compact
subset of C[0, ). The Schauder-Tychonoff fixed point theorem,
therefore, ensures the existence of a fixed element y E Y of.T, which, in
view of (8), satisfies

y(t) Yo + rl-{ + q(r)(y(r)) dr ds, > 0. (9)

From (9) we conclude that y(t) is a positive increasing solution of (A)
defined on [0, c) and satisfying limt_o y’(t) rll > O.

Let 1 > 0 be a constant such that

(Yo + 2(lt)q(t) dt < (1 2-a)(i-a (lO)

and consider the set Z c C[O, c) and the mapping Z C[O,)
defined by

Z {z C[O, cx)" yo- 2t

_
z(t) <_ Yo- (it, >_ O} (11)

and

(z)(t) Yo (? q(r) Iz(r)18 dr ds, t_>O. (12)
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Then, as is easily verified, the Schauder-Tychonofffixed point theorem
applies, and there exists an element z E Z such that z z, that is,

z(t) yO foot [({ fs q(r)[z(r)l drl
-]/

ds, t>0. (13)

It follows that z(t) is a decreasing proper solution of(A) on [0, cxz) which
is eventually negative and satisfies limtoz’(t)=-] <0. The case
where Y0 < 0 can be treated similarly. This completes the proof.

Remark 1 Suppose that

tq(t) dt o. (14)

It then follows from Theorem that (A) has no proper solution, and
consequently all of its solutions are singular.

Remark 2 Let y(t) be a proper solution of(A). Since ly’(t)l is increasing
by (A), ly(t)l grows to infinity at least as fast as a constant multiple of
as cx. Such a solution y(t) is said to be subdominant if ly(t)l grows
exactly like a constant multiple of as o, that is, limtoy(t)/t=
limt_oy’(t) const. -7/: 0. The coexistence ofboth subdominantandnon-
subdominant solutions can take place as the following example shows.

Example 1 Consider the equation

(ly’l-) + cee-(+a)/lyl 0, >_ 0. (5)

Since (4) is satisfied by q(t)=ae-+)t, this equation possesses sub-
dominant proper solutions by the proofofTheorem 1. Note thaty(t) e
is a non-subdominant proper solution of (15).

2. SINGULAR SOLUTIONS

Let us turn our attention to singular solutions ofthe Eq. (A). Surprisingly
it turns out that the behavior ofsingular solutions of(A) in the case a >
is distinct from that of (A) in the case a < 1.
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THEOREM 2
solutions.

The Eq. (A) with a < 1 alwayspossesses blowing-up singular

To prove this theorem we need the following lemma comparing the
behavior of solutions of the two singular differential equations

(16)

(17)

where a(t) and A(t) are positive continuous functions on [0, T).

LEMMA Suppose that a(t) <_ A(t) on [0, T). Let u(t) and v(t) be positive
increasing solutions of (16) and (17), respectively, existing on [0, T). If
u(O) < v(O) and u’(O) < v’(O), then u(t) < v(t) and u’(t) < v’(t) on (0, T)o

Proof ofLemma 1
t[O, T)

We integrate (16) and (17) from 0 to to obtain for

u’(t) (u’(0))- a(s)(u(s)) ds

u(t) u(0)+ f0 (u’(0))- a(r)(u(r)) d

(8)

v’(t) (v’(O))- A(s)(v(s)) ds

v(t) v(0) + (v’(0))- A(r)(v(r)) dr ds.

ds, (19)

(20)

(21)

Since u(0)< v(0) and u’(0)< v’(O), there exists 7-E(0, T) such that
u(t) < v(t) for E (0, 7-). Suppose now that the conclusion ofthe lemma is
false. Then there exists to (0, T) such that u(t) < v(t) for (0, to) and
U(to) V(to). We then easily see that

I(u’(O))-a o’ta(s)(u(s)) ds1-1/a
[ fOO I -1/a< (v’(0))-" A(s)(v(sl)ds (22)
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for E (0, to], which implies that the right hand side of (21) is greater than
that of (19) for all E (0, to]. This, however, is a contradiction, because
the left hand sides of (19) and (21) coincide at to. Therefore, we must
have u(t)< v(t) for (0, T). That u’(t)< v’(t) on (0, T) is an imme-
diate consequence of (18), (20) and (22). The proof of Lemma is thus
complete.

Proof of Theorem 2 Let y(t) be a positive increasing solution of (A)
satisfying (1). Let a subinterval [0, to] of [0, o) be fixed. Put q0

min/[0,/01 q(t) > 0 and consider the singular differential equation

+ q0lz[ 0. (3)

Let z(t) be the solution of (23) subject to the same initial condition as
y(t), i.e., z(0)= Yo and z’(0)= Yl, and let J denote its maximal interval
of existence. Multiplying (23) by z’(t), we have

O
J, (24)

which, upon integration, gives

where 7 qo(1 -a)/a( + 1). From (25) we see that z(t) is determined
implicitly by the equation

fz/t J. (26)

Since

d
7"0"--

[,.y(3+l_yo+l)+y_o]l/(l_oO
< cxz, (27)

the relation (26) shows that z(t) exists onJ [0, -0) and blows up at o.
Choose Yl > 0 so large that 0 < to, which is possible since -o 0 as
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Yl-- x3, and consider y(t) and z(t) determined by such initial values
{Y0,Yl) at =0. Comparison of (A) with (23) then shows by Lemma
that y(t) > z(t) on a common interval oftheir existence, from which it fol-
lows that y(t) must blow up at some finite point less than r0. This
completes the proof ofTheorem 2.

THEOREM 3 Suppose that q(t) is continuously differentiable on [0, c).
The Eq. (A) with a > has no blowing-up singular solutions.

Proof Let y(t) be a blowing-up solution of (A). Without loss of
generality we may suppose that y(t) and y’(t) are positive on [0, T),
0 < T<, and limtr_0 y(t)= limtr_oy’(t)--o. Define the function
V[y](t) by

V[y](t)
a 1- q(t) (y(t))+ E [0, T). (28)

a-
(y’(t)) + +

As is easily verified, V[y](t) is positive and satisfies

d q’(t) (y(t))+ (29)d--t V[y](t) =/ +

whence it follows that

d q_(t)
d--t V[y](t) < q(t)

V[y](t), [0, r), (30)

where q+ (t) max{q’(t), 0}. Integrating (30), we have

(f0 )V[y](t) < V[y](0) exp q+(s)
ds

q(s)
E [0, T). (31)

Letting T-0 in (31), we find that the right hand side remains
bounded, while the left hand side tends to o since (y’(t))l-O and
q(t)(y(t))+1 . This contradiction proves the truth ofthe conclusion
of the theorem.

Combining Theorem with Theorem 3 enables us to indicate a
situation in which the equation (A) really possesses black hole solutions.



SINGULAR SOLUTION 495

THEOREM 4 Suppose that q(t) is continuously differentiable on [0, c).
All solutions of(A) are black hole solutions ifa > 1 and the condition (14)
holds.

Example 2 Consider the equation

(ly’l-) + "lyl 0, > 0,

where , is a positive constant. All solutions of (32) are singular because
q(t) =’ satisfies (14) (Theorem 1). There exist blowing-up solutions of
(32) ifa < (Theorem 2) and all solutions of(32) are black hole solutions
if a > (Theorem 4). The same property is enjoyed by the Eq. (A) with
q(t) E C1[0, c) satisfying lim inft_o t+lq(t) > O.

3. EXTENSION

The above-mentioned results for (A) can be extended to the
Eq. (B) provided the function p(t) satifies the condition

(p(t))l/ dt o. (33)

This is a direct consequence of the fact that the change of variables
(t, y) (7-, Y) defined by

7- P(t), Y(7-) y(t), (34)

where

e(t) (35)

transforms (B) into the equation

(I I]-’)’+Q(’r)l Y[ O, 7- _> O, (36)

where Q(7-) (p(t))-l/’q(t) and a dot denotes differentiation with respect
to 7-. Application of Theorems 1-4 to (36) yields the statements for
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(B) listed below.

(i) The Eq. (B) has a positive increasing proper solution if and only
if

(P(t))q(t) dt < o. (37)

(ii) The Eq. (B) with c < always possesses blowing-up singular
solutions.

(iii) Suppose thatp(t) and q(t) are continuously differentiable on [0,
The Eq. (B) with a > has no blowing-up singular solutions.

(iv) Suppose thatp(t) and q(t) are continuously differentiable on [0, o).
All positive increasing solutions of (A) are black hole solutions if
c > and

(P(t))q(t) dt cx. (38)

Example 3 From the statement (i) above it follows that the equation

(etly’l-) + e-tlyl-- 0, >_ 0, (39)

has no positive increasing proper solution. By (iv) all positive increasing
solutions of (39) are black hole solutions if a > 1. In case a < the
statement (ii) implies that (39) has blowing-up singular solutions. It is
not known if there exists a black hole solution in this case.
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