J. of Inequal. & Appl., 2000, Vol. 5, pp. 505–513 Reprints available directly from the publisher Photocopying permitted by license only

On a Further Generalization of Steffensen's Inequality

HILLEL GAUCHMAN

Department of Mathematics, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920-3099, USA

(Received 29 July 1999; Revised 3 September 1999)

Pečarić (J. Math. Anal. Appl., 104 (1984), 432–434) proved two theorems generalizing Steffensen's inequality. We extend Pečarić's results to the case of integrals over a general measure spaces. Some applications are also given.

Keywords: Steffensen's inequality; Jensen's inequality; Continuous measure space; Separating subsets

1991 Mathematics Subject Classification: Primary 26D15

1. PRELIMINARIES AND STATEMENT OF RESULTS

The most basic inequality which deals with comparison between integrals over a whole set and integrals over a subset is the following inequality, which was established by Steffensen in 1918 [5].

THEOREM A (Steffensen's inequality) Let f and g be integrable functions from [a, b] into \mathbb{R} such that f is nonincreasing and for every $x \in [a, b], 0 \le g(x) \le 1$. Then

$$\int_{b-\lambda}^{b} f(x) \, \mathrm{d}x \leq \int_{a}^{b} f(x) g(x) \, \mathrm{d}x \leq \int_{a}^{a+\lambda} f(x) \, \mathrm{d}x,$$

where $\lambda = \int_a^b g(x) \, \mathrm{d}x$.

H. GAUCHMAN

In [1], Steffensen's inequality was extended from integrals over compact intervals of the real line to integrals over general measure spaces. To state this result we need the notion of a separating subset that was introduced and studied in [1].

Let $X = (X, \mathcal{A}, \mu)$ be a measure space.

.

DEFINITION 1 Let $f \in L^0(X)$. Let $(U, c) \in \mathcal{A} \times \mathbb{R}$. We say that the pair (U, c) is upper-separating for f iff

$$\{x \in X: f(x) > c\} \stackrel{a}{\subseteq} U \stackrel{a}{\subseteq} \{x \in X: f(x) \ge c\},\$$

where $A \subseteq B$ means that A is almost contained in B. In this case, we also say that the subset U of X is upper-separating for f. We say that the pair (V, c) is lower-separating for f iff the pair $(X \setminus V, c)$ is upper-separating for f.

THEOREM B (Steffensen's inequality over a general measure space) Let $f, g \in L^1(X)$ be such that $0 \le g \le 1$ a.e. on X. Let $U, V \in A$ be respectively upper-, lower-, separating subsets for f such that $\mu(U) = \mu(V) = \int_X g \, d\mu$. Then

$$\int_V f \mathrm{d}\mu \leq \int_X f \cdot g \, \mathrm{d}\mu \leq \int_U f \mathrm{d}\mu.$$

The following definition can be found, for example in [2].

DEFINITION 2 We say that the measure space (X, A, μ) is continuous *iff* for all $A, B \in A$ such that $A \subseteq B$ and $\mu(A) < \mu(B)$, there exists an increasing mapping $\phi : [\mu(A), \mu(B)] \to A$ such that $\phi(\mu(A)) = A, \phi(\mu(B)) = B$, and $\mu(\phi(u)) = u$ for all $u \in [\mu(A), \mu(B)]$.

In the case when (X, \mathcal{A}, μ) is continuous with $\mu(X) < \infty$, the following theorem guarantees the existence of separating subsets U and V in Theorem B.

THEOREM C [1] If (X, \mathcal{A}, μ) is a continuous measure space with $\mu(X) < \infty$, then, given $f \in L^0(X)$, for any real number λ such that $0 \le \lambda \le \mu(X)$, there exist an upper-separating subset U and a lower-separating subset V for f such that $\mu(U) = \mu(V) = \lambda$.

The main results of this paper are the following two theorems generalizing the second Steffensen's inequality over a general measure space. These theorems are extentions of the results by Pečarić obtained in [3]. THEOREM 1 Let (X, \mathcal{A}, μ) be a continuous measure space with $\mu(X) < \infty$. Let $\alpha \ge 1$ be a real number and let f and g be functions on X such that $f, f^{\alpha} \cdot g \in L^{1}(X)$ and $f, g \ge 0$ a.e. on X. Set $\lambda = (\int_{X} g \, d\mu)^{\alpha}$. Let U be an upper-separating subset for f such that $\mu(U) = \lambda$. Assume that $g \cdot (\int_{X} g \, d\mu)^{\alpha-1} \le 1$ a.e. on U. Then

$$\left(\int_X gf \mathrm{d}\mu\right)^{\alpha} \leq \int_U f^{\alpha} \,\mathrm{d}\mu.$$

Remark If we assume a little bit more, namely, that $g \cdot (\int_X g \, d\mu)^{\alpha-1} \leq 1$ a.e. on X, then integrating this inequality over X, we obtain that $0 \leq \lambda \leq \mu(X)$. It will guarantee the existence of an upper-separating subset U with $\mu(U) = \lambda$. Similar remarks can be done in all following theorems and lemmas.

THEOREM 2 Let (X, \mathcal{A}, μ) be a continuous measure space with $\mu(X) < \infty$. Let $\alpha \ge 1$ be a real number and let $f, g \in L^1(X)$ be such that $f \ge 0$ and $0 \le g \le 1$ a.e. on X. Set $\lambda = (1/(\mu(X))^{\alpha-1}) (\int_X g d\mu)^{\alpha}$. Let U be an upper-separating subset for f such that $\mu(U) = \lambda$. Then

$$\frac{1}{\left(\mu(X)\right)^{\alpha-1}}\left(\int_X g \cdot f \mathrm{d}\mu\right)^{\alpha} \leq \int_U f^{\alpha} \,\mathrm{d}\mu.$$

To obtain Pečarić's inequalities from Theorems 1 and 2 we must take X = [a, b] and assume that f is nonincreasing.

As applications of Theorem 1 we obtain the following two theorems.

THEOREM 3 Let α and β be real numbers such that $\alpha > 1$, $\beta - \alpha + 1 \ge 0$, (X, A, μ) be a continuous measure space with $\mu(X) < \infty$, f be a function on X such that $f, f^{\alpha} \in L^{1}(X)$, $\int_{X} f d\mu = A$, $\int_{X} f^{\alpha} d\mu = B^{\alpha}$, and $0 \le f \le C$ a.e. on X, where A, B, and C are positive real numbers. Let U be an upperseparating subset for f with $\mu(U) = A/C$. Then

$$\int_{U} f^{\beta} \,\mathrm{d}\mu \geq \frac{1}{C} A^{-(\beta-\alpha+1)/(\alpha-1)} B^{\alpha\beta/(\alpha-1)}.$$

If C = B, we obtain a theorem proved in [1] by a different method.

H. GAUCHMAN

THEOREM 4 Let α and β be real numbers such that $\alpha > 1$, $\beta - \alpha + 1 \ge 0$, and let $(x_i)_{i=1}^n$ be a nonincreasing sequence of nonnegative real numbers such that $\sum_{i=1}^n x_i \le A$, $\sum_{i=1}^n x_i^\alpha \ge B^\alpha$, where A and B are positive real numbers. Let $k \in \{1, ..., n\}$ be such that $k \ge (A/B)^{\alpha\beta/((\alpha-1)(\beta+1))}$. Then

$$\sum_{i=1}^k x_i^\beta \geq \left(\frac{\beta^{\alpha\beta}}{A^{\beta-\alpha+1}}\right)^{\beta/((\alpha-1)(\beta+1))}$$

Taking $\beta = 1$ in Theorem 4, we obtain the following.

COROLLARY 1 Let α be a real number such that $1 < \alpha \le 2$, and let $(x_i)_{i=1}^n$ be a nonincreasing sequence of nonnegative real numbers such that $\sum_{i=1}^n x_i \le A$, $\sum_{i=1}^n x_i^{\alpha} \ge B^{\alpha}$, where A and B are positive real numbers. Let $k \in \{1, ..., n\}$ be such that $k \ge (A/B)^{\alpha/(2(\alpha-1))}$. Then

$$\sum_{i=1}^k x_i \ge \left(\frac{B^{\alpha}}{A^{2-\alpha}}\right)^{1/(2(\alpha-1))}.$$

Corollary 1 complements the following result proved in [1]: Let α be a real number such that $\alpha \ge 2$, and let $(x_i)_{i=1}^n$ be a nonincreasing sequence of nonnegative real numbers such that $\sum_{i=1}^n x_i \le A$, $\sum_{i=1}^n x_i^{\alpha} \ge B^{\alpha}$. Let $k \in \{1, ..., n\}$ be such that $k \ge (A/B)^{1/(\alpha-1)}$. Then $\sum_{i=1}^k x_i \ge B$.

Taking $\alpha = 2$, $\beta = 1$ in Theorem 4, we obtain the following corollary.

COROLLARY 2 Let $(x_i)_{i=1}^n$ be a nonincreasing sequence of nonnegative real numbers such that $\sum_{i=1}^n x_i \leq A$, $\sum_{i=1}^n x_i^2 \geq B^2$. Let $k \in \{1, ..., n\}$ be such that $k \geq (A/B)$. Then $\sum_{i=1}^k x_i \geq B$.

Corollary 2 with A = 300 and B = 100 was a problem in Moscow Mathematical Olympiad in 1954.

2. PROOFS OF THEOREMS 1-4

Proof of Theorem 1 By Jensen's inequality for convex function x^{α} with $\alpha \ge 1$,

$$\left(\int_X f \cdot g \,\mathrm{d}\mu\right)^{\alpha} \leq \left(\int_X g \,\mathrm{d}\mu\right)^{\alpha-1} \int_X f^{\alpha} \cdot g \,\mathrm{d}\mu,$$

(see Theorem 2.3 in [4]). Hence it is enough to prove that

$$\left(\int_X g \,\mathrm{d}\mu\right)^{\alpha-1} \cdot \int_X f^\alpha \cdot g \,\mathrm{d}\mu \leq \int_U f^\alpha \,\mathrm{d}\mu.$$

We proceed as follows:

$$\int_{U} f^{\alpha} d\mu - \left(\int_{X} g d\mu\right)^{\alpha-1} \int_{X} f^{\alpha} \cdot g d\mu$$

= $\int_{U} f^{\alpha} d\mu - \left(\int_{X} g d\mu\right)^{\alpha-1} \cdot \left(\int_{U} f^{\alpha} \cdot g d\mu + \int_{X \setminus U} f^{\alpha} \cdot g d\mu\right)$
= $\int_{U} f^{\alpha} \cdot \left(1 - g \cdot \left(\int_{X} g d\mu\right)^{\alpha-1}\right) d\mu - \left(\int_{X} g d\mu\right)^{\alpha-1} \int_{X \setminus U} f^{\alpha} \cdot g d\mu.$

Let c be a real number such that (U, c) is an upper-separating pair for f. Then $f \ge c$ a.e. on U. Since $1 - g \cdot (\int_X g \, d\mu)^{\alpha - 1} \ge 0$ a.e. on U, we obtain that

$$\begin{split} &\int_{U} f^{\alpha} \, \mathrm{d}\mu - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X} f^{\alpha} \cdot g \, \mathrm{d}\mu \\ &\geq c^{\alpha} \int_{U} \left(1 - g \cdot \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1}\right) \mathrm{d}\mu - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \int_{X \setminus U} f^{\alpha} \cdot g \, \mathrm{d}\mu \\ &= c^{\alpha} \left(\mu(U) - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{U} g \, \mathrm{d}\mu\right) - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X \setminus U} f^{\alpha} \cdot g \, \mathrm{d}\mu \\ &= c^{\alpha} \left(\left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha} - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \int_{U} g \, \mathrm{d}\mu\right) - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X \setminus U} f^{\alpha} \cdot g \, \mathrm{d}\mu \\ &= c^{\alpha} \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \left(\int_{X} g \, \mathrm{d}\mu - \int_{U} g \, \mathrm{d}\mu\right) - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \int_{X \setminus U} f^{\alpha} \cdot g \, \mathrm{d}\mu \\ &= c^{\alpha} \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X \setminus U} g \, \mathrm{d}\mu - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X \setminus U} f^{\alpha} \cdot g \, \mathrm{d}\mu \\ &= \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X \setminus U} g \, \mathrm{d}\mu - \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X \setminus U} f^{\alpha} \cdot g \, \mathrm{d}\mu \\ &= \left(\int_{X} g \, \mathrm{d}\mu\right)^{\alpha-1} \cdot \int_{X \setminus U} g \cdot (c^{\alpha} - f^{\alpha}) \, \mathrm{d}\mu \geq 0, \end{split}$$

where the last inequality holds since $f \leq c$ on $X \setminus U$.

Proof of Theorem 2 This theorem can be proved exactly in the same way as Theorem 1 in [3]. Therefore we omit the proof.

LEMMA 1 Let (X, \mathcal{A}, μ) be a continuous measure space with $\mu(X) < \infty$. Let α and β be real numbers such that $\alpha > 1$, $\beta - \alpha + 1 \ge 0$, and let f and g be functions on X such that $f^{\beta}, g, f^{\alpha - 1} \cdot g \in L^{1}(X)$ and $f, g \ge 0$ a.e. on X. Set $\lambda = (\int_{X} g d\mu)^{\beta/(\alpha - 1)}$. Let U be an upper-separating subset for f such that $\mu(U) = \lambda$. Assume that $g \cdot (\int_{X} g d\mu)^{(\beta - \alpha + 1)/(\alpha - 1)} \le 1$ a.e. on U. Then

$$\left(\int_X f^{\alpha-1} \cdot g \,\mathrm{d}\mu\right)^{\beta/(\alpha-1)} \leq \int_U f^\beta \,\mathrm{d}\mu$$

Proof We obtain Lemma 1 if we take $\beta/(\alpha - 1)$ instead of α and $f^{\alpha - 1}$ instead of f in Theorem 1.

Proof of Theorem 3 Set $g = C^{(1-\alpha)/\beta} A^{(\alpha-\beta-1)/\beta} f$. Then $\int_X g \, d\mu = C^{(1-\alpha)/\beta} A^{(\alpha-\beta-1)/\beta} \int_X f \, d\mu = C^{(1-\alpha)/\beta} A^{(\alpha-\beta-1)/\beta} A = (A/C)^{(\alpha-1)/\beta}$. Therefore $\mu(U) = A/C = (\int_X g \, d\mu)^{\beta/(\alpha-1)}$. Moreover,

$$g \cdot \left(\int_{X} g \, \mathrm{d}\mu\right)^{(\beta-\alpha+1)/(\alpha-1)}$$

= $C^{(1-\alpha)/\beta} \cdot A^{(\alpha-\beta-1)/\beta} \cdot f \cdot \left(\frac{A}{C}\right)^{((\alpha-1)/\beta) \cdot ((\beta-\alpha+1)/(\alpha-1))}$
= $\frac{f}{C} \le 1$ a.e. on X.

Therefore f, g and U satisfy the conditions of Lemma 1. Hence we obtain that

$$\begin{split} \int_{U} f^{\beta} \, \mathrm{d}\mu &\geq \left(\int_{X} f^{\alpha - 1} \cdot g \, \mathrm{d}\mu \right)^{\beta/(\alpha - 1)} \\ &= \left(C^{(1 - \alpha)/\beta} \cdot A^{(\alpha - \beta - 1)/\beta} \right)^{\beta/(\alpha - 1)} \cdot \left(\int_{X} f^{\alpha} \, \mathrm{d}\mu \right)^{\beta/(\alpha - 1)} \\ &= \frac{1}{C} A^{-(\beta - \alpha + 1)/(\alpha - 1)} \cdot B^{\alpha \beta/(\alpha - 1)}. \end{split}$$

LEMMA 2 (Discrete Pečarić's inequality) Let $\alpha \ge 1$ be a real number and let $(x_i)_{i=1}^n$ be a nonincreasing sequence of nonnegative real numbers. Let $k \in \{1, ..., n\}$ be such that $k \ge (\sum_{i=1}^{n} y_i)^{\alpha}$. Assume that $y_i(\sum_{i=1}^{n} y_i) \le 1$ for i = 1, ..., k. Then

$$\left(\sum_{i=1}^n x_i y_i\right)^{\alpha} \le \sum_{i=1}^k x_i^{\alpha}.$$

Proof We obtain the conclusion by applying Theorem 1 with X = (0, n]and $f = \sum_{i=1}^{n} x_i \chi_{(i-1,i]}, g = \sum_{i=1}^{n} y_i \chi_{(i-1,i]}$, where

$$\chi_{(i-1,i]} = \begin{cases} 1, & \text{if } x \in (i-1,i] \\ 0, & \text{if } x \notin (i-1,i]. \end{cases}$$

LEMMA 3 Let α and β be real numbers such that $\alpha > 1$, $\beta - \alpha + 1 \ge 0$, $(x_i)_{i=1}^n$ be a nonincreasing sequence of nonnegative numbers, and $(y_i)_{i=1}^n$ be a sequence of nonnegative real numbers. Let $k \in \{1, \ldots, n\}$ be such that $k \ge (\sum_{i=1}^n y_i)^{\beta/(\alpha-1)}$. Assume that $y_i(\sum_{j=1}^n y_j)^{(\beta-\alpha+1)/(\alpha-1)} \le 1$ for $i=1,\ldots,k$. Then

$$\left(\sum_{i=1}^n x_i^{\alpha-1} y_i\right)^{\beta/(\alpha-1)} \leq \sum_{i=1}^k x_i^{\beta}$$

Proof We obtain Lemma 3 if we take $\beta/(\alpha - 1)$ instead of α and $x_i^{\alpha - 1}$ instead of x_i in Lemma 2.

Proof of Theorem 4 If $x_j \ge (B^{\alpha\beta}/A^{\beta-\alpha+1})^{1/((\alpha-1)(\beta+1))}$ for some *j*, then

$$\sum_{i=1}^k x_i^\beta \geq x_1^\beta \geq x_j^\beta \geq \left(\frac{B^{\alpha\beta}}{A^{\beta-\alpha+1}}\right)^{\beta/((\alpha-1)(\beta+1))},$$

and we are done. Therefore without loss of generality, we can assume that

$$x_i \le \left(\frac{B^{\alpha\beta}}{A^{\beta-\alpha+1}}\right)^{1/((\alpha-1)(\beta+1))} \quad \text{for all } i \in \{1,\ldots,n\}.$$
(*)

Set $y_i = A^{-(\beta-\alpha+1)/(\beta+1)} \cdot B^{-\alpha/(\beta+1)} \cdot x_i$. Then $\sum_{i=1}^n y_i = A^{-(\beta-\alpha+1)/(\beta+1)} B^{-\alpha/(\beta+1)} \sum_{i=1}^n x_i$ $\leq A^{-(\beta-\alpha+1)/(\beta+1)} \cdot B^{-\alpha/(\beta+1)} \cdot A = \left(\frac{A}{B}\right)^{\alpha/(\beta+1)}.$

Therefore $(\sum_{i=1}^{n} y_i)^{\beta/(\alpha-1)} \leq (A/B)^{\alpha\beta/((\alpha-1)/(\beta+1))}$. Hence if $k \geq (A/B)^{\alpha\beta/((\alpha-1)(\beta+1))}$, then $k \geq (\sum_{i=1}^{n} y_i)^{\beta/(\alpha-1)}$. Moreover

$$y_i \left(\sum_{j=1}^n y_j\right)^{(\beta-\alpha+1)/(\alpha-1)}$$

$$\leq A^{-(\beta-\alpha+1)/(\beta+1)} \cdot B^{-\alpha/(\beta+1)} \cdot x_i \cdot \left(\frac{A}{B}\right)^{(\alpha/(\beta+1)) \cdot ((\beta-\alpha+1)/(\alpha-1))}$$

$$= x_i \left(\frac{A^{\beta-\alpha+1}}{B^{\alpha\beta}}\right)^{1/((\alpha-1)(\beta+1))}.$$

By (*),

$$y_i \left(\sum_{j=1}^n y_j\right)^{(\beta-\alpha+1)/(\alpha-1)} \leq \left(\frac{B^{\alpha\beta}}{A^{\beta-\alpha+1}}\right)^{1/((\alpha-1)(\beta+1))} \cdot \left(\frac{A^{\beta-\alpha+1}}{B^{\alpha\beta}}\right)^{1/((\alpha-1)(\beta+1))} = 1.$$

Therefore $(x_i)_{i=1}^n, (y_i)_{i=1}^n$, and k satisfy the conditions of Lemma 3. Hence

$$\begin{split} \sum_{i=1}^{k} x_{i}^{\beta} &\geq \left(\sum_{i=1}^{n} x_{i}^{\alpha-1} y_{i}\right)^{\beta/(\alpha-1)} \\ &= \left(\sum_{i=1}^{n} A^{-(\beta-\alpha+1)/(\beta+1)} \cdot B^{-\alpha/(\beta-1)} \cdot x_{i}^{\alpha}\right)^{\beta/(\alpha-1)} \\ &= A^{-(\beta(\beta-\alpha+1))/((\alpha-1)(\beta+1))} \cdot B^{-\alpha\beta/((\alpha-1)(\beta+1))} \cdot \left(\sum_{i=1}^{n} x_{i}^{\alpha}\right)^{\beta/(\alpha-1)} \\ &\geq A^{-(\beta(\beta-\alpha+1))/((\alpha-1)(\beta+1))} \cdot B^{-\alpha\beta/((\alpha-1)(\beta+1))} \cdot (B^{\alpha})^{\beta/(\alpha-1)} \\ &= \left(\frac{B^{\alpha\beta}}{A^{\beta-\alpha+1}}\right)^{\beta/((\alpha-1)(\beta+1))} . \end{split}$$

References

- J.-C. Evard and H. Gauchman, Steffensen type inequalities over general measure spaces, *Analysis*, 17 (1997), 301-322.
- [2] P. Halmos, Measure Theory, Springer-Verlag, New York, 1974.
- [3] J.P. Pečarić, On the Bellman generalization of Steffensen's inequality, II, J. Math. Anal. Appl., 104 (1984), 432-434.
- [4] J.P. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, 1992.
- [5] J.F. Steffensen, On certain inequalities between mean values, and their applications to actuarial problems, *Skand. Aktuarietids* (1918), 82–97.