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1. INTRODUCTION

This paper discusses problems of the form

(py’)’ + p(t)q(t)f(t, y) 0,
limt0/ p(t)y’(t) 0,

y(1) A > 0,

0<t< 1,

(1.1)

wherefis allowed to change sign and lip is not necessarily in zl[0, 1]. In
addition our nonlinear termf(t, y) may not be Carath60dory function
due to the singular behaviour ofitsy variable. WhenA 0we will refer to
the problem as singular whereas if A > 0 we will say the problem is
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622 R. KANNAN AND D. O’REGAN

nonsingular. The theory presented in this paper was motivated by a
nonsingular problem arising in the theory of shallow membrane caps
[3,4,6], namely

(t3y’)’+ ao--- bot2"-1 =0, O< t<
Y

limt_.,0/ t3y’(t) O,
y(1)=A>0, a0>0, b0>0 and-y>l.

(1.2)

Our paper will be divided into two main sections. In Section 2 we present
a slight variation ofthe classical theory ofupper and lower solutions (see
[3]) so that (1.1) can be discussed in both the singular and nonsingular
situation. Section 3 discusses in more detail the singular problem. The
theory presented here extends and generalizes some ideas introduced in
[1,8]. In particular the results in [1] only hold if f(t,y)=f(y) for
E [0, 1]\(1/2, ). In our paper we replace this with the less restrictive

assumption f(., y) is nondecreasing on (0, 1/2) for each fixed y E (0, )
(see Remark 3.4 for a more general situation).

2. UPPER AND LOWER SOLUTION APPROACH

In this section we discuss the singular and nonsingular problem

(py’)’ + p(t)q(t)f(t, y) O,
limt0/ p(t)y’(t) O,
y(1) A _> 0.

0<t<l,

Suppose the following conditions are satisfied:

pEC[0,1]NC1(0,1) withp>0 on(0,1),

(2.1)

(2.2)

q E C(O, 1) with q > 0 on (0, 1),

fO fo1 fOp(s)q(s) ds < and -p p(s)q(s) ds dt < ,.

(2.3)

(2.4)
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there exists/3 E C[0, 1] C2(0, 1) with p3’ AC[O, 1], /3(1) > A,
lim,o+p(t)13’(t) < 0 and p(t)q(t)f(t,3(t)) + (p/3’)’(t) <_ 0
for 6 (0, 1),

(2.5)

there exists a C[0, 1] C2 (0, 1) with pa’ AC[O, 1],
a(t) _< (t) on [0, 1], a(1) < A, lim/_,o+ p(t)a’(t) >_ 0 and

p(t)q(t)f(t,a(t)) + (pa’)’(t) >_ 0 for (0, 1)
(2.6)

and

for each [0, 1], f(t,u) E R for u [a(t),/3(t)]. (2.7)

Let

f(t, 13(t)) + r(t3(t) -y),
f*(t,y)= f(t,y),

f(t, a(t)) + r(a(t) y),

y >_/3(t),

< y <
y <_ a(t)

and r" R [-1, 1] is the radial retraction defined by

x, Ixl _<

Ixl >

Finally we assume

f*" [0, 1] R R is continuous. (2.8)

THEOREM 2.1 Suppose (2.2)-(2.8) hold. Then (2.1) has a solution y
(here y C[0, 1] CZ(O, 1) withpy’ AC[O, 1]) with a(t) < y(t) </3(t)for
t [0, 1].

Proof To show (2.1) has a solution we consider the problem

(py’)’ +p(t)q(t)f*(t,y) O,
limto/ p(t)y’(t) O,
y(1) A > O.

0<t<l,

(2.9)
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Solving (2.9) is equivalent to finding a y C[0, 1] to

y(t) A + - p(s)q(s)f*(s, y(s)) dsdx.

Define the operator N: C[0, 1] C[0, 1] by

Ny(t) A + p(s)q(s)f* (s, y(s)) ds dx.

A standard argument [3,9] implied N: C[0, 1]-- C[0, 1] is continuous
and compact. Now Schauder’s fixed point theorem guarantees that N
has a fixed point i.e. (2.9) has a solution y E C[0, 1]n C e(0, 1) with
py AC[0, 1]. The result will follow once we show

a(t) y(t) fl(t) for E [0, 1]. (2.10)

We now show

y(t) <_ (t) for E [0, 1]. (2.11)

Suppose (2.11) is not true. Then y fl has a positive absolute maximum
at tl [0, 1) (note y(1)=A <(1)). First let us take tl E(0, 1). Then
(y-/)’(tl) 0 and (p(y- fl)t)t(tl) _< O. However since y(tl) >/(tl) we
have

(p(y-’)’(t)

-p(tl)q(tl)[f(tl,(t)) + r(3(t) -y(t))]- (p/3’)’(t)

>_ -p(tl)q(tl)r((t) y(tl)) > O,

a contradiction. It remains to consider the case t 0. Notice

lim p(t)[y- fl]’(t) -lim p(t)’(t) > 0,
t---0+ t-.0+

which is a contradiction unless limt_o/p(t)(t)--O. So assume
limto/p(t)/(t)--O. Now there exists #0 with y()-/()0 for

[0,/]. Thus for (0, #) wc have

{p(s)q(s)[f(s,(s)) + r(fl(s) -y(s)) + (p’)’(s)}ds > 0,
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and this contradicts the fact that y fl has a positive absolute maximum
at tl =0. Thus (2.11) holds. Similarly we can show

a(t) <_ y(t) for t [0, 1]. (2.12)

Our result follows.

The following examples arise in the theory ofshallow membrane caps,
see [2,4,6] and their references.

Example 2.1 Consider

(t3y’) + -a0---
limt_0+ y, (t) 0,

y(1) A > 0,

t3 )b0t2,-I -0, 0 < < 1,
Y

(2.13)

where ao > 0, bo > 0 and 3’ > 1. Let

f(t) max A,

If 5’ > 2 let

a(t)=a0 wherea0=min A, -0+V+

whereas if < -), < 2 let

.(t) .0t

Then (2.13) has a solution y E C[0, 1] f’l C2(0, 1) with t3y AC[0, 1] and
c(t) <y(t) <_ (t) for [0, 1].
To see this we will apply Theorem 2.1. Choose e, 0 < e < 2 so that

3’ > 2 e/2. Take p(t) 3, q(t) and

27-4+eao--- botf(t,y)
8y2 Y
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Notice (2.2)-(2.4) and (2.7) are satisfied. If 7 > 2 then

o aOo bot 2’-4+’ -Jr- r(/3o y),

f*(t,y)
t t bot2-4+e

Y
t’
w-v ao hot-4+’ + r(o ),

o

y _>/3o,

ao < y </3o,

y <

whereas if < ’7 < 2 then

f*(t,y)

+ r(aot2- y),

y >_13o,

aot2- < y </30,

y <_ ao t2-’r.

Clearly (2.8) is satisfied since e > 4- 27. To see that/3(0 =/30 satisfied
(2.5) notice/3(1) > A, lim/__.o+ t3/3’(t)= 0 and

p(t)q(t)f(t,(t)) + (p’)’(t)

-0 ao bot 2"r- <_ -bot 2"r-1 _< 0

for tE(0, 1) since /3(0=/30> 1/(8ao). It remains to show (2.6). We
consider the cases ’7 > 2 and < , < 2 seperately.

Case (i) "7 > 2 Now a(t) < 3(t), a(1) < A, limt_o+ t3a’(t)=0 and

p(t)q(t)f(t, a(t)) + (pa’)’(t)

ao bot2._4)3ao bot 2,),-

8 o08a ao

> (1 8aoao 8boao2) t3bo( ao 8-o)+

t3bo, ,o xo ,o + xo > o



SINGULAR AND NONSINGULAR BVPs 627

for E (0, 1) since ao _< Xo; here

xo -o + V’- + 2b--7
Hence (2.6) is true in this case.

Case (ii) 1<’7<2 Now a(1)_<A,
limt_,o+ 4-’ 0 and

limto+ 3a’(t) ao(2 ’7)

p(t)q(t)f(t, a(t)) + (pa’)’(t)

ao(2 ’7)(4

> co(2 ’7)(4 ’7)/3--r q_ t2-r-1 (
at2-Voo bo

ao bo)to

ao(2 ’7)(4 ’7)t 3-’r t2’-lb
2 (o xo)(o + xo) >_ o

for E (0, 1) since ao < Xo; here

xo= 
Hence (2.6) is true in this case.

Now Theorem 2.1 guarantees that (2.13) has the desired solution.

Example 2.2 Consider

(t3 )(t3y’)’/ y2 bt2"-I O,

lim/o+ t3y’(t) O,

y(1) =A > 0,

0<t<l,

(2.15)

where bo > 0 and ’7 > (note (2.15) is (2.13) with ao 0). If’7 > 2 let

{ ,}c(t) min A,
8x/-o o1 and 3(t) 24A2(1 t) + A,
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whereas if < ’7 < 2 let

a(t)=alt2-’ and /3(t)=A/

Then (2.15) has a solution y E C[0, 1] N C2(0, 1) with t3y AC[0, and
a(t) <y(t) < (t) for [0, 1].

To see this we will apply Theorem 2.1. Choose e, 0 < e < 2 so that

’7 > 2 /2. Take p(t) 3, q(t) t-" and

b0t2"r-4+e.f(t,y)
8y2

Notice (2.2)-(2.4), (2.7) and (2.8) are satisfied. To show (2.5) and (2.6)
hold we consider the cases ’7 > 2 and < "7 < 2 seperately.

Case (i) ’7 > 2 Notice (t) (1/(24A2))(1 t) / A satisfies (2.5) since
3(1)--A, limt__.0+ t3fl’(t) 0 and

p(t)q(t)f(t,/3(t)) + (p’)’(t)
2

8A2 8[(1/(24A2))(1 t)+ A]2

< t [ 23,-3----;.. /--zx. bot <_ 0

bot 2"r-1

for t6(0,1). Also a(t)=a satisfies (2.6) since a(1)<A,
limto+ t3a’(t) 0 and

P(t)q(t)f(t’a(t)) / (Pa’)’(t) t3 (-1-- bt2/-4) >- t3(bO bt2"r-4)

bot3(1 2"r-4) _> 0

for C (0, 1).

Case (ii) < "7 < 2 Notice/3(t) A / 1/ satisfies (2.5) since

p(t)q(t)f(t, fl(t)) + (pfl’)’(t) <_ t3bo bot 2"r-

bot’r- (t4-’ 1) <_ 0
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for E (0, 1). Also a(t)--al t2-’ satisfies (2.6) since

p(t)q(t)f(t, a(t)) + (pa’)’(t)

al(2-’7)(4-’),) t3-’ + t2"-l (- bo) >_0

for E (0, 1).

Now Theorem 2.1 guarantees that (2.15) has the desired solution.

3. SINGULAR PROBLEM USING A GROWTH APPROACH

In this section we discuss the singular problem

(py’)’ /p(t)q(t)f(t,y) O, 0 < < 1,

limt0/ p(t)y’(t) 0, (3.1)
y(1) =0.

We are interested in nonnegative solutions (in fact solutions y with y > 0
on [0, 1)). One can observe that if we use the upper and lower solution
technique of Section 2 (we use (3.7) and (3.8) to construct the upper
solution and (3.5) and (3.6) to construct the lower solution) we have to
assume (2.8). As a result we present a different approach for singular
problems in this section. We remark here that a similar theory could be
obtained for nonsingular problems (the proofs are a lot easier in this
case). In particular the results in this section improve those in [1] since in
[1] we had to assumef(t, y)=f(y) for t [0, 1]\(l/n, 1 -(l/n)) for some
n {3,4,...}.
Throughout this section we will assume (2.1)-(2.4) hold. For our first

result we will suppose the following conditions are satisfied:

f" [0, 1] x (0, ) R is continuous.

f(.,y) is nondecreasing on (0, 31-) for each fixed y (0, x).

If(t,y)l < g( y) + h( y) on [0,1] x (0,x)
with g > 0 continuous and nonincreasing on (0, x),
h > 0 continuous on [0, ) and
h/g nondecreasing on (0, o).

(3.2)

(3.3)

(3.4)
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let n E {3, 4,...} and associated with each n we have a constant pn
such that {Pn} is a nonincreasing sequence with limt pn 0
and such that for 1In < < we have p(t)q(t)f(t, pn) > 0

(3.5)

there exists a function a E C[0, 1] N C2(0, 1)
with pa’ AC[O, 1], limt-_,o+ p(t)a’(t) a(1) O, a > 0 on [0, 1)
such that p(t)q(t)f(t,y) + (p(t)a’(t))’ > 0
for (t,y) (0, 1) x {y (0, x) y < a(t)}

(3.6)

for any R > 0, 1/g is differentiable on (0, R] with g’ < 0

a.e. on (0, R] and g/g L [0, R]
(3.7)

and

( 1 f0c dg)) f01 f0ce(0,)sup {1 + h(c)/g(c)} > - p(x)q(x) dx ds. (3.8)

THEOREM 3.1
assume

Suppose (2.2)-(2.4) and (3.2)-(3.8) hold. In addition

p(x)q(x)g(a(x)) dx ds < o (3.9)

is satisfied. Then (3.1) has a solution y (here y C[0, 1] fq C2(0, 1) with

py AC[0, 1]) with y(t) > a(t)for [0, 1].

Proof Choose M> 0 and e > 0 (e < M) with

{1 + h(M)/g(M)) - > p(x)q(x)dxds. (3.10)

Let m0{3,4,...} be chosen so that Pmo < and let N+=
{mo, m0 + 1,...}. We begin by showing

(py’)’ +p(t)q(t)f**(t,y) O,

limt__,o/ p(t)y’(t) O,

0<t<l,

(3.11)n

y(1)=pn,
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has a solution for each n E N+; here

f**(t,y)

(1)f -,Y Y>Pn and 0<t<-n
f(t,y), y>_o and -<_t<_l

n

f(t,p,) + p, y, y < p and -_<t<_l
n

f -’n On +p-y, y<p and O<_t<_-.n

Remark 3.1 Notice (3.4) implies If**(t, Y)I < g(Y) + h(y) if y > pn and
E[0, 1]. Also (3.3) impliesf**(t, y) >f(t,y),t E (0, 1) foreach fixedy > p,,.

To show (3.11) has a solution for each n EN+ we apply
[1, Theorem 2.9]. Fix n E N+ and consider the family of problems

(py’)’ + Ap(t)q(t)f** (t,y) O, 0 < < 1, 0 < A < 1,

limt-0/ p(t)y’(t) 0, (3.12)
y(1) pn.

First we show

y(t) > Pn for E [0, II (3.13)

for any solution y to (3.12). Suppose (3.13) is not true. Then y-
has a negative absolute minimum at to E [0, 1) (note y(1) p,, 0). First
let us take the case t0E(0, 1). Then y’(to)=0 and (py’)’(to)>0 (note
y(to) Pn < 0). However

(py’)’ to) -.kp(to)q(to)f** (to, y(to)
-.kp(to)q(to)[f(to, Pn) + Pn -y(t0)]

if- <_ to < 1
n

--Ap(to)q(to)[f(,pn)+Pn--Y(’0)]
1

if 0 < to <_
n

<0,

a contradiction. It remains to consider the case t0--0. Notice
limt_o+p(t)[y-p]’(t)=O. Also since y(0)-p,<0 there exists 6>0
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with y(s) Pn < 0 for s E [0, 6]. Thus for E (0, 6),

p(t)(y- pn)’(t) Ap(s)q(s)f**(s,y(s))ds < O,

and this contradicts the fact that y- pn has a negative absolute maxi-
mum at to 0. Thus (3.13) holds.
Now since y(1) p and y(t) > p on [0, we may assume the absolute

maximum of y occurs at say tn [0, 1), so limt__,t,p(t)y’(t) 0. With-
out loss of generality assume Y(6)> e. For x (0, 1) we have from
Remark 3.1 that

-(p(x)y(x)) { h(y(x)) }g( y(x)
<_ p(x)q(x) + g( y(x)-

Integrate from t to t(t > t,,) to obtain

-p(t)y’(t)
g(y(t))

<_{1/
and so (see (3.7))

-y’(t) { h(y(tn))} o’tg(y(t))
< /g(y(tn)-------- p(s)q(s)ds for (tn, 1).

Integrate from t to to obtain

du { h(y(tn))}ftnl fog(u)
< 1 +g(y(tn)------ p(s)q(s) dsdt

and so

du { h(y(t,,))} fol lotg(u)
< +g(y(tn)----- p(s)q(s)dsdt. (3.14)

Now (3.10) and (3.14) imply lylo=sup,to,llly(t)l#M. Thus
[1, Theorem 2.9] implies (3.11)" has a solution Yn with ly.10< M.
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Also (as above),

Pn < Yn(t) < M fortE[0,1].

Next we obtain a sharper lower bound on Yn, namely we will show

yn(t) > a(t) for E [0, 1]. (3.16)

Suppose (3.16) is not true. Thenyn a has a negative absolute minimum
at [0, 1) (note y,(1) a(1) p,, > 0). First let us take (0, 1). Then
(y,, a)’(tl) --0 and (P(Yn a)’)’(tl) > 0. However since 0 < y,(tl) <
a(tl) and yn(tl) > p, we have from (3.6) and Remark 3.1 that

(P(Yn o)’)’(tl) [p(tl)q(tl)f** (tl, yn(tl)) + (po’)’(tl)]
<_ --[p(tl)q(tl)f(tl,Yn(tl)) + (pa’)’(tl)]

< 0,

a contradiction. It remains to consider the case tl--0. Notice
limt_o+p(t)[y-a]’(t) 0. Now there exists # > 0 with 0 < y(s) < a(s)
for [0, #] (also note y(s) > pn for s [0,/z]). Thus for E (0, #) we have

p(yn -a)’(t) [p(s)q(s)f**(s,y,(s)) + (pa’)’(s)] ds < O,

and this contradicts the fact that y,- a has a negative absolute mini-
mum at t 0. Thus (3.16) is true.

Remark 3.2 It is easy to check directly, using (3.6) and the ideas used to
prove (3.14), that a(0 _< M for all [0, 1].

We shall now obtain a solution of(3.1) by means ofthe Arzela-Ascoli
theorem, as a limit of solutions of (3.11)’. To this end we will show

{Y,,},,ev/ is a bounded, equicontinuous family on [0, 1]. (3.17)

To show equicontinuity notice

{ h(yn(t))}If**(t,y(t))l < g(y(t)) +g(yn(t))

{ h(M)))k<_ g(a(t)) +gM for E (0, 1).
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This together with the differential equation gives

lYn’(t)l _< p- + g(M p(s)q(s)g(a(s)) ds for e (0, 1)

and this together with (3.9) establishes (3.17).
The Arzela-Ascoli theorem guarantees the existence ofa subsequence

No of N+ and a function y E C[0, 1] with Yn converging uniformly on

[0, 1] to y as n cx through No. Also y(1) 0 and y(t) > a(t) for E [0, ].
Fix t(0,1) and let nlN0 be such that 1/nl<t<l. Let NI=
{n No: n > nl). Now yn, n N1, satisfies the integral equation

1In
yn(t) yn(0)--X[1/n,t] (X) p(s)q(s)f (!, yn(S)) ds

/o
x

+ p(s)q(s)f(s, yn(s))x[1/n,x](s)ds dx.

For s e [0, t]we havef(s, y,(s)) f(s, y(s)) uniformly on compact subsets
of[0, t]x (0, M], so letting n through NI gives

y(t) y(O) - p(s)q(s)f(s,y(s)) dsdx. (3.18)

We can do this argument for each (0, 1).

Remark 3.3 Notice to apply this step we need only f0a 1/p(x) fox p(s) x
q(s)g(a(s))ds dx < for any a (0, 1). This is automatically satisfied
since (2.4) holds and a(s) > 0 for s [0, a]. As a result (3.9) is not needed
in this step.

Therefore from the integral equation (3.18) we see that (py’)’(t)+
p(t)q(t)f(t,y(t))=O, 0 < < and limto/p(t)y’(t)=O.

Remark 3.4 If in (3.5) we replace 1/n < < with 0 < < 1/n then
one would replace (3.3) with: f(t,y) is nonincreasing on (, 1) for
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each fixedy E (0, ). More generallyifin (3.5)we replace 1/n < < with

1In < < 1- 1In then one would replace (3.3) with the following: for
any fixed y E (0,) there exists e, 0 < e < 1/2 with f(t, y) nondecreasing
on (0, e) and f(t,y) nonincreasing on (1-e, 1). Finally if in (3.5) we
replace 1/n < < with 0 < < then assumption (3.3) is not needed.

It is worth remarking that the only place we needed assumption (3.9)
was in proving (3.17). It is possible to put other conditions on p, q andf
to guarantee that (3.17) holds.

THEOREM 3.2 Suppose (2.2)-(2.4) and (3.2)-(3.8) hold. In addition
assume

ds
p--< (3.19)

and

lg’(t)l
/z

-i dt (3.20)

are satisfied. Then (3.1) has a solution y (here y C[O, fq Cz(O, 1) with
py’ AC[O, 1]) with y(t) >_ a(t)for [0, 1].

Proof The proof is essentially the same as in Theorem 3.1 except to
prove (3.17) we use the argument in [7, p. 74].

Remark 3.5 One can usually "construct" a from the differential
equation. For a more detailed discussion we refer the reader to [1,5,8].

Example 3.1 The boundary value problem

(t3y’)’+tg(y )-# =0, O<t<l,

limt-,o+ t3y’(t) O, (3.21)

y(1) 0, #>0

has a solution y C[0, N C2(0, 1) with py’ AC[0, 1] and y(t) > 0 for
t [0, 1).
We will apply Theorem 3.1. Take p(t)=t3, q(t)= l/t, f(t,y)--

1/V/-fi #, g(y)=l/v/-fi and h(y)=/z. Notice (2.2)-(2.4) and
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(3.2)-(3.4) are satisfied. Choose no E { 1,2,...} so that no > #2 and let

o
n+no

Now (3.5) is true since

p(t)q(t)f(t, Pn) t2[(n + no) 1/2 #]
> t2./2v.o-#)>0 fort(0,1).

Next let

a(t) ao(1 t) where a0 > 0 is chosen so that 3a/2 + #a/9 < 1.

Now a(1)=0, limt__+o/t3a’(t)=O and for (t,y)E(0,1)x {yE(0, oo):
y < ce(t)},

p(t)q(t)f(t,y) + (pa’)’(t)

# 3aot2 > 2 2

v/ao(1 t)
# 3aot

t2 X/-X/-(1 t)
# 3a0 > t2 -- #-- 3ao

2

( .v- 3ag/) > 0.

Thus (3.6) holds. In addition (3.7) and (3.8) are satisfied since

sup (’{1c(0,) /og ) ( c7 )du
sup l+#x/+ h(c)/g(c)} c(O,c)

Finally note (3.9) hold since

dsdt75 sg((s)) ds dt -- -[5 x/1 s

10"11 fo s2 ds dt-< t3x/1

fill dt<
3vJo v/1

Now Theorem 3.1 guarantees the result.
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