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1 INTRODUCTION

The well-known Ostrowski’s inequality is given by the following
theorem [9]:

THEOREM Letfbe a differentiablefunction on [a, b] andlet If’(x)l < M
on [a, b]. Then,for every x E [a, b],

fabf(x)
b a f t) dt 41_ (x (a + b)/2)2]<_ + i- -_ -a7 ] b a M. (1.1)

Some generalizations ofthis inequality, obtained by Milovanovi6 [5,6],
Milovanovi6 and Pe6ari6 [7] and Fink [3], were noted in [8, pp. 468-471].
Recently, Anastassiou [1] proved some more general inequalities of this
type. The basic result proved in [1] is the inequality

Ilfab-a
f(t)dt-f(x)

1 If(/(x)l I(b x)j+l -+- (-1)J(x a)J+l<- b-a
j= (j+ 1)!

/
IIf(+/ll [(x a)n+2 -F (b x)n+2]

(n + 2)!(b a) (1.2)

which holds for any x E [a, b], wheneverf C"+l([a, b]), n N. Under the
additional assumption

f(J)(x) O, for allj 1,2,..., n,

this inequality becomes

b-a
f(t)dt-f(x) IIf("+llo a)n+2 x)n+2]--< (n q- 2)!(b a)[(x + (b

(1.3)

Further generalizations of the above results were deduced by Pearce
and Pe6ari6 [10]. Another possibility to generalize the inequality (1.1) is
to consider the integral fff(t)w(t) dt, where w is some weight function.
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More precisely, suppose w:[a, b]--. [0, ) is integrable on the interval
! [a, b] and

w(t) dt > O.

We call w the weight function on the intervalL Ifw is given, then we define
thejth moment mj(I; w) of the interval Iwith respect to w as

mj(I; w) := f/tJw(t) dt, j 0, 1,2,... (1.4)

For any fixed x E L we define thejth x-centered moment Ej(x, I; w) ofthe
interval Iwith respect to w as

Ej(x, I; w) := fI (t x)Jw(t) dt, j O, 1,2,...

Also, for any fixed x E I and for any real r [0, ), we define the rth
x-centered absolute moment Mr(x, I; w) of the interval I with respect
to w as

M(x, I; w) :-- f It xlw(t) dt. (1.6)

Note that m0(I; w) Eo(x, I; w) Mo(x, I; w) fiw(t) dt. Further, we
define the mean #(I; w) and the variance crZ(I; w) of the interval I with
respect to w as

ml (I; w)#(I; w) :=
m0(I; w)

and cr 2 (I; w) m2 (I; w) #2 (I; w).m0(I; w)

In the special case when w(t)= for all I= [a, b], we shall use the
notation

mj :-- mj(I; 1), Ej(x) :-- Ej(x, I; 1), j= 0, 1,2,...

and

M(x) :- Mr(x,I; 1), r e [0,
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A simple calculation gives

bJ+ aJ+
mj tJdt

j+

and

(b- x)j+l a)j+lE.(x) (t- x)’ dt + (-1)g(x
j+l

(1.7)

for eachj 0, 1, 2,... Also, for r E [0, c) we have

b

M(x) It- xl dt

(x- t) dt + (t- x) dt

(x a)r+ + (b x)r+l

r+ (1.8)

Further,

#:=#(I;1)=a+b and o"2:=o’2(1;1)=(b-a2

2 12

Note that in (1.4)-(1.6) the weight function w need not be bounded on/,
and the interval I [a, b] may be replaced by any interval Ic R (bounded
or unbounded) the quantities mj(I; w), Ej.(x, I; w) and Mr(x, I; w)
remain well defined, provided that the respective integrals converge. It is
obvious that

le(x, I; w)[ <_ t(x, I; w)
e(x, I; w) t(x, I; w)

for all j;

for all even j

and, by the binomial formula,

Ek(x, I; w) j=O j (- 1)JxJmk-j(I; W), k= 1,2,3,... (1.9)
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The following theorem was proved in [12]:

THEOREM 2 Let f, w:(a, b)- R be two mappings on (a,b) with the
followingproperties:

(1) suplf"(t)[ cx,
(2) w(t) >_ O, Vt (a, b),
(3) fab w(t)dt < .
Thenfor all x (a, b) thefollowing inequalities hold:

(1.10)

The weighted version of the inequality (1.1) has been considered by
Pe6ari6 and Savi6 [11]. In [11, Teorema 8, p. 190] the following gen-
eralization of (1.1) was proved:

THEOREM 3 Let w:[a, b]--. R be a weight function on [a, b]. Suppose
f: [a, b] R satisfies

If(t)-f(s)l < Nit- sl, for all t,s E [a,b], (1.11)

where N> 0 and 0 < a < 1 are some constants. Then for any x [a, b]
we have

If(x) A(j w)l < Nfba It xlw(t) dt

fba w(t) dt
(1.12)

where A(f’, w) := fabf(t)W(t) dt/ fba w(t) dt. Further, iffor some constants

c and A

O < c < w(t) < Ac, for all E [a,b],

thenfor any x [a, b] we have

L(x).(x)
If(x) A(32 w)[ _< NLZxX, J(x) + AJ(x) (1.13)
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where

L(x) := [max{x a, b x)] and

(x- a)+’ + (b x)+’J(x) :=
(1 + a)(b a)

For a the condition (1.11) reduces to

If(t) -f(s)[ < NI s], for all t,s e [a,b].

This means thatfis N-Lipschitzian on [a, b] and (1.13) holds with

L(x) max{x a, b x} and

(x !a__+.J(x) + , (b a).
(b a)2 /

Moreover, for weight w(t)= 1, E [a,b] we can take A and (1.13)
becomes

f(x)
b a f(t) dt < N /

(x- (a + b)/2)2]
i’--- ]7 J (b a).

This is, in fact, the Ostrowski’s inequality for N-Lipschitzian functionf
on [a, b]. As Pe6ari6 and Savi6 noted in [11], the inequality (1.13) for a
under assumption thatfis differentiable on [a, b] and [f’(t)l < N for all
E [a, b] was proved by Milovanovi6 [6, Teorema 1, pp. 24-26]. Also,

note that the inequality (1.12) was rediscovered in [2, Theorem 2.1].
The proof of the inequality (1.13) is based on the following result of

Karamata [4]:

THEOREM 4 Let g, w [a, b] -. R be integrable on [a, b]. Suppose

m < g(t) < M and 0 < c < w(t) < Ac (t [a, b])

for some constants m, M, c and A. IfG and A(g, w) are defined as

b a
g(t) dt and A(g, w) := lab g(t)w(t)dt

fbw(t) dt
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then

Am(M- G) + M(G m)
,k(M- G) + (G m) <- A(g, w)

m(M- G) + ,M(G- m)<
(M-G)+(G-m) (1.14)

The aim of this paper is to generalize the results stated in Theorems 2
and 3, as well as the inequalities (1.2) and (1.3). In Section 2 we establish
some weighted integral identities. In Section 3 we use these identities to

prove a number ofnew Ostrowski type inequalities. Moreover, we show
that some ofour results generalize Theorems 2 and 3. Also, we show that
the inequalities (1.2) and (1.3) can be obtained as a special (nonweighted)
case from some of our results.

2 SOME INTEGRAL IDENTITIES

The integral identities whichwe prove in this section are suitable to prove
results of Section 3.

For given a, bER, a < b set I=[a,b]. Suppose w’1410, cxz) is a
fixed weight function and define the kernel functions K.(., .; w)" 124 R,
jENby

fat(j- 1)! (t- u)J-lw(u)du, for a < < x,

Kj(x, t; w):--- 0, for t--x,

fb(j- 1)! (t- u)-w(u)du, for x < _< b,

for all x, I. Also, set

Ko(x, t; w):= w(t), for all x, I.

For fixed x Iandj N, the function Kj.(x, .; w)" 14R is continuous on

I\{x} and

Kj(x, a / 0; w) 0 for a < x _< b,

K.(x, b 0; w) 0 for a < x < b,

K(a, b 0; w) 0;
(2.1)

K(b, a + 0; w) 0.
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At the point of discontinuity x, a < x < b we have

K.(x, x 0; w) lim Kj(x, t; w)
t---x-O

Zx(x u)J-Iw(u)du
(j- 1)!

and

Kj(x, x / 0; w) lim Kj(x, t; w)
t---x+O

Zx(x U)j-I W(U) du
(j- 1)!

so that

lfa Kj(x,x 0; w) Kj(x,x + 0; w)
(j 1)! (x u)J-w(u) du

(_1)j-1

(j- 1)! Ej_l (X, l; w), (2.2)

However, if we assume that K(a, a 0; w) 0 and K(b, b + 0; w) 0,
then (2.2) is also valid for x a and for x b. If a < < x, then

d (t u)Jw(u) du

fatO=js(t- t)Jw(t) + - [(t- u)Jw(u)] du

(j- 1)----- (t u)J-lw(u)du

t; w).

For x < < b, similar calculation gives the same equality

d
dKj+ (x, t; w) Kj.(x, t; w). (2.3)
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Therefore, (2.3) holds for E (a, x)t.J (x, b) and for any j E N. It is easy
to check that (2.3) holds for (a, x) t_J (x, b) and forj 0, as well. Using
(2.1)-(2.3), forj= 0, 1,2,... anda<x<b, weget

Kj(x, t; w) dt Kj(x, t; w) dt + Kj(x, t; w) dt

.+ (x, t; W)la ++(x, t; w)lbx
Kj+l(x,x 0; w) Kj+(x,a + 0; w)

+ Kj+l(x,b 0; w) Kj+l(x,x + 0; w)

/(, 0; w) /(, + 0; w)

(-1)j

j----- Ej(x, I; w).

Also,

b

Kj(a, t; w) gj+l (a, t;dt w) ]ba

Kj+I (a, b 0; w) K.+I (a, a + 0; w)
-Kj+l(a,a+O;w)

_(-1)s

j---. Ej(a,I; w)

and

b

Kj(b, t; w) gj+ (b, t; w)lbadt

Kj+I (b, b 0; w) Kj+I (b, a + 0; w)
Kj+l(b, b 0; w)

(-1)
j--.---. Ej b, I; w

Therefore,

b (-1)j

Kj(x, t; w) dt
j! (x, I; w) (2.4)
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holds for j 0, 1, 2,... and x E/. Finally, when w(t) for all E L
we define Kj(., .). 12 R as

Kj(x, t) := Kj(x, t; 1), x, I, j 0, 1,2,...

Thus, K0(x, t) for all x, E I and forj E N we have

a)j

j!

t) := 0,

j!

for a <_ < x,

for x,

for x < < b.

The following theorem is the key result of our paper.

THEOREM 5 Letfunctionf:JR be defined on the interval Jc R. For
a, b J, a < b set I [a, b]. Forj O, 1,2,... let K(x, t; w) be defined as

above. Suppose that, for some n N U {O}, f(n(t) existsfor all I, with
usual conventionf((t) --f(t). Set

n f(J)(X)
Rn(X,f’, W) := f(t)w(t) dt j=o J! Ej(x, I; w), x I.

Iff(")( ) is integrable on I, then Rn(x,f’, w) is well definedfor all x I and

b

7"Zn(X,f’,w) (--1)n [f(n)(t)-f(n)(x)]Kn(x,t;w)dt. (2.5)

Further, iffO0( ) is continuousfunction ofbounded variation on 1, thenfor
all x I

b

]’,n(X,f’w) (-1)n+l Kn+l(X,t;w)df(")(t). (2.6)

Especially, whenf"+l)(t) existsfor all I,/ffn+l)(. ) is integrable on I,
thenfor all x I

b

7n(X,f’, W) (-- 1) n+l Kn+l (x, t; w)f(n+l) (t) dt. (2.7)

(The integrals in (2.5) and (2.7) are ordinary Riemann integrals, while in

(2.6) we have the Riemann-Stieltjes integral.)
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Proof Forj= 0, 1,..., n denote

b

Dj (-1)j [f(J)(t)-f(J)(x)]Kj(x,t;w)dt.

By (2.4), we have

bf(j)Dj (-1)j (t)Kj(x,t;w)dt- (-llJf(J)(x) Kj(x,t;w)dt

fbf(j) f(J) (X)
Ej(x, I; w)(- )J (t)Kj(x, t; w) dt j,a

If n 0, then

(2.8)

b

Do f(t)Ko(x, t; w) dt -f(x)Eo(x, I; w)

f(t)w(t) dt-f(x)Eo(x, I; w)

TZ0(x,jq w), (2.9)

which shows that (2.5) is valid for n--0. If n > 1, then for any j--
0, 1,..., n- by partial integration and using (2.2)-(2.4), we have

bf(j+l)(t)Kj+l (X, t; W) dt

/a
x

/xf(j+l) (t)Kj+ (x, t; w) dt + f(J+) (t)Kj+l (x, t; w) dt

x

f()(t)K+(x,t;w) f(])(t)K(x,t;w)dt
b b

x dx

f(/()[./(, o; N+(, + o; )]

f(()N(, ; ) dt

(-1)f((x) .(x,I; )- f((t)N(x,t;)dt.
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Here we assume that fff(J+l)(t)Kj+l(X,t;w)dt 0 for x=a, while
fxbf(j+l)(t)K+l(X,t;w)dt=O for x=b. Multiplying by (-1)j+l and
using (2.8) we get

b

(--1)j+l f(J+l)(t)Kj+l(X,t;w)dt

b f(J)(x)
(-1)j f(J)(t)Kj(x,t;w)dt j---. Ej(x, 1;w)

Combining this with (2.8) we get

Ej+ (x, I; w)
f(+1) (x)

Dj+I (-1)j+l f(J+l)(t)K+l(X’t;w)dt- (j+ 1)!
f(J+)(x)

Ej+ (x,I; w) j= 0, n (2.10)=Dj-
(j+1)---

From (2.10) and (2.9) it is easy to obtain

f(J)(x)Dn f(t)w(t) dt
j=o J!

7Z.(x,f’, w),

e(x, I; w)

which is just the equality (2.5). Let us now prove (2.6). First, by applying
partial integration for the Riemann-Stieltjes integral to the right hand
side of (2.6), we have

b

(-1)n+l Kn+l(X,t;w) df(n)(t)

(-1)n+l K,+ (x, t; w) d[f(n)(t)-f(/(x)l

(--1)n+l[f(n)(t) -f(n)(x)]Kn+l(X, t; w)lba

+ (-1)" [f(n)(t)-f(n)(x)ldKn+l(X,t;w)

(-1)n [f(n) (t) -f(n) (x)] dK+ (x, t; w).
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The kernel function Kn+l(x, .; w) is continuous on I\{x}, while at the
point ofdiscontinuity x the value ofthe functionf(n)( ) -f()(x) is zero.
Since (2.3) holds, it is easy to check that

b[f(n)(t) -f(n)(x)]dKn+,(x,t;w) [f(n)(t) -f(n)(x)]Kn(x,t;w)dt

holds for all x EL Now (2.6) follows from (2.5). Finally, (2.7) is a

consequence of the fact that for all x E I

fa faKn+(x,t;w) df(n)(t) Kn+l(x,t;w)f(n+l)(t)dt

whenf("+l)(. ) exists and is integrable on L

Remark 1 When w(t)--1, tel we use the notation Rn(X,f) for

7-.n(x,f; 1). By (1.7) we have for all x E 1

n f(j)(x)Ej(x)gn(X,f) f(t)w(t) dt j=o J!

fab f(J)(x) x)j+f(t) dt- [(b + (-1)J(x a)j+
j:0 (J+ 1)!

The integral identities (2.5)-(2.7) reduce to

b

Tgn(X,f) (-1)n [f(n)(t)--f(n)(x)]Kn(x,t)dt,

7"a,,n(X,f) (--1)n+l Kn+(x, t) df(")(t),

and

b
TC,n(X,f) (-1)n+ Kn+(x,t)f(n+)(t)dt,

respectively. The above equalities are valid for all x E/, under appro-
priate assumptions onf.
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3. SOME OSTROWSKI TYPE INEQUALITIES

In this section we use integral identities (2.5)-(2.7) to prove some
Ostrowski type inequalities. Let f:JR be a function defined on the
interval Jc R and let w" 14 [0, ) be a weight function defined on
I [a, b] c J. Suppose that, for some n E N U {0},f(n)(t) exists for all E I.
For x I define

TC.,,(x,f’, w) "R.,,(x,f)
On(X,f’ W):’-- On(X,f) :=

m0(I; w) b a

Note that for n 0 we have

Oo(x,f’, w) f(t)w(t)dt f(x),
fba w(t) dt

j’abOo(x,f)
b a

f(t) dt-f(x), x I,

while for n > we can write

O.(x,f., w) Oo(x,f, w)
f(J)(x)

m0(I; w) j=l J! e (x, I; w)

and

On(X,f) Oo(x,f)
f(J)(x) + (-1 (x ],

b a
j=l (J - 1)! [(b x)j+l )J a)j+’

for all x L

3.1 Inequalities Involvingf(n)

We first derive some inequalities which are obtained from the identity
(2.6) and involve the total variation Vba (f(n)).
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THEOREM 6 Let f(n)(. ) be a continuousfunction ofbounded variation
on I. Thenfor all x E I we have

  al ’n’l {/ax u}IOn(X,f’, w)[ < n!mo(l; W) max (x u)nw(u) du, (u x)nw(u) d

(3.1)

where Vba (f(n)) fab df(n)(t)l is the total variation ofthefunctionf(’)( )
on L Also,for all x I

vb (f(n)) [b a
IOn(X’f)l <- (n + 1)!(b a) 2

a+b

Proof From (2.6) we get the estimate

b

IT.(x,J w)l Ig+(x,t;w)l Idf(n>(t)l

< sup [gn+l(X,t; w)[ Idf(n)(t)l
a<t<b

sup IKn+l(X,t;w)lgba(f(")).
a<_t<_b

(3.3)

For fixedj E N and x E Iwe have

/at(j- 1)! (t- u)j-1 w(u)du, for a < < x,

[K.(x, t; w)l 0, for x,

(j- 1)! (u- t)J-lw(u)du, for x < < b.

(3.4)

It is obvious that

sup IKj(x, t; w)l
a<_t<_b

Irax

fx
b

(j 1)’-"---- max (x u)-lw(u) du, (u x)-lw(u) du

(3.5)
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Combining (3.5) forj n + with (3.3) divided by m0(I; w), we get (3.1).
Further, if w(t) 1, E I, then

(t a) j

j!

IKs(x, t)l 0,

(b-t)_____j
j!

fora<_t<x,

for x,

for x < <_b,

(3.6)

and

sup IKj(x, t)l =max{(x a)j, (b x)j}
a<t<b

=! [max{x a,b x}]j

llb-a a+b
-j! 2 + x

2

J
(3.7)

Here we used the equality max{A, B} 21-[A + B+ IA BI] which holds
for any A, B E R. Combining (3.7) forj n 4- with (3.3) for w 1, after
dividing by b- a, we get (3.2).

Remark 2 For n 0, Theorem 6 gives the inequalities

ff w(tl dt
V(f)
w(t)dt maX{faX w(u) du, fxb w(u) du}

and

b -a
f(t)dt-f(x)

b-a 2 + x
2

which are valid for all x /, provided f(. ) is a continuous function of
bounded variation on L

Next, we make use ofthe integral identity (2.5) to deduce some further
Ostrowski type inequalities. The simples inequalities, expressed in terms
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of the Lp-norms, _< p < , follow directly from (2.5). Namely, ifp, q is
a pair of conjugate exponents, that is

p=l, q=o or p=o, q=l or <p, q< -/-= 1,
P q

(3.8)

then (2.5) implies

IOn(X,f w)l In(X,f’, w)[
m0(I; w)

<mo(I;w) If(n)(t) -f(n)(x)[ Ig(x,t;w)ldt

< [If(n) f(n) (X, "W) (3.9)mo(I; w) (’)-- (x)l{Pllgn "’ [[q"

Recall that for a function g(. ) defined and integrable on I [a, b] we have

[Ig(’)llo := sup [g(t)} and
a<t<b

(/a )[Ig(’) I[ :- Ig(t) l<r<.

When w(t) 1, e Iwe can calculate I[Kn(x, ")[Iq" By (3.7) we have

[b-aI[Kn(x")[[ = 2
/ x

2
nN{O}, xI. (3.10)

For < q < cx, using (3.6) we have

b

(t a)qn dt + )q (b t)qn dtIKn (x, t)Iq dt (n!

(x a)qn+l + (b x)qn+l

(n!)q (qn + 1)
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so that

f(x-a)qn+l-+-(b-x)qn+l.ll/q[Ign(x, ")[[q . qn +
n NU{O}, xEI.

(3.11)

In the case of general weight function w, it should be noted that
Kn(x, t; w) > 0 for E [a, x) and for all n N t2 {0}, while for (x, b]
we have K,,(x, t; w) > 0 when n is even and K,,(x, t; w) < 0 when n is odd.
So, we can write

I’:n(X, t; W),
Ig(x,t;w)l--

(_l)ng(x,t;w)
for a _< < x,

forx<t<b.

Using (2.1) and (2.3), for a < x < b we get

fab fa
x

fx
b

[Kn (x, t; w)[dt Kn (x, t; w) dt + (- 1)n Kn (x, t; w) dt

g+l(X,t;w)la / (-1)g+a(x,t;w)[b
X

Kn+l(X,x-O;w) (-1)nKn+l(X,X-+- 0; w)

(x ,( au + ( xlw(l au
n!
l

Mn(x,I; w)n!

It is easy to see that the similar calculation is valid for x a and for
x b, as well. Therefore,

t.(x, I; w)I]Kn(x’ "; w)l[1 n!
n N tO {0}, x I. (3.12)

THEOREM 7 Assume that,for some n E N tO {0},f("(t) existsfor all I,
and that,f(")( ) is integrable on L Thenfor all x I we have

]On(x,f; w)[ _< Mn(x, I; w) if(n f(n)n!mo(l;w)[ (’)-(x) Ilc (3.13)
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and

[On(X,f)[ <_ (X- a)n+l + (b x)n+l

(n + 1)!(b a) Ilf() (.) -f(’)(x) II. (3.14)

Also

Ilgn(x, ,; w)ll Ja’blf(n) f(n)[On(X,f;w)[ < -OOiiW) (t) (X)[ dt (3.15)

and

[(b a)/2 + x (a + b)/2l]n fbn!(b a) ,a
If(n)(t) f(n)(x)l dt.

(3.16)

Finally, if <p, q < c and (1/p) + (1/q) 1, thenfor all x E I we have

IOn(X,f., w)[ <_ if(n f(n) Kn(x, w) (317)mo(/;w----- (-) (x) llp II .; IIq

and

[(x-a)qn+l-k(b-x)qn+l]l/qIOn(x,f)l <
qn / Ilf(n) (.) -f()(x)lip"

(3.18)

Proof Set p and q in (3.9). Then (3.13) follows from (3.12),
while (3.14) follows from (3.11) with q 1. Similarly, (3.15) and (3.16)
follow from (3.9) withp 1 and q (here we additionally use (3.10) to
obtain (3.16)). Finally, if <p, q < c, then (3.17) coincides with (3.9),
while (3.18) follows from (3.11).

Another way to use the identity (2.5) is to put additional assumption
off(n)( ).
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DEFINITION Let N> 0 and a > O. We say thatfunction g I R is of
class C,N(I) if

Ig(t) g(s) <_ Nit sl, for all t, s E I.

Ifg is ofclass C1,Nq), that is if

Ig(t) -g(s)l < Nit- sl, for all t,s I,

then we say that g is N-Lipschitzian on L

Ifwe assume thatf(n)( is of class C,N(I) for some constants N> 0
and a > 0, then from (2.5) we get the estimate

I(.Qn(x,f’, w)[ 17"n(X’f; w)l
too(I; w)

_< if(.) f(n) W)mo(I; w) (t) (x)l IKn(x, t;

< It xllg(x, ; w)l de. (3.19)mo(; w)

Using (3.4), for n N we get

b

It xllg(x, t; w)l dt

fx fa’(x- t) (t- u)"-w(u)auat(n- 1)!

(n 1)! (t x) (u t)n-lw(u) du dt

fa
x

fu
x

w(u) (x- t)a(t- U)n-1 dt du
(n- 1)!

(n 1)! w(u) (t x)a(u t)n-1 dt du.

Further, by substituting u + (x- u)s, we get

x- t)(t- u)n- dt =(x- u)+n (1 ds, for a < u < x



OSTROWSKI’S INEQUALITY 659

and

t-x)a(u- t)n-1 dt (u- x)a+n (1 ds, for x < u < b.

Therefore,

b

It xllKn(x, t; w)l dt

f (1- s)asn-l ds [fax fx
b

(n 1)! (x u)a+nW(u) du -]-- (u x)+nw(u) du

B(c + 1,n) fab(n i! Ju xl+nw(u) du

B(c + 1,n)
(n- 1)! M,+n(,I’w), (3.20)

where

B(x, y) fo (1 s)X-lsy- ds (x > O, y > O)

is the Beta function. Since B(x, y)= I’(x)r’(y)/r’(x + y), where I" is the
Gamma function, and since I’(z + 1)= zr’(z), z > 0 and I’(k)= (k- 1)!,
k E N, we have

B(o + 1,n) F(o + 1)l-’(n) 1-’(o + 1)
(n 1)! (n 1)!r(c + n + 1) r’(ce + n + 1)

(o + 1)(c + 2)... (o + n)"

Now, from (3.19) and (3.20) we get

’(o + 1)M,+n(x,I" w)I(Qn(X,f’ W)I

_
N

F(c + n + 1)m0(I; w)
(3.21)
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for any x E I and n E N. For n 0, (3.19) gives

IOo(x,f’, w)l <
N I’ja

b

mo (x, I; w) It xlw(t) dt

NMa(x,I; w)
m0(I; w)

This shows that (3.20) is valid for n 0, as well, since for n 0 obviously
F(a / n / 1) F(a / 1). Now we can state our next theorem.

THEOREM 8 Assume that,for some n E N t3 {0},fn(t) existsfor all E I.
Suppose thatfn( is ofclass C,N(I)forsome constantsN> 0 anda > O.
Then,for all x E I we have

IOn(X,f; W)I NF(a + 1)M+n(X, I" w)
l(a + n + 1)too(I; w)

and

IO,(x,f)l < Nr( + 1)[(x- a)a+n+l / (b x)’+n+l]
l(a + n + 2)(b a) (3.22)

O<c<_w(t)<_Ac, tel

for some constants c and A, thenfor all x E I we have

r(a + 1)ALa+n(X)J+n+(x)IOn(X,f’, w)l < Ur(a + n + 1)[L+n(x) J+n+ (x) + AJ,+n+l (x)]’
(3.23)

where

b a
Ls(x)= 2 +

Js(x) (x- a) + (b- x)
s(b a)

s>0.

(3.24)
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Proof The first estimate coincides with (3.21) and it is already proved.
The estimate (3.22) is the special case of (3.21) and follows from the
equality (1.8) for r a + n. Further, note that

0 <_ lu xl’+n < max{ (x a)+n, (b x)+n} for all u I.

By the similar calculation as used in proving (3.7), we have
max{(x a)+n, (b x)+n} L,+,,(x). If we set g(u) lu xl+n, u E/,
then (1.8) with r a + n gives

fab xl/ M/.(x) //().G=b_ a lu- du=
b-a

Now we apply the right hand side inequality of (1.14) for m 0, and
M- L+,(x) to obtain

ma+n(X I" w) < ,La+n(X)Ja+n+ (x)
mo(I; w) Lo+n(X) Ja+n+l (x) + ,Ja+n+l (x)" (3.25)

Now (3.23) follows from (3.21).

Remark 3 From the proof of Theorem 8, we see that the following
simple estimate holds:

b

,+,(x, . w) lu xl’+"w(u) au

<_ L,+n(x) w(u) du L,+n(x)mo(I; w).

Therefore, from (3.21) we get

iOn(X,f. w) < Nl-’(a + 1)L,+n(X)
l"(a + n + 1)

However, this estimate is worse than one given by (3.23) since obviously

J+n+ (x)
b a lu xl+n du L+n(X)
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and

(x)
Z +n(X) (X) + (X) <- (3.26)

It is easy to see that the inequality in (3.26) can be strict.

Remark 4 Theorem 8 is a generalization of Theorem 3 since for n 0
(3.21) and (3.23) reduce to (1.12) and (1.13), respectively.

COROLLARY Assume that, for some n E N t3 {0}, fOO(t) exists for all
E L Suppose thatf")( ) is N-Lipschitzianfor some constantN> O. Then,

for all x E I we have

IOn(x,f’, w)l _< N Mn+l (x, I" w)
(n + 1)!mo(x, I; w)

and

IO,(x,f)l <_ N (x a)n+ + (b x)n+

(n + 2)!(b a)

O<c<_w(t)<_)c, tel

for some constants c and A, thenfor all x E I

IOn(X,f’, w)l <_ N )kLn+l (X)Jn+2 (x)
(n + 1)![Ln+ (x) Jn+:(x) + )Jn+(x)]’

where L,,+ (x) and Jn+2(x) are defined by (3.24).

Proof Apply Theorem 8 with a= and note that l(k)=(k 1)!
for kE N.

3.2 Inequalities Involvingf(n+])

The integral identity (2.7) can be used in the similar way as the identity
(2.5) in Section 3.1. Ifp and q are such that (3.8) holds, then from (2.7)
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we get

IO.(x,f;w)l
I(x,j w)l
too(I; w)

mo(I;w) If"+/(t)l IKn+l(x’t;w)ldt

< Ilf(’+)(.)llp liKe(x, .; w)ll q
m0(I; w) (3.27)

Forp and q c from (3.27) we get

IO.(x,f, w)l <
Ilg.(x, .; w)ll

-m---(i )) f(n+ d

Also, using (3.10) we get

IO,,(x,f)l < [(b a)12 + Ix- (a + b)/2l]"+ fab(n + 1)!(b a) If(n+,) (t)l dt"

Further, for < p, q < , from (3.27) and (3.11) we get

!]f(n+l)(.)llp I.(x_ a)q(n+l)+l q_ (b_ x)q(n+l)+l)l
l/q

IO.(x,f)l < (-+ 1)!(b-a) q(n + 11 +

The most interesting case is whenp z and q 1.

THEOREM 9 Assume that, for some n E N U {0}, f(’+l(t) exists for all
L Suppose thatf(,,+l(. ) is bounded and integrable on L Then, for all

x I we have

IO.(x,f; w)l _< Ilf("+) (’)I1 M.+ (x, I: w)
(n + 1)!mo(I; w)

< IIf("+l(’)llot.+(x)
(n+ 1)! (3.28)
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and

IO,(x,f)l <_ IIf/"+’)(’)ll[(x a)n+2 + (b x)n+2]
(n + 2)!(b a)

O<c<_w(t)<Ac, tel

(3.29)

for some constants c and A, thenfor all x E I

IIf("+ (.)II o,XL.+ (x)J+=(x)IOn(X’f" w)l (n + 1)![Ln+(x) Jn+2(x) + AJn+.(x)] (3.30)

where L.+(x) and Jn+2(x) are defined by (3.24).

Proof The first inequality in (3.28) follows from (3.27) and (3.12). The
second inequality in (3.28) is a consequence of the estimate (see the
proof of Theorem 8)"

Mn+l(X,I: w) a)n+ x)n+mo vi _< max.[(x (b ].

=/_,.+ (x).

The inequality in (3.29) follows from (3.27) and (3.11) with q 1. If we
put a in (3.25), then we get

mn+l (X, I" w) < ,,Ln+l (X)Jn+2 (x)
mo(I; w) Ln+ (x) Jn+2(x) + ,Jn+2(X)

and (3.30) follows from (3.28).

Remark 5 The estimate given by (3.30) is better than the estimate

IO.(x,j w)l IIf(n+)(’)l[ tn+l(X)
(n+ 1)!
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which follows from the second inequality in (3.28). Namely, (3.26) with
a gives

,x,+ (x)J.+ (x) <_ z,+ (x).L.+ (x) S.+ (x) + .XJn+ (x)

and this inequality can be strict.

Remark 6 Note that (3.29) can be rewritten as

b La f(t) dt -f(x)

f(J)(x) [(b x)j+ + (_l)J(x a)J+l]
b a

j= (j + 1)!

[[f(n+l) IIo a),+:z x)n+2]-< (n + 2)!(b a)[(x + (b

This inequality, by the triangle inequality, implies (1.2). However, if we
assumef(J)(x) =0,j= 1,... ,n, then (3.29) reduces to (1.3).

Remark 7 Using (1.9) we get

E1 (x, I; w) ml (I; w) xmo(I; w)
mo(I; w) mo(I; w) ,(I; w) x

and

O(x.f’.w)
r]bf(t)w(t) dt -f(x) [#(I; w) xlf’(x).mo(I; w)

Also

M(x, I; w)
mo(I; w)

r(x, I; w)
too(I; w)

m:(I; w) 2xm (I; w) + x:Zmo(I; w)
mo(I; w)

m2(I; w)
mo(I; w) 2x#(I; w) + x:

o-(I; w) + [,(I; w) x]
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and

L2(x) Ib a12+ x
a +

Now it is easy to check that the first part ofTheorem 9 for n coincides
with Theorem 2. Moreover, as we noted in Remark 5, the estimate given
by (3.30) in the case n is an improvement ofthe estimate given by the
second inequality in (1.10).
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