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1. INTRODUCTION; FORMULATION OF THE MAIN RESULTS

Let ql" be a closed subset (so called a time scale or a measure chain) ofthe
real number .
DEFINITION Ifthere exists a positive number A E ]1{ such that + nA
for all and n Z, then we call a periodic time scale with period A.

Suppose ql" is a A-periodic time scale. For the sake of simplicity we
will assume that 0 e . Consider the second order linear A-differential
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equation given by

[p(t)yA(t)]A / q(t)y(a(t)) O, E 7, (1.1)

where cr is the forward jump operator and the coefficients p(t) and q(t)
are real valued A-periodic functions defined on 7,

p(t + A) p(t), q(t + A) q(t), E7. (1.2)

Besides we assume that

p(t) > O, p(t) e C)d[O,A], q(t) e Cd[O,A], (1.3)

where [0, A] { e 7:0 <_ <_ A).
For the definition ofthe A-derivative and other concepts related with

time scales we refer to [5,10,15,17,18]. Further results include [2,3,7,11,12].
Equation (1.1) is said to be unstable if all nontrivial solutions are

unbounded on 7, conditionally stable if there exist a nontrivial solution
which is bounded on 7, and stable if all solutions are bounded on 7.
Main results of this paper are the following two theorems.

THEOREM 1.1 Ifq(t) <_ 0 andq(t)O, then Eq. (1.1) is unstable.
By definition, put

Po max q+(t) max{q(t) 0), (1.4)
te[0,;(A)] p(t)

where p is the backwardjump operator.

THEOREM 1.2 /f

(i) q(t)At > O, q(t) 0;

[  ’1/o(ii) P0 + J0 p(t)J
q+(t)At < 4,

(1.S)

(1.6)

then Eq. (1.1) is stable.
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We dwell on the three special cases as follows:

1. If "11" I we can take as A any w E N, w > 0. Equation (1.1) takes
the form

[p(x)y’(x)]’ + q(x)y(x) O,

and the periodicity condition (1.2) becomes

x E , (1.7)

p(x + w) p(x), q(x + w) q(x),

The conditions (i) and (ii) of Theorem 1.2 transform into

(i)

(ii)

o"
q(x) dx >_ O, q(x) O;

q+(x) dx <_ 4.

We note here that the last conditions lead to a well-known result. In 19]
Lyapunov has proved that, if a real, continuous and periodic function
q(x) ofperiod w > 0 satisfies the conditions

(1) q(x) >_ O, q(x) O;

(2) w q(x) dx <_ 4,

then the equation

y"(x) + q(x)y(x) O, x

is stable. In [6] Borg extended Lyapunov’s result to functions q(x) of
variable sign, showing that if

(1’)

(2’)

o
q(x) dx O, q(x)O;

a; Iq(x)l dx < 4,

hold, then Eq. (1.8) is stable. Then in [16] Krein improved Borg’s result
replacing in condition (2’) Iq(x)l by q+(x) max{q(x), 0}.
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Notice that Eq. (1.7)can be transformed into an equation of the type
(1.8) by the change of variable. For direct investigation of Eq. (1.7) we
refer to [14].

2. If’l[’ Z we can take as A any integer N> 0. Equation (1.1) takes the
form

A[p(n)Ay(n)] + q(n)y(n + 1) 0, n E Z,

where A is the forward difference operator defined by Ay(n)=
y(n + 1) -y(n). The periodicity condition (1.2) can be written as

p(n + N) p(n), q(n + N) q(n), nEZ.

The conditions (i) and (ii) of Theorem 1.2 become

N-1

(i)2 Z q(n) > O, q(n) y 0;
n=0

N-1

(ii). + q+(n) < 4,
n--0

where p=min{p(O),p(1),...,p(N- 1)}, q+(n)=max{q(n),O}. This
result was established in [4].

3. Let w be a positive real number and Nbe a positive integer. Setting
A w /Nconsider the time scale ql" defined by

U {kA +w+ n: n 1,2,...,N- 1}].

Evidently the set defined in such a way is a A-periodic time scale.
Equation (1.1) takes the form

[p(x)y’(x)]’ + q(x)y(x) O, U{x e : kA _< x _< kA+w},x

A[p(t)Ay(t)] / q(t)y(t + 1) O,

tE U{kA+w+n’n--O, 1,...,N-2},
kZ
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which incorporates both differential and difference equations. In this
case, the conditions (i) and (ii) of Theorem 1.2 can be written as

w N-1

0)3 foo q(x) dx + Z q(w + n) > O, q(t) 0;
n=0

f dx
(ii)3 Jo p(x) + + p(w + n)

q+ (x)dx + q+ (w + n) _< 4,
n--0

wherep min{p(w),p(w + 1),... ,p(w + N- 1)}, q+(t) max{q(t), 0}.
As a conclusive remark we note that the assumption 0 E 7 is not

necessary. Instead we can take any fixed point to E ql" in place ofzero and
in that case, the integrals in the conditions (i) and (ii) ofTheorem 1.2 will
be considered from to to to / A.

2. AUXILIARY PROPOSITIONS

Consider Eq. (1.1), where ql" is a A-periodic time scale containing zero,
with the coefficients p(t) and q(t) being real valued and satisfying the
conditions (1.2) and (1.3). Floquet theory applies for Eq. (1.1). For the
details of Floquet theory we may refer to, for example, [8,20] for
differential equations, and [13, pp. 113-115, 4, 9, pp. 144-149] for
difference equations.

Let us denote by ytZX](t) =p(t)yzx(t), the quasi-A-derivative ofy(t). For
arbitrary complex numbers Co and Cl, Eq. (1.1) has a unique solution y(t)
satisfying the initial conditions

y(0) co, y[ZX](0) Cl.

Denote by 0(t) and qa(t) the solutions of Eq. (1.1) under the initial
conditions

0(0) 1, 0[zx] (0) O; qo(O) O, p[zx] (0) 1. (2.1)
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There exist a nonzero complex number/3 and a nontrivial solution (t)
of Eq. (1.1) such that

b(t + A) 3b(t), E T. (2.2)

The number/3 is a root of the quadratic equation

/32 D3 + 0, (2.3)

where

D 0(A) + q[zX](A). (2.4)

The roots of (2.3) are defined by

/1,2 1/2 (D v/D2 4).

Since the coefficients of Eq. (1.1) and the initial conditions (2.1) are
real, the solutions O(t), qo(t) and hence the number D defined by (2.4)
will be real.

PROPOSITION 2.1

IDI <2.
Equation (1.1) is unstable if IDI > 2, and stable if

Proof If the discriminant D2 4 is nonzero, then (2.3) has two distinct
roots fll and/32, and hence there exist two nontrivial solutions l(t) and
bE(t) of Eq. (1.1) such that

31 (t %- A) /1)1 (t), 32(t %- A) /22(t), E T. (2.5)

It is easy to see that l(t) and b2(t) are linearly independent. From (2.5)
it follows that, for all k Z,

bl (t %- kA) --/lk)l (t), 32(t %- kA) qr. (2.6)

If IDI > 2, then the numbers/1 and/32 will be distinct and real. There-
fore from the equality 3132 it follows that 1311 - 1 and 1321 # 1, since if
this were false, we would get 31 2 + 1. Obviously, if I 11> 1, then
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1/21 < 1, and if < 1, we have [/2[ > 1. Consequently from (2.6) as
k--.-+- it follows that every nontrivial linear combination of bl(t)
and b2(t) will be unbounded on ql’, that is Eq. (1.1) is unstable.

If IDI < 2, then the numbers/31 and/32 will be distinct, nonreal and
such that [/1[-’-[/21-- 1. Therefore, from (2.5) we have

1 (t + A)[ [l(t)[, 12(t + A)I 12(t)1, E qI’.

Consequently, bl (t) and )2(t) and hence every solution ofEq. (1.1) which
is a linear combination of bl(t) and 2(t) will be bounded on ql", that is
Eq. (1.1) will be stable. This completes the proof of the proposition.

Remark 2.1 If [D[ 2, then Eq. (1.1) will be stable in the case 0tzX(A)
q(A) 0; but conditionally stable and not stable otherwise.

The following mean value result (for the case Z see [1, p. 24, 4]) will
play a significant role in Section 4.

PROPOSITION 2.2 Let a < b be any two points in the time scale q, and let

f(t) andg(t) be two realfunctions continuous on the segment [a, b] {
a < < b} and A-differentiable on (a, b) { E 7: a < < b}. Suppose the
function g(t) is increasing on [a, b]. Then there exist , 7- (a, b) such that

fzx(7-) < f(b) -f(a) < f/x()
g’a(’r) g(b) g(a) gA() (2.7)

where (a, b) (a, b) iftr(a) a, and (a, b) [a, b) ifor(a) > a.

Proof We prove the right-hand side of (2.7), with the proof of the left-
hand side being similar. Assume, on the contrary, that

f(b) f(a) >fzx(t)
g(b) g(a) gZX(t)

for all in (a, b). Since g(t) is increasing on [a, b], gZX(t) > 0 on (a, b). So
we have

f(b) -f(a) gX(t > fzx(t)g(b) -g(a)
Vt (a, b).
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Integrating (in the sense ofA-integral) both sides from a to b, we arrive at
the contradiction

f(b) f(a) > f(b) -f(a),

thereby establishing the result.

We will also make use of the following formulae which can easily be
verified.

PROPOSITION 2.3 Let a, b E q, a < b and letf(t) be a continuousfunction
on [a, p(b)] c ql". Then

b

fp(b)
f(t)At f(t)At + [b- p(b)] f(p(b)),

f()zx 

where a and p are the "forward" and "backward" jump operators,
respectively.

3. PROOF OF THEOREM 1.1

Let O(t) and q(t) be solutions of Eq. (1.1) satisfying the initial condi-
tions (2.1). Our aim is to show that, under the hypotheses ofthe theorem,
the inequalities

0(A) 1, [zX](A) >

hold. Then D =0(A)+ [AI(A)> 2 will be obtained and therefore by
Proposition 2.1, Eq. (1.1) will be unstable.

Firstly we show that

O(t)>_ 1, 0[/x] (t) >_ 0, (t)>_0, [zx](t)>_ 1, VteV, t>_0.

(3.1)
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For this purpose we apply the induction principle developed for Time-
Scales (see, for example, [5,18]), to the statement,

A(t)’0(t)>l and 0[’x](t)>0 for alltE and t>0.

(I) The statement A(0) is true, since 0(0)= and 0[AJ(0)= 0.
(II) Let be right-scatteredand A(t) be true, i.e., O(t) > and 0tzx(t) > 0.

We need to show that O(r(t))> and 0[zxl(cr(t))> 0. But, in view of
the induction assumptions, the required result are immediate from the
relations

O(cr(t)) O(t) -q- #*(t)O/x (t),

0[/x](cr(t)) 0[zx](t) #*(t)q(t)O(tr(t)),

the first one following from the definition ofA-derivative and the second
from Eq. (1.1) for O(t). Here #*(t)= or(t)- t.

(III) Let to be right-dense, A(to) be true and E[to, tl]= {t’i[’:
to < < tl}, where tl is such that tl > to and is sufficiently closed to

to. We need to prove that A(t) is true [to, tl].
From Eq. (1.1) with y(t)= O(t), the equations

0[zx](t) 0[’x](t0) q(s)O(cr(s))As, (3.2)

/to /t0tAT 1
Q(s)O(o’(s))zS AT"O(t) O(to) / 0tzXl(t0).

P(’) t0

(3.3)

follow. To investigate the term O(t) appearing in (3.3), we consider the
equation

tAT.
q(s)y(tr(s))As AT-,y(t) O(to) + 0t l(t0).

(3.4)

.ft y(t) > O(to) + 0[zx](t0) Jto p(t)’ to _< _< tl. (3.5)

where y(t) is a desired solution. Our aim is to show that for tl sufficiently
close to to, Eq. (3.4) has a unique, continuous (in the topology of "i[’)
solution y(t) satisfying the inequality
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We solve Eq. (3.4) by the method of successive approximations, setting

(3.6)

Ifthe series j=o yj(t) converges uniformly with respect to E [to, tl], then
its sum will be, obviously, a continuous solution of Eq. (3.4). To prove
the uniform convergence of this series we let

frotlAT tltl 1 Ift0
"r

co O(to) / 0tl(t0), p(’)’ c - Iq(s)l/Xs

Then the estimate

O < yj(t) < cocJ (to <_ < tl), j= 0, 1,2,... (3.7)

can easily be obtained.
Indeed, (3.7) evidently holds forj= 0. Let it also hold forj--n. Then

from (3.6), applying Proposition 2.3, we get

0 < Yn+l(t) < Iq(s)lY(a(s))As m-

p(t,)

p(T)
Iq(s)lYn(a(s))As AT

+ [tl p(tl)]’ fp(tl)
p(p(tl)) ato

Iq(s) yn(Cr(s) As

p(T)
Iq(s)[As AT

Iq(s) l/Xs+ [tl p(tl)]
p(p(tl)) to

CoC P---" to
Iq(s) lAs A- CoC+1

Therefore by the usual mathematical induction principle, (3.7) holds for
allj 0, 1, 2,...
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Now choosing tl appropriately we obtain cl < 1. Then Eq. (3.4) will
have a continuous solution

y(t) yj(t) for E [to, tl].
j=O

Since yj(t) > 0, it follows that y(t) > yo(t) thereby proving the validity of
inequality (3.5).
Uniqueness of the solution of Eq. (3.4) can be proven in the usual way.
From (3.3) and (3.4) in view of the uniqueness of the solution we get

that O(t) y(t), to <_ <_ tl. Therefore

o(t) >_ O(to) + oral(to) Jto
to<_t<_tl.

Hence by making use of the induction hypothesis A(to) being true, we
obtain from the above inequality

O(t)> fortE[t0, tl].

Taking this into account, from (3.2) we also get

for [to, tl].

Thus, A(t) is true for all [to, tl].
(IV) Let , > 0 be left-dense and such that A(s) is true for all s < t,

i.e., O(s) > 1, OzX(s) > O, Vs < t. Passing here to the limit as s we get
by the continuity of O(s) and OtzX(s) that O(t) > and 0tzx(t) > 0, thereby
verifying the validity of A(t).

Consequently, by the continuous type induction principle on a time-
scale, (3.1) holds for O(t) and 0tAl(t), Vt qI’, > 0.
Proof for o(t) > 0 and ptzxl(t) > is similar.
From (3.1), in particular, we have O(A)> 1, tX(A)_> 1. Actually

tAI(A) > 1. Indeed, consider the equations

fOqo[zx](t) 1- q(s)o(tr(s))As, (3.8)

fotAT f0t If0
r ]qo(t)

p(r) - q(s)qo(tr(s))As A-, (3.9)



614 F.M. ATICI et al.

which follow from Eq. (1.1) with y using initial conditions (2.1). If
tzx](A) 1, (3.8) gives rise to

"A
q(s)qo(cr(s) As O.

On the other hand, since 99(0 >_ 0 by (3.1), from (3.9) it follows that
q(t) >0, Vt>O. Therefore, (3.10) yields q(s)=0, VsE[0,p(A)]. Hence
employing the A-periodicity of q(t) it follows that q(t)=_ 0, E , con-
tradicting the hypothesis of the theorem. Hence [zX](A)> and
Theorem 1.1 is proven.

4. PROOF OF THEOREM 1.2

To prove Theorem 1.2 it is sufficient by Proposition 2.1 to show that
D2 < 4. Assuming on the contrary that D2 > 4 will lead to contradiction.

DEFINITION We say that a function f: 7 I has a generalized zero

(a node) at to 7 if either f(to) 0 or f(p(to)) .f(to) < O, where p is the
backwardjump operator.

Next we develop the proofofTheorem 1.2 in the form oftwo lemmas.

LEMMA 4.1 IfD > 4, then Eq. (1.1) has a real, nontrivial solution b(t)
possessing thefollowingproperties: there exist twopoints a andb in 7 such
that 0 < a < p(A), b > a, b a < A, b(t) has generalized zeros at a and b,
and b(t) > 0for a < < b.

Proof IfDa > 4, it then follows from Section 2 that Eq. (1.1) has a non-
trivial solution y(t) having the property y(t + A) fly(t) (t 7), where fl
is a real nonzero number. Since Re y(t) and Im y(t) are also solutions of
Eq. (1.1 ) with the same property, we may assume that Eq. (1.1) has a real,
nontrivial solution b(t) satisfying

b(t + A) b(t), 7, (4.1)

where/3 is a real nonzero number.
Firstly we show that b(t) must have at least one generalized zero a in

the segment [0, p(A)] {t 7: 0 < < p(A)}. If not, then by (4.1), b(t)
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does not have any generalized zero in "/, so b(t) :/: 0 and (p(t)). b(t) > 0
for all in "I[’. Hence we also have b(t). b(cr(t)) > O, Vt E .
From the equation

[p(t)/x(t)]/x + q(t)b(cr(t)) O, E 7 (4.2)

we have

a A
At + q(t)At O.

Therefore using the integration by parts formula

U/X(t) V(cr(t))At U(t)V(t) U(t) Vzx(t)At
o

and noting that, by the periodicity ofp(t) and the Eq. (4.1),

P(t)bzx(t) IA p(A)pzx(A) -P(0)bzx(0)= [p(A)-p(0)] bzx(0)
b(t) o b(A) b(O)

=0,

we get that

A
At + q(t)At O.

Hence taking into account the condition (1.5) of the theorem along with
the facts that b(t)b(r(t))> 0 and p(t)> 0, we obtain bzx(t) 0 for all
E [0, p(A)], i.e. b(t) C const, on [0, A]. Note that C 0, since b(t) is

a nontrivial solution of Eq. (1.1). Therefore, setting 0 in (4.1) we get
/3 1. Hence b(t) C for all "/1". Consequently, from Eq. (4.2) we have
q(t). C 0 on qr and hence q(t)= 0 on , which contradicts the condi-
tion (1.5) ofthe theorem. Thus b(t) has at least one generalized zero a in

[0, p(A)]. From (4.1) we get that b(t) will have also a generalized zero at
a + A. It is not difficult to show that on the segment [a, a + A] the solu-
tion b(t) may have only finitely many generalized zeros. Denote by b the
smallest generalized zero of b(t) lying to right of a and different from a.

Then b < a + A, therefore b > a, b a < A, and b(t) does not have
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generalized zero at for a < < b. Since (t) must keep a constant sign
on (a, b), and together with b(t) the function -b(t) also is a solution of
Eq. (1.1) with the same generalized zeros at a and b, we may assume that
b(t) > 0 for a < < b. The lemma is therefore proven.

LEMMA 4.2 Under the hypothesis ofthe preceding lemma the inequality

Po + -p q+(t)At > 4 (4.3)

holds, where Po and q+(t) are defined by (1.4).

Proof Let us set

g(t) Jo p(s)’ G(t) [p(t)bzx(t)]/x

G+(t) max{G(t), 0), G_(t) min{G(t), 0}.

Evidently

a+(t) + G_(t) [a(t)l, (t) (t)

Let b(t) be a solution of Eq. (1.1) possesing the properties indicated in
Lemma 4.1. There are four possibilities with respect to a and b.

Case 1: 42(p(a)). ,(a) < 0 and b(p(b)). b(b) < O.
Case 2: 2(p(a)). (a) < 0 and ,(b) O.
Case 3: b(a) 0 and b(b) O.
Case 4: b(a) 0 and b(p(b)). b(b) < O.

Let one of the Cases and 2 hold. Then p(a) < a and p(b) < b. Choose
c E [a, p(b)] such that

b(c) max b(t).
a<t<p(b)

It is easy to see that, in the cases considered,

b(c) b(p(a)) > b(c), b(c) b(b) >_ b(c),

with the strict inequality in the latter one occurring in Case 1.
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Consequently,

g(c) g(p(a)) g(b) g(c)
b(c) (p(a))

< g(c) g(p(a)) q2(c) g(b) g(c)

[(c) (p(a)) (b) b(c)] 1

[(c) g(p(a)) g(b) -J b(c)"

()
(c)

Furthermore, by Proposition 2.2 there exist (E [p(a), c) and 7-E (c, b)
such that

(c) (p(a)) < ,A()
g(c) g(p(a)) gZX()

(b) () >
g(b) g(c)- gZX(7-)

Therefore

[bA (()
g(c) g(p(a)) + g(b) g(c) < t(- -()J (e)

() lg(t) j

f" bzx(c)
[p(t) (t)]AAt

G(t)At(c)

f<_- G_(t)At

_(t)< b(tr(t)----- At, (4.4)

since <_ < 7- = p(a) <_ < p(b) =: a <_ a(t) <_ p(b).
On the other hand for arbitrary real numbers x, y, z satisfying x < y < z

the inequality

1 4
y-x z-y z-x
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holds. Consequently, from the inequality (4.4) we get

r G_(t)
At>4[g(b) g(p(a))] (a(t)) (4.5)

Since

b At
g(b) -g(p(a)) q+ (t), E [p(a), p(b)),

it follows from (4.5) that

q+(t)At > 4.
(a)

(4.6)

Next, taking into account that p(a) _< < - < p(b), b < a + A, and that for
any periodic functionf(t) on 7 with period A the equality

to+A fo
A

f(t)At f(t)At
,! to

holds for all to E qr, we have

b At fa+A At a- p(a)
(a)- - Jp(a) P’) p(p(a))

a+A At
+

a p(t)

A At< Po + p(t)’

f fp(b) fp(a)+ fo
A

q+(t)At <_ q+(t)At <_ q+(t)At q+(t)At,
Jp(a) Jo(a)

since by the A-periodicity ofqr and p(t)

a- p(a) a(t)
max max

aE[0,p(A)] p(p(a)) tE[0,o(a)] p(t)

and from the inequality b _< a + A it follows that p(b) <_ p(a) + A. Con-
sequently, (4.3) follows from (4.6).
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Now we assume that one of the Cases 3 or 4 holds. In these cases
choosing c E (a, b) such that

b(c)= max b(t)
cr(a)<t<p(b)

yields

b(c) b(a) b(c), _>

with the strict inequality in the second one holding for the Case 4.
Consequently,

g(c) g(a) g(b) g(c)

b(c) b(a) (c) (b)< +g(c) g(a) b(c) g(b) g(c) b(c)

[b(c) (a)
lg(c) -g(a)

b(b) ’g,(c)l
g(b) J b(c)

Finally, reasoning as in the previous case we obtain the inequality,

q+(t)At > 4.

Therefore the inequality (4.3) is true in these cases as well. The Lemma is
thus proven.

Since the inequality (4.3) contradicts the condition (1.6) ofthe theorem,
the inequality D > 4 cannot be true. Thus D2 < 4 and Eq. (1.1) is stable
and the Theorem 1.2 is proven.
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