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1. INTRODUCTION

The following inequality is well known in the literature as Simpson’s
inequality:

fabf(x) dx ----.b a [f(a) +f(b) + 2f (a. + .b)2

where the mapping f: [a, b] I is assumed to be four times contin-
uously differentiable on the interval (a, b) and for the fourth derivative
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to be bounded on (a, b), that is

Itf(4) 1[o := sup If(4)(x)[ < cx3.

xE(a,b)

Now, if we assume that In" a x0 < X1 <’’" < Xn-1 < Xn b is a parti-
tion of the interval [a, b] and f is as above, then we have the classical
Simpson’s quadratureformula:

bf(x) dx As(f In) + Rs(f In), (1.2)

where As(f, In) is the Simpson rule

"-1 2f(xi +Xi+l)hAs(f, In) =:-[f(xi) +f(xi+l)]hi+-
/=0

2
i=0

(1.3)

and the remainder term Rs(f, In) satisfies the estimate

n--1

IRs(f, In)[ < 2880
Ilf(4) [1Zh,

i=0

(1.4)

where hi :-- Xi+l Xi for 0,..., n 1.
When we have an equidistant partitioning of [a, b] given by

b-a
In xi := a/" i, i=O,...,n;

then we have the formula:

bf(x) dx AS,n(f) + Rs,n(f), (1.6)

where

-[ ( b-a )( b-ab-a
f a+.i /f a+.(i+l)As,n(f) :=

6n
i=0

n n

b-an "2i+2 1) (1.7)
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and the remainder satisfies the estimation

(b-a)5

IRs,,(f)l < 2880" n4
I[f(4)l[" (1.8)

For some other integral inequalities see the recent book [1] and the
papers [2-4] and [5-37].
The main purpose of this survey paper is to point out some very

recent developments on Simpson’s inequality for which the remainder is
expressed in terms of lower derivatives than the fourth.

It is well known that if the mappingfis neither four times differen-
tiable nor is the fourth derivativef4) bounded on (a, b), then we cannot
apply the classical Simpson quadrature formula, which, actually, is one
of the most used quadrature formulae in practical applications.
The first section of our paper deals with an upper bound for the

remainder in Simpson’s inequality for the class of functions of bounded
variation.
The second section provides some estimates for the remainder when

f is a Lipschitzian mapping while the third section is concerned with
the same problem for absolutely continuous mappings whose derivatives
are in the Lebesgue spaces Lp[a, b].
The fourth section is devoted to the application of a celebrated result

due to Griiss to estimate the remainder in the Simpson quadrature rule
in terms of the supremum and infimum of the first derivative. The fifth
section deals with a general convex combination of trapezoid and inte-
rior point quadrature formula from which, in particular, we can obtain
the classical Simpson rule.
The last section contains some results related to Simpson, trapezoid

and midpoint formulae for monotonic mappings and some applications
for probability distribution functions.

Last, but not least, we would like to mention that every section con-
tains a special subsection in which the theoretical results are applied for
the special means of two positive numbers: identric mean, logarithmic
mean, p-logarithmic mean etc. and provides improvements and related
results to the classical sequence of inequalities

H<G<L<I<A,

where H, G, L, I and A are defined in the sequel.



536 S.S. DRAGOMIR et al.

2. SlMPSON’S INEQUALITY FOR MAPPINGS OF
BOUNDED VARIATION

2.1. Simpson’s Inequality

The following result holds [2].

THEOREM Letf: [a, b] - be a mapping ofbounded variation on [a, b].
Then we have the inequality:

fab b-a lf(a)+f(b) ( +b)lf(x) dx----. 2
/ 2f a

2

b

< (b- a)V(f),
(2.1)

where /6a(f) denotes the total variation off on the interval [a,b]. The
constant 1/2 is the best possible.

Proof Using the integration by parts formula for Reimann-Stieltjes
integral we have

fab b-a If(a)+f(b (a-k-b)] fabs(x) df(x)
3 2 + 2f 2 f(x) dx,

(2.2)
where

Indeed,

x- x E a,
s(x)

6 2
a+5b Ia+bb]x

6
xE

2

b

s(x)

5a+b df(x) + x-
6 +6)/2

a+ 5b)6
df(x)

5a+
f(x)] + I (x a+

f(x)]
b

--[(x___b) (a+b)/2

6 a 6 (a+6)/=

f(x)dx

b a [f(a) +f(b) + 2f (a +,b) ] ja
"6

----" 2 2
f(x) dx

and the identity is proved.
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Now, assume that A,’a--x")< xln)< < "() xn),_ < =b is a

sequence of divisions with v(A.)-O as nc, where v(An):=
(n) (n) (n) (n) (n)

maxge{0 n_l,(X/+ --X )andi E Ix ,Xi+l].Ifp:[a,b] ,scon-
tinuous on [a, b] and v [a, b] -- Ii is of 15ounded variation on [a, b], then

bp(x) dv(x)
n-1

,4zx)o/=oplim((n)) [v(xl)) v

n-1

lim Xi+l)(x)o .=

n-1

max [p(x)[ sup
x[a,b] A .=

b

max [p(x)[ V(v).
xE[a,b] a

(2.3)

Applying the inequality (2.3) for p(x) s(x) and v(x) =f(x) we get

bs(x) df(x)
b

< max Is(x) V(f). (2.4)
xE[a,b] a

Taking into account the fact that the mapping s is monotonic non-
decreasing on the intervals [a, (a + b)/2) and [(a + b)/2, b] and

b-a
s(a) 6

s(a + O) =l(b-a),
s(a,+ b) l(b-a)2

and

ba
s(b)= 6

we deduce that

max Is(x)[ l(b- a)
xe[a,b] -
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Now, using the inequality (2.4) and the identity (2.2) we deduce the
desired result (2.1).
Now, for the best constant. Assume that the following inequality holds

b b-a
f(x) dx --- f(a) +f(b) + 2f (a +2

b

< C(b a) V(f)
a

with a constant C > 0.
Let us choose the mappingf: [a, b] given by

a+b)ifxE a,
2

f(x)
a+b

-1 if x ----.
tA (a + ,b1,

Then we have

bf(x) dx If(a) +f(b)2 + 2f(ab)l 4
(b-a)

and

b

(b- a) V(f) 4(b a).
a

Now, using the above inequality, we get 4C(b-a)> ](b-a) which
implies that C > 1/2 and then 1/2 is the best possible constant in (2.1).

It is natural to consider the following corollary which follows from
identity (2.2).

COROLLARY Suppose that f: [a,b] ll is a differentiable mapping
whose derivative is continuous on (a, b) and

b

IIf’lla If’(x)l dx <
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Then we have the inequality:

IL b-a [f(a)+f(b)f(x) dx --- 2 + 2f 2
(b_a)2< 5 IIf’ll,

(2.5)

The following corollary for Simpson’s composite formula holds:

COROLLARY 2 Let f: [a, b] --+ IR be a mapping of bounded variation on

[a, b] and Ih a partition of[a, b]. Then we have the Simpson’s quadrature
formula (1.2) and the remainder term Rs(f, Ih) satisfies the estimate:

b

Is(f, Ih)l _< (h)V(f), (2.6)
a

where 7(h) :-- max{hl 0,..., n }.

The case of equidistant partitioning is embodied in the following
corollary:

COROLLARY 3 Let In be an equidistant partitioning of[a, b] andfbe as

in Theorem 1. Then we have theformula (1.6) and the remainder satisfies
the estimate:

b

(b- a) V(f) (2.7)IRs,.(f) -<
a

Remark 1 If we want to approximate the integral fabf(x)dx by
Simpson’s formula As,n(f) with an accuracy less than s > 0, we need
at least n E Npoints for the division In, where

ne .(b-a) (f) +1

and [r] denotes the integer part of r E IR.

Comments If the mappingf: [a, b] --+ IR is neither four times differenti-
able nor the fourth derivative is bounded on (a, b), then we cannot apply
the classical estimation in Simpson’s formula using the fourth derivative.



540 S.S. DRAGOMIR et al.

But ifwe assume thatfis of bounded variation, then we can use instead
the formula (2.6).
We give here a class ofmappings which are of bounded variation but

which have the fourth derivative unbounded on the given interval.
Letfp :[a, b] ,fp(X) :-- (x a)p wherep E (3, 4). Then obviously

fA (x) := p(x a) p-l, x (a, b)

and

fp(4) (X) =p(p- 1)(p- 2)(p- 3)
(x- a)4-p

x (a,b).

It is clear thatfp is of bounded variation and

b

V(f) (b a)p < o,
a

but limx_+ fp(4)(x)

2.2. Applications for Special Means

Let us recall the following means:

(1) The arithmetic mean

A A(a,b):=
a+b

a,b >0;

(2) The geometric mean

G G(a, b):= v/, a, b _> O;

(3) The harmonic mean

2
H H(a, b) 1/a + 1/b’

a,b>0;
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(4) The logarithmic mean

b-a
L L(a,b) "=

lnb- lna
a,b>O, ab;

(5) The identric mean

l(bb)1I- I(a,b) :---
e Y a,b>O, aCb;

(6) The p-logarithmic mean

[ bp+l -ap+l ll/PLp Lp(a,b)’: C(f li( a)_]
pII\.[-1,O}, a,b > O, a:/: b.

It is well known that Lp is monotonic nondecreasing over p E IR with
L_ := L and L0 := L In particular, we have the following inequalities

H<_G<L<I<A.

Using Theorem 1, some new inequalities are derived for the above
means.

1. Letf: [a, b] R (0 < a < b),f(x) x’, p ]R\{- 1,0}. Then

labb a
f(x) dx Lp(a, b),

f(a) +f(b) A(aP bp),
2

f(a,,,b) :AP(a,b)

and

IIf’[l --[pl(b a)Lfl, p /R\{-1,0, 1).

Using the inequality (2.5) we get

2
L(a, b) - A(ap, b1 -Ap (a, b) < I-l!LpP5(b a)2.
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2. Letf: [a, b] --* N (0 < a < b),f(x) 1Ix. Then

labb a
f(x) dx L-1 (a, b),

f(a) +f(b) H- (a, b),

f (a +2 b) A-l (a’ b)

and

bna
IIf’ll G2(a, b)

Using the inequality (2.5) we get

I3AH- AL- 2HL[ <
62

3. Letf: [a, b] I (0 < a < b),f(x) In x. Then

f.
b

b a
f(x) dx In I(a, b),

f(a) +f(b) In G(a, b),

f (a +"b)
and

b-a
Ilf’l[ =L(a,b)"

Using the inequality (2.5) we obtain

In G1/UA2/3.
(b-a)2

-< 3L
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3. SIMPSON’S INEQUALITY FOR LIPSCHITZIAN MAPPINGS

3.1. Simpson’s Inequality

The following result holds [3]"

THEOREM 2 Let f: [a,b]-- be an L-Lipschitzian mapping on [a,b].
Then we have the inquality:

f(x) dx ----- 2 + 2f 2
< L(b a).

(3.1)

Proof Using the integration by parts formula for Riemann-Stieltjes
integral we have (see also the proof of Theorem 1) that

b b a [f(a) +f(b)s(x) df(x) 3 2 + 2f(a+b)2 l fabf(x)dx’
(3.2)

where

x
6

x a,

s(x) :=
a/5b__ [a+b b]"x

6
x

2

v(n) X(nn)NOW, assume that An’a= xn) < xln) < < n-1 < b is a
sequence of divisions with u(A,) 0 as n c, where u(An) :=

[’.(n) .(n)’ ,..,.,,.1 c(n) Iv(n) v(n) ]. If p [a, b] -* IRmaxis{0 n-i} Ai+I -xi ) axt qi |’i
is Riemann infegrable ori [a, b] and v: [ab] --+ i L-Lipschitzian on

[a, b], then

p(x) dv(x)

lim
n-,

((}n))l(xl_) xln) Vt,,Xi..t._I) (.X’In))
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<L

b

L Ip(x)[ dx. (3.3)

Applying the inequality (3.3) for p(x)= s(x) and v(x)--f(x) we get

df(x)
b

< L Is(x)l dx. (3.4)

Let us compute

fab f(a+b)/915aq-bIs(x) dx x
va 6

I(5a+b)/6(Sa-Fb.a 6

f(a+5b)/6(a-+-Sb+
J (a+b)/2 6

5(b- a)2.
36

a+
6 5b[ dx

x) dxq_ f(a+b)/2( 5a+b) dXX
l(5a+b)/6 6

x) dx-F (ib+5b)/6 (x a + 5b. dx
6

Now, using the inequality (3.4) and the identity (3.2) we deduce the
desired result (3.1).
COgOLLAg 4 Suppose that f: [a,b] is a differentiable mapping
whose derivative is continuous on (a, b). Then we have the inequality:

fab b-a [f(a)+f(b)+2f(a+b)lf(x) dx --- 2 2 -< IIf’lloo(b a)2

(3.5)

The following corollary for Simpson’s composite formula holds:

COROLLARY 5 Letf: [a, b] /R be an L-Lipschitzian mapping on [a, b]
and Ih a partition of [a,b]. Then we have the Simpson’s quadrature
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formula (1.2) and the remainder term Rs(f, Ih) satisfies the estimation:

n-1

[Rs(f, Ih)l < L h. (3.6)
i=o

The case of equidistant partitioning is embodied in the following
corollary:

COROLLARY 6 Let In be an equidistant partitioning of[a, b] andfbe as

in Theorem 2. Then we have theformula (1.6) and the remainder satisfies
the estimation:

5 L
(b a)2[Rs,n(f)[ <_ -- (3.7)

bRemark 2 If we want to approximate the integral fa f(x) dx by
Simpson’s formula As,n(f) with an accuracy less that e > 0, we need
at least n E Npoints for the division In, where

ns:= .-(b-a) /1

and [r] denotes the integer part of r E .
Comments If the mapping f: [a, b] I is neither four time differen-
tiable nor the fourth derivative is bounded on (a, b), then we cannot
apply the classical estimation in Simpson’s formula using the fourth
derivative. But if we assume that f is Lipschitzian, then we can use
instead the formula (3.6).
We give here a class ofmappings which are Lipschitzian but having the

fourth derivative unbounded on the given interval.

Letfp [a, b] IR,fp(x) := (x a)p where p (3, 4). Then obviously

fA(x) := p(x a)p-l, x (a, b)

and

fp(4) (X) =p(p- 1)(p- 2)(p- 3)
(x- a)4-p

x (a,b).
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It is clear thatf is Lipschitzian with the constant

L p(b a) p-1 < o,

but limx--,a+ fp(4)(x) --oo.

3.2. Applications for Special Means

Using Theorem 2, we now point out some new inequalities for the special
means defined in the previous section.

1. Letf: [a,b] IR (0 < a < b),f(x)= xp, p E N\{-1, 0}. Then

Ilf’l[ 6p(a,b) := {pb-o [plaP-
ifp> 1,

if p E (-o, 1)\{-1, 0).

Using the inequality (3.5) we get

[L(a,b) -1/2A(aP, bp) -AP(a,b)[ <_ Sp(a,b)(b a).

2. Letf: [a, b] R (0 < a < b),f(x) 1Ix. Then

Using the inequality (3.5) we get

5 b-a
I3HA L.4 2LH < 1- a--g-

LAH"

3. Letf: [a, b] (0 < a < b),f(x) In x. Then

Using the inequality (3.5) we get

I
In

G/3A2/3
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4. SIMPSON’S INEQUALITY IN TERMS OF THE p-NORM

4.1. Simpson’s Inequality

The following result holds [4]:

THEOREM 3 Let f: [a, b]--+ IR be an absolutely continuous mapping on

[a, b] whose derivative belongs to Lp[a, b]. Then we have the inequality:

f(x) dx ----- 2 + 2f "2

[2q+l + 11
1/q

<
[3(q + ’1) (b a)l+l/qllf’llp, (4.1)

where (1/p) + 1/q 1, p > 1.

Proof Using the integration by parts formula for absolutely contin-
uous mappings, we have

"b b a [.f(a) +f(b)s(x)f’ (x) dx 2 + 2f (a. + b) b

2 1 fa f(x)dx’

(4.2)

where

5a+b [ a+b)x
6

x a,
2

S(X) :=
a+5b [a+bb]"x

6
x

2

Indeed

abs(x)f’(x)dx

/.(a+b)/2(
,Aa

5a+b f,(x) dx+ x-
6 +b)/2

a 5b) f’(x) dx
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bf(x) dx

b a [f(a) +f(b) + 2f (a + b)3 2 2

a+5b) I b

6 f(x)
(a+6)/z

fbf(x)dx,
and the identity is proved.
Applying H61der’s integral inequality we obtain

6

s(x)f’(x) dx (fb )l/q<_ Is(x)lq dx II/’llp. (4.3)

Let us compute

b

Is(x)lq dx

(a+b)/21 5a + b
x

a 6

----[(5a+b)/6("5a-l-b,a6
-lqdx+f(f[+b)/2X a + 5b[q

x)
q

dx -t- [(a+b)/2(x 5a+b)
q

dx
1(5a+b)/6 6

)q f(( a5b)
q

x dx + x- dx
+56)/6 6

) ( )q+l (a+b)/2q+l (5a+b)/6 5a + b-x + x
,a 6 (5a+b)/6

(a+5b)/6(ant-5b) q+lb]--1-X
(a+b)/2 6 (a+5b)/6

q+l

(a+5b)/2 (a + 5b
+

d(a+b)/2 6

q/l 6

(a +6 5b x)
q+l

1 [(5ab )q+ (_+. 5a+
q+

--a .a+b
2 6

(.a-k-5b Iq+l ( a+Sbl q+l]+ a+b + b
6 2 6

(2q+l if- 1)(b a)q+l

3(q + 1)6q
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Now, using the inequaltiy (4.3) and the identity (4.2) we deduce the
desired result (4.1).

The following corollary for Simpson’s composite formula holds:

COROLLARY 7 LetfandIn be as above. The we have Simpson’s rule (1.2)
and the remainder Rs(f, Ih) satisfies the estimate:

[2q+l+lql/q (Igs(f, Ih)l < - [3(//+ i)J Ilf’llp hi+q (4.4)
\ i=0

Proof Apply Theorem 3 on the interval [xi, xi+l] (i=0,...,n- 1) to
obtain

ix‘+’

f(x) dx--hi [.f(xi)+f(xi+l)2
d Xi

,rq+,/ll ,iq
l+l/q (ixi+’

ip )
lip

< g [3(q+ 1)] IIf’lleh, If’(t) dt
\d xi

Summing the above inequalities over from 0 to n- 1, using the gen-
eralized triangle inequality and H61der’s discrete inequality, we get

IRs(/, S)I
n-1

ix,+, hi [f(xi) nt-f(Xi+l<_ f(x) dx - 2
i=0 xi

,pq/’/,}’/q-’ l+l/q (ixi+’

< /3(q + 1) hi If’(t)l" dt
i=0 \,s xi

1 [2q+l _l_|]l/q[ ]l/q
x (ix’+’

If’(t)l’dt
\ i=0 \,xxi

lrq+’/l]’iq ( )
liq

=g 13(q + 1) IIf’ll, hi+q
\ i=0

and the corollary is proved.
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The case of equidistant partitioning is embodied in the following
corollary:

COROLL,R 8 Letfbe as above and ifIn & an equidistant partitioning
of[a, b], then we have the estimate:

[2q+l + 1]
1/q

IRs’(f)l <-n L3( + 1) (b- a)+l/qllf’l[p.

Remark 3 If we want to approximate the integral ff(x)dx by
Simpson’s formula As,n(f) with an accuracy less that e > 0, we need
at least n E Npoints for the division In, where

(2q+l -+- 1)1/qn := \-

_
(b a)l+l/qllf’[[p] +

and [r] denotes the integer part of r E .
Comments If the mappingf: [a, b] I is neither four time differenti-
able nor the fourth derivative is bounded on (a, b), then we cannot apply
the classical estimation in Simpson’s formula using the fourth derivative.
But if we assume that fPE Lp(a, b), then we can use the formula (4.4)
instead.
We give here a class of mappings whose first derivatives belong to

Lp(a,b) but having the fourth derivatives unbounded on the given
interval.

Letf: [a, b] I,f(x) := (x a) where s (3, 4). Then obviously

fs(X) :’- s(x- a)s-l, x E (a, b)

and

fs(4) (X) S(S- 1)(s 2)(s- 3)
(x_a)4-s

It is clear that limx-a+ fs(4) (X) -[-O, but

x (a,b).

(b a)S-+(I/p)
[[fsl[p s.

((s-1)p + 1) 1/p < c.
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4.2. Applications for Special Means

(See Section 2.2 for the definition of the means.)

1. Letf [a, b] --- I (O < a < b),f(x) x, s E N\{-1, O}. Then

f(x) dx LSs(a,b),b-a

f(a+2 b) As(a’ b),

f(a) +f(b) A(aS, bs)

and

I[ftl[p s-1 (b a) lip-IslZ(_p

Using the inequality (4.1) we get

IL(a, b) 1/2 A(as, bs) AS(a,

-< L3(q + 1

1/q
s-1 (a,b)(b- a),IslZ(_p

where (1/p) / 1/q 1, p > 1.
2. Letf: [a, b] 11 (0 < a < b),f(x) 1Ix. Then

f
b

b a
f(x) dx Z-1 (a, b),

f (a + b) A-l (a’

f(a) +f(b) H- (a, b)2

and

IIf’llp L-p(a,b)(b a) 1/p.
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Using the inequality (4.1) we get

[2q+ + 11 1/q

I3HA LA 2LH[ < -AHL[3(q + 1)1 L-p(b a) 1/p.

3. Letf: [a, b] N (0 < a < b),f(x) In x. Then

labb a
f(x) dx In I(a, b),

f (a + b) ln A(a, b)
2

f(a) +f(b) In A(a, b)

and

IIf’l[p L--lp(a,b)(b a) 1/p.

Using the inequality (4.1) we obtain

< g L3(q-1)jl[2q+l + 1] 1/qL__lp(a, b)(b a).

5. GRUSS INEQUALITY FOR THE SIMPSON FORMULA

5.1. Some Preliminary Results

The following integral inequality which establishes a connection between
the integral of the product of two functions and the product of the inte-
grals of the two functions is well known in the literature as Griiss’
inequality [5, p. 296]:

THEOREM 4 Let f, g’[a, b] -- be two integrable functions such that
q <_f(x) <_ g9 and’7 <_ g(x) <_ Ffor allx E (a, b); q, , ’7 andF are constants.
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Then we have the inequality:

Ib l_a fabf(x)g(x)dx-b a
f(x) dx.

b a
g(x) dx

<_ 1/4 v),

and the inequality is sharp in the sense that the constant 1/4 cannot be
replaced by a smaller one.

In 1938, Ostrowski (cf., for example.J1, p. 468]) proved the fol-
lowing inequality which gives an approximation of the integral
1/(b a) fabf(t) dt as follows:

THEOREM 5 Let f: [a,b]--. be a differentiable mapping on (a,b)
whose derivative f’ :(a,b)--. is bounded on (a,b), i.e., [[f’[l:=
supt(a,b)l f’(t) dt[ < cxz. Then

fabf(t) dt <I+f(x)
b a

(x (a + b)/2)2]
i (b a)1[ f’ [l,

for all x E (a, b).

In the recent paper [6], Dragomir and Wang proved the following
version of Ostrowski’s inequality by using the Griiss inequality (5.1).

THEOREM 6 Letf: I C_ -, be a differentiable mapping in the interior

ofI and let a, b int(I) with a < b. Iff’ Ll[a, b] and

" <_f’(x) < r

for all x [a, b], then we have thefollowing inequality:

fa (a+b.)b f(b)-f(a), xf(x) b a f(t) dt b a 2

_< 1/4 (b a)(r -), (5.3)

for all x [a, b].

They also applied this result for special means and in Numerical Inte-
gration obtaining some quadrature formulae generalizing the mid-point
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quadrature rule and the trapezoid rule. Note that the error bounds they
obtained are in terms of the first derivative which are particularly useful
in the case whenf" does not exist or is very large at some points in [a, b].
For other related results see the papers [7-37].
In this section of our paper we give a generalization of the above

inequality which contains as a particular case the classical Simpsonfor-
mula. Application for special means and in Numerical Integration are
also give.

5.2. An Integral Inequality of Gr(issType

For any real numbers A, B, let us consider the function [21]

t-a+A ifa<t<x,
p(t) px(t)

t-b+B ifx<t<_b.

It is clear that Px has the following properties.

(a) It has the jump

[P]x (B- A) (b a)

at point x and

dpx(t)
dt

1+ [P]x 6(t- x).

(b) Let Mx := supte(a,b)Px(t) and mx := infte(a,b)Px(t). Then the differ-
ence Mx -mx can be evaluated as follows"
(1) For B- A <_ O, we have

Mx mx -[P]x.

(2) For B- A > 0, the following three cases are possible
(i) If 0 < B A < 1/2(b a), then

-x+b

x--a

for a _< x _< a + (B- A);
for a + (B- A) < x _< b (B- A);
for b- (B-A) < x _< b.
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(ii) If 1/2(a b) < B- A _< (b a), then

-x+b

Mx mx B- A

xma

for a _< x < b- (B-A);
for b- (B-A) _< x < a+ (B- A);
for q+ (B-A) <_ x <_ b.

(iii) IfB- A > b a, then

Mx mx [P]x"

The following inequality of Ostrowski type holds [21]

THEOREM 7 Letf: [a, b] N be a differentiable mapping on (a, b) whose
derivative satisfies the assumption

"7 < f’(t) < P for all E (a,b), (5.4)

where "7, F are given real numbers. Then we have the inequality."

(C A)f(a) + (b a B + A)f(x) + (B C)f(b) fabf(t)dt]
<_ 1/4 (F "7)(Mx mx)(b a), (5.5)

where

Cx 2(b a)[(x a)(x a + 2A) (x b)(x b + 2B)],

and A, B, Mx andmx are as above, x [a, b].

Proof Using the Grfiss inequality (5.1), we can state that

f(b) f(a)px(t)f’(t)dt-
b-a b-a

<_ 1/4 (I’ "7)(Mx mx),

px(t)dt
b-a

(5.6)

for all x (a, b).
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Integrating the first term by parts we obtain:

japx(t)f’(t) dt Bf(b) Af(a) f(t) dt + [p]xf(X).

Also, as

(5.7)

bpx(t) dt 1/2 [(x a)(x a + 2A) (x b)(x b + 2B)],

then (5.6) gives the inequality:

Bf(b) Af(a) f(t) dt + [p] f(x) Cx .f(b)
b-a x b-a

< 1/4 (r 7)(Mx mx),

which is clearly equivalent with the desired result (5.5).

Remark 4 Setting in (5.5), A B 0 and taking into account, by the
property (b), that Mx-mx=b- a, we obtain the inequality (5.3) by
Dragomir and Wang.

The following corollary is interesting:

COROLLARY 9 Let A, B be real numbers so that 0 <_ B A <_ (b a)/2.
Iffis as above, then we have the inequality:

2
Af(a)/[b-a (B-A)]f(a- b) / B-2 Af(b) fabf(t)dt

<_ 1/4 (F "y)(b a B + A)(b a). (5.8)

Proof Consider x (a / b)/2. Then, from (5.5)

xua

x-b
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and

A+Bc= 2
x E [a + (B- A), b (B- A)].

By property (b) we have

Mx mx (b a) (B- A).

Applying Theorem 7 for x (a + b)/2, we get easily (5.8).

Remark 5 If we choose in the above corollary B- A (b a)/2, then
we get

(a) +f(b) +f
a + b

(b-a)- dt < -2 2

(5.9)

which is the arithmetic mean of the mid-point and trapezoid formulae.

Remark 6
inequality:

If we choose in (5.8) B= A, then we get the mid-point

(b-a)f(a+b)2 fbf(t)dtl < l
(5.10)

discovered by Dragomir and Wang in the paper [6] (see Corollary 2).

Remark 7 If we choose in (5.8) B- A (b- a)/3, then we obtain the
celebrated Simpson’s formula:

[f(a)+4f(a- b) +f(b)1 --fabf(t) dt < -1 (, 7)(b a):,
(5.11)

for which we have an estimation in terms of the first derivative not as in
the classical case in which the fourth derivative is required as follows:

b-a f(a) + 4f(a + b) +f(b)]- bf(t)dtl < llf(4)[[o (b- a)5

2 2880

(5.12)
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The method ofevaluation ofthe error for the Simpson rule considered
abovecan be applied for any quadrature formula ofNewton-Cotes type.
For example, to get the analogous evaluation of the error for the

Newton-Cotes rule oforder 3 it is sufficient to replace the functionpx(t)
in (2.3) by the function

t-a-A
a+bpx(t) :=
2

t-b-B

ifa < < a+h;
A+B

ifa+h < < b-h;
2

if b-h < < b;

where B A (b a)/4, h (b a)/3.

5.3. Applications for Special Means

(See Section 2.2 for the definition of the means.)
1. Consider the mappingf(x) xP(p > 1), x > 0. Then

F "), (a b)(p 1)LpP_

for a, b E with 0 < a < b. Consequently, we have the inequality:

AP(a,b) +-A(aP, bp) L(a,b) _<l(b-a)(p-1)LpP_.
2. Consider the mappingf(x) 1/x, x > 0. Then

b a2 (b a)A(a, b)
/= ab-----T- 2.

G4(a, b)

for 0 < a < b. Consequently we have the inequality:

A- (a, b) + -H (a,b)-L-(a,b) (b_ a)2 A(a,b)<- - G4(a,b)

which is equivalent to

+ AL AH (b a)9 A2HL<- - G4
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3. Consider the mappingf(x) In x, x > 0. Then we have

for a, b E 11 with 0 < a < b. Consequently, we have the inequality:

lnA +lnG- lnI
1 (b a)2<-
6 G2

which is equivalent to

(b a)2

-6 G2

5.4. Estimation of Error Bounds in Simpson’s Rule

The following theorem holds.

THEOREM 8 Let f: [a, b] be a differentiable mapping (a, b) whose
derivative satisfies the condition

",/<_f’(t) <_ I" for all (a,b);

where % I" are given real numbers. Then we have

bf(t) dt Sn(In,f) + Rn(In,f),

where

n--1

Sn(In,f -Zhi[f(xi) -+- 4f(xi -+- hi) -+-f(xi+l )],
i=o

(5.14)

Ih is the partition given by

In: a xo < X1 < < Xn-1 < Xn b
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hi := 1/2(Xi+l xi), 0,..., n and the remainder term Rn(I,,f satisfies
the estimation:

n-I2
(I 7) Z h/ (5.15)[R,(I,,f)[ < - i=o

Proof Let us set in (5.11)

a xi, b Xi+l, 2hi Xi+l xi and xi + hi 1/2 (xi-+- Xi+l ),

where 0,..., n 1.
Then we have the estimation:

hi fxi+

[f(xi) -+- 4f(xi nt- hi) -+-f(xi+l )] f(t) dt
X

for all i=O, ,n 1.
After summing and using the triangle inequality, we obtain

hi labf(i=0 " [f(xi) "+" 4f(xi "+" hi) +f(xi+l)] t) dt
n-12

(r "7) Z hi’<-5
i=0

which proves the required estimation.

COROLLARY 10 Under the above assumptions and if we put IIf’llo :--

supt(a,b) lf’(t)[ < 0, then we have the following estimation of the
remainder term in Simpson’sformula

4 n--1

IR.(I,f)l <_ IIf’llo h/. (5.16)
i=0

The classical error estimates based on the Taylor expansion for
Simpson’s rule involve the fourth derivative ]]f(4)[]o. In the case thatf(4)

does not exist or is very large at some points in [a, b], the classical esti-
mates cannot be applied, and thus (5.15) and (5.16) provide alternative
error estimates for the Simpson’s rule.
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6. A CONVEX COMBINATION

The following generalization of Ostrowski’s inequality holds [19]:

THEOREM 9 Let f: [a,b] R be absolutely continuous on [a,b], and
whose derivative f"[a,b]--R is bounded on [a,b]. Denote IIf’llo’--
ess suptta,b]lf’(x)l < o. Then

f(t) at f(x). (1 ) + f(a) +f(b). (b a)
2

< [(b-a)[+(-l)]+(x-a+b)]llf’ll (6.1)2

for all 6 E [0, 1] and a + (b a)/2 < x < b 6. (b a)/2.

Proof Let us define the mappingp" [a, b]2 R given by

p(x,t) :=

t-[b-6"b-2 a]’ E(x,b].

Integrating by parts, we have

p(x,t)f’(t)dt

(f(a) +f(b))6. (b-a)
2

dt + j’xb(t lb ,5
b a

]
f’(t) dt

/ (1 6).f(x) f(t) dt. (6.2)

On the other hand

bp(x,t)f’(t)dt fa<_ [p(x, t)[ [f’(t)l dt _< [[f’llo Ip(x, t)l dt

dt +
b at]
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Now, let us observe that

fpr fpq q.rIt ql dt (q t)dt / (t q) dt

(q_ r+p)
2

[(q p)2 + (r- q)2] (p r)2 + 2

for all r, p, q such that p < q < r.

Using the previous identity, we have that

l(x_a)2+ (a+6.dt= a+x)22
and

b l(b_x)/ (b-.dt=
x + b))2

Then we get

1 (x-a)+(b-x)+ b-a x-a+-L=.. 2 2 2 2

(b-a)----2. e+( 1) + x
4 2

x
6 "b-a)

and the theorem is thus proved.

Remark 8 (a) Ifwe choose in (6.1), 6 0, we get Ostrowski’s inequality.
(b) If we choose in (6.1), 6 and x (a + b)/2 we get the trapezoid
inequality:

fa
b f(a) +f(b) (b a)f(t)dt- 2 <--1 (b a)2llf’[I o. (6.3)

COROLLARY 11

fa 1[f(t) dt - f(x) +

< [(b-a)+(x

Under the above assumptions, we have the inequality:

f(a) -f(b).] (b a)

a + b
2
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for allx E [(b + 3a)/4, (a + 3b)/4], and, inparticular, thefollowing mixture
ofthe trapezoid inequality and mid-point inequality:

b

f t) dt - f (a + + f(a) +f (b-a) (b a)2llf

(6.4)

Finally, we also have the following generalization of Simpson’s
inequality:

COROLLARY 12 Under the above assumptions, we have

b

f(t) dt - If(a) + 4f(x) +f(b)](b a)

-< I----(b-a)2+ (x-a+b)2]
for all x [(b + 5a)/4, (a + 5b)/4], and, in particular, the Simpson’s
inequality:

_1 If(a)+4f(a b)+f(b)l(b-af(t dt - _< (b a)2llf’[[.
(6.5)

6.1. Applications in Numerical Integration

The following approximation of the integral fabf(x) dx holds [19].

THEOREM 10 Letf: [a, b] R be an absolutely continuous mapping on

[a, b] whose derivative is bounded on [a, b]. If I :a Xo < x <... <
Xn- < Xn b is a partition of [a, b] and hi: Xi+l Xi, 0,..., n 1,
then we have

bf(x) dx Aa(In, , 6,f) + Re(In, , 6,f), (6.6)
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where

n-1 n-1

A6(In,,5,f) (1 ) -f(i)hi + SZ f(xi) +f(xi+l)
2

i=0 i=0

hi, (6.7)

6 E [0, 1], xi + 5. hi < i < xi+ " hi 0,..., n 1; andthe remain-
der term satisfies the estimation:

IR6(In,,6,f)l

< IIf’lloo 6 2 + (6- 1)2 Z h2i + Z i-
xi q- Xi+l (6.8)

i=o i=o
2

Proof Applying Theorem 9 on the interval [Xi, Xi+l] i= 0,... ,n-
we get

hi[(1 6)"f({i) + f(xi) +f(xi+, fXi+l6 f(x) dx
Xi

_< [52-+ (6-I)2] --+ @i xi "ql-Xi+’)2 ]lf/I]

for all E [0, 1] and (i [xi, xi+ ], 0,..., n 1.
Summing over from 0 to n- and using the triangle inequality we

get the estimation (6.8).

Remark 9 (a) Ifwe choose 6 0, then we get the quadrature formula:

bf(x) AT(In, (,f) + RT(In, ,f), (6.9)dx

where Ar(In, ,f) is the Riemann sum, i.e.,

n-1

AT(In, ,f) := Zf(i)hi,
i=0

{i [xi, xi+l], i= O,...,n- 1;

and the remainder term satisfies the estimate (see also [8]):

IRT(I’’f)l < llf’lloo i.... +- (6.10)
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(b) Ifwe choose 6 1, then we get the trapezoid formula"

bf(x) dx AT(In,f) + RT(In,f) (6.11)

where Ar(In,f) is the trapezoidal rule

n-1

AT(In,f) Zf(xi) +f(xi+l)
hi2

i=o

and the remainder terms satisfies the estimation:

n-1

[R(I=,f)l < [If’[[ -- h.4
i=0

(6.12)

COROLLARY 13 Under the above assumptions we have

bf(x) dx Br(In, C,f)+ Qr(In, (,f), (6.13)

where

1
f((i)hi + yf(xi) +f(xi+l). hiBr(In, (,f)

k i=0 i=o
2

Xi+l + 3xi xi q- 3Xi+l.li E
4 4

and the remainder term satisfies the estimation:

n-1

(IQr(ln,,/)l < II/’11 ’h / i-
i=0 i=0

xi + x+)
d ) ] (6.14)
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In particular, we have

’bf(x) dx BT(In,f) + QT(In,f), (6.15)

where

f Xi nt- Xi+l hi + Zf(xi) +f(xi+l). hiBr(In,f)
l i=0

2
i=0

2

and QT(In,f) satisfies the estimation"

n-1

IQ(l,f)[ < Ilf’ll h/ (6 16)
i=0

Finally, we have the following generalization of Simpson’s inequality
whose remainder term is estimated by the use ofthe first derivative only.

COROLLARY 14 Under the above assumptions we have

bf(x) dx ST(In, ,f) + Wr(In, ,f), (6.17)

where

2 n-I n-1

ST(In, (,f) - yf(i)hi nt- Z [f(xi) +f(xi+l)]hi,
i=0 i=0

Xi+l + 5Xi Xi + 5Xi+l7
6 6 j

and the remainder term Wr(In, ,f) satisfies the bound:

Iwr(I,,f)l <_ IIf’ll _h "- Z i-xi i+1.
i=0 i=0

(6.18)



SIMPSON’S INEQUALITY 567

and, in particular, the Simpson’s rule:

bf(x) dx S’(In,f) + Wr(In,f), (6.19)

where

1 ( ) ln-12
f X + xi+l hi + E [f(xi) +f(xi+l)]hiST(In,f) = i=0

2
i=0

and the remainder term satisfies the estimation:

n-1

Iw(I,f)l <_ IIf’ll’ h. (6.20)
i=0

6.2. Applications for Special Means

Now, let us reconsider the inequality (6.1) in the following equivalent
form:

f(a) +f(b)(1 6).f(x) + 2 " fabf(t)dtb-a

(x- (a + 6)/2)2]
] IIS’il 

for all 6 E [0, 1] and x E [a, b] such that

a+6"(b-a)<2 x<_b-5.
2

1. Consider the mapping f: (0, cx) --* (0, oe), f(x) xp, p e\{- 1, 0}.
Then, for 0 < a < b, we have

f IplbP-1
IIf’ll ’o

t lPlaP-i
ifp> 1,
if p (-o, 1]\{-1,0},
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and then, by (6.21), we deduce that

1(1 6). xp / 6. A(aP, bp) Zff(a,b)[

< (b a) + )2
4 + (b-a----- 5p(a,b),

where

( Iplbp-1
Sp(a,b) :=

[plaP-
if p> 1,

if p E (-c, 1]\{-1, 0}

and 6 E [0, 1], x [a / 6. (b a)/2, b 6. (b a)/2].
2. Consider the mapping f: (0, o) (0, o), f(x), 1Ix and 0 <

a < b. We have:

and then by (6.21), we deduce, for all 6 [0, 1], and a + . (b a)/2 <
x <_ b . (b a)/2 that

](1-6)6L+Lx6-x6 <_ (b-a)
: + (6- 1):] (x-

4 + b E-- ) ]
3. Consider the mapping f: (0, cx) , f(x) In x and 0 < a < b.

We have

1

and then, by (6.21), we deduce that

<- (b-a) + )2 (x..A)21
-a 4 + (b a) .]’

for all [0, 1], and x e [a + 6. (b a)/2, b 5. (b a)/2].
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7. A GENERALIZATION FOR MONOTONIC MAPPINGS

In [20], Dragomir established the following Ostrowski type inequality
for monotonic mappings.

THEOREM 11 Letf: [a, b] ] be a monotonic nondecreasing mapping
on [a, hi. Thenfor all x E [a, b], we have the inequality:

f(x)
b a f(x) dx

[2x (a + b)]f(x) + sgn(t x)f(t)dt<-b-a
[(x a)(f(x) -f(a)) + (b x)(f(b) -f(x))]

Ix (a + b)/2[ (f(b) -f(a)).< + b-a

All the inequalities are sharp and the constant 1/2 is the best possible one.

In this section we shall obtain a generalization ofthis result which also
contains the trapezoid and Simpson type inequalities.
The following result holds [38]:

THEOREM 12 Letf: [a, b] I be a monotonic nondecreasing mapping
on [a, b] and tl, t2, t3 (a, b) be such that tl < t2 < t3. Then

bf(x) [(tl a)f(a) + (b t3)f(b) + (t3 tl)f(t)]dx

<_ (b t3)f(b) + (2t. tl t3)f(t2) (tl a)f(a)

+ T(x)f(x)dx

<_ (b ta)(f(b) -f(t3))+ (t3 t2)(f(t3) f(t2))

+ (t2 tl)(f(t2) -f(tl)) + (tl a)(f(tl) --f(t2))
< max{t1-a, t2- tl,t3 t2,b- t3}(f(b)-f(a)), (7.1)

where

j" sgn(tl x), for x e [a, t2],
T(x)

sgn(t3- x), for x [t2,b].
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Proof Using integration by parts formula for Riemann-Stieltjes inte-
gral we have

abS(X)

df(x) (tl a)f(a) + (b t3)f(b) + (t3 tl)f(t2)

a’bf(x)d(x),
where

fx-tl, xE[a, t2],
X--t3, XE [t2, b].

Indeed

s(x) df(x) (x df(x) + (x t3) af(x)

(x- tl)f(x)l / (x- t3)f(t)lb= f(x) d(x)

(tl a)f(a) + (b- t3)f(b)

/ (t3 tl)f(t2)- f(x) dx.

Assume that An’a xn)< xln)< < x < x(")= b isasequence
of divisions with u(An)O as noe, where u(An) :=

( )maxi=0 ,,_ x}"- x}n} and (}n} xi. ’Xi+lJ If p: [a, b]---, 11 is a
continuous mapping on [a,b] and v s monotonic nondecreasing
on [a,b], then

bp(x) dv(x)
n-1

lim v
u(An)’-’,o /=oP@}n)) v{ (n)Xi+I)-

n-1

v v

n-1

u(A.)--, .=
 Xi+I)

fa IP(X)I dv(x). (7.2)
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Applying the inequality (7.2) for p(x) s(x) and v(x) --f(x), x E [a, b]
we can state:

bs(x) df(x)

which is the first inequality in (7.1).
Iff: [a, b] 11 is monotonic nondecreasing in [a, b], we can also state:

atlf

(x) dx <_f(t )(t a),

tt2f(x)

dx >_f(t2)(t2- t),

tf(x) dx <_f(t3)(t3 --t2),

and

bf(x) dx >_f(t3)(b- t3).
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ab

T(x)f(x) dx

f(x) dx f(x) dx / f(x) dx f(x) dx

<_f(t)(tl -a)-f(t2)(t2- t) +f(t3)(t3 -t2)-f(t3)(b- t3).

We have

-(tl a)f(a) + (t2 tl)f(t2) (t3 t2)f(t2)

-(b t3 f(b) / T(x)f(x) dx

<_ -(tl a)f(a) + (t2 t)f(t2) (t3 t2)f(t2) + (b t3)f(b)

+ (tl -a)f(t)- (t- t)f(t) + (t3 t2)f(t3)- (b- t3)f(t3)

(tl -a)(f(tl)-f(a))+ (t2 t)(f(t2) -f(tl))
/ (t3 t)(f(t3)-f(t2))+ (b- t3)(f(b)-f(t3))

_< max{tl a, t2 tl,t3 t,b t3}(f(b) f(a)).

The theorem is thus proved.

Remark 10 For t 0, t2 X, 3 b, a generalized trapezoid inequality
is obtained and we get Theorem 11 from the above Theorem.

For tl t2 t3 x Theorem 12 becomes [38]:

COROLLARY 15 Letfbe defined as in Theorem 12. Then

bf(x) [(X- a)f(a) / (b- x)f(b)]dt

<_ (b x)f(b) (x a)f(a) + sgn(x t)f(t) dt

< (b x)(f(b) -f(x)) + (x a)(f(x) -f(a))

<_ (b a) + x 2 (f(b) f(a)). (7.3)

All the inequalities in (7.3) are sharp and the constant 1/2 is the bestpossible.
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Proof We only need to prove that the constant 1/2 is the best possible
one. Choose the mappingf0" [a, b] given by

fO, ifxE[a,b),fo(x)
1, ifx b.

Then,f0 is monotonic nondecreasing on [a, b], and for x a we have

f(t) [(x- a)f(a) + (b x)f(b)]dt

(b x)f(b) (x a)f(a) + sgn(t- x)f(t)dt

(b x)(f(b) -f(x)) + (x- a)(f(x) -f(a))

(b-a)

< C(b a) / x (f(b) -f(a))

(C + 1/2)(b a)

which prove the sharpness ofthe first two inequalities and the fact that C
cannot be less than 1/2.
For x (a + b)/2 we get the trapezoid inequality [38].

COROLLARY 16
on [a, b]. Then

Letf: [a, b] IR be a monotonic nondecreasingmapping

(t) +J’-’ (b a)f(a) f(h
dt

2

(b a)(f(b) -f(a)) sgn t-

<- -1 (b a)(f(b) f(a)).

a / b f(t)dt
2

(7.4)

The constantfactor 1/2 is the best in both inequalities.
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COROLLARY 17 (see [38])
p > q. Then

Letfbe as in Theorem 9 andp, q E N+ with

bf(x) dx
q

P+q

< q
-p+q

< q
-p+q

(b a)[f(a) +f(b) + a + b)
b

(b a) (f(b) f(a) + T (x)f(x) dx

(b a)(f(b) f(a))

/;)1p 3q (b_a)[f(.p+a)_f(+2(p + q) +

<max{q,P-q} b-a2 p/q
(f(b) -f(a)),

where

sgn -x ifxE a,
2/q

rl(x

(p+qa) [sgn -x ifx
a+b

b
/q 2

Proof Set in Theorem 12: tl (pa + qb)/(p + q), t2 (a + b)/2, t3
(qa/pb)/(p/q).

Remark 11 Of special interest is the case p 5 and q where we get
from Corollary 17 the following result of Simpson type;

b _1 (b-a)[f(a)/f(b) (a-b)
b- a fb<- 6 (f(b) -f(a)) / r2(x)f(x) dx

<b-a (5b + a) (5a- b)6
f(b)-f(a) +f 6 -f

(b a)(f(b) -f(a))<_-



SIMPSON’S INEQUALITY 575

where

Remark 12

(5a-+3b) [a+bsgn x x a,
2

T2(x)

sgn(a+sb )3
x x ,b.

Forp q we get Corollary 16 from Corollary 17.

7.1. An Inequality for the Cumulative Distribution Function

Let Xbe a random variable taking values in the finite interval [a, b], with
cumulative distributions function F(x) Pr(X< x).
The following result from [20] can be obtained from Theorem 12

(see [38]).

THEOREM 13 Let XandFbe as above. Then we have the inequalities:

Pr(X _< x)
b- E(x)

1 [ /a
b ][2x (a + b)]Pr(X _< x) + sgn(t- x)F(t)dt

[(b x)Pr(X _> x) + (x a)Pr(X < x)]

1 Ix- (a + b)/2< -+ (7.5)
-2 b-a

for all x E [a, b].
All the inequalities in (7.5) are sharp and the constant 1/2 is the best

possible.

Now we shall prove the following result [38].

THEOREM 14 Let XandFbe as above. Then we have the inequalities:
b

IE(x) xl _< b- x + sgn (x- t)F(t)dt

< (b x)Pr(X _> x) + (x a)Pr(X <_ x)
b-a a+b

(7.6)

for all x [a, b].



576 S.S. DRAGOMIR et al.

All the inequalities in (7.6) are sharp and the constant 1/2 is the best
possible.

Proof Apply Corollary 15 for the monotonic nondecreasing mapping
f(t) :-- F(t), E [a, b] to get

fabF(t) dt- [(x- a)F(a) + (b- x)F(b)]

<_ (b x)F(b) + (x a)F(a) + sgn(x t)F(t) dt

< (b x)(F(b) F(x)) + (x a)(F(x) F(a))

<_ (b a) + x
2

(F(b) F(a)) (7.7)

and as

F(a) O, F(b)

by the integration by parts formula for Riemann-Stieltjes integrals

fabE(x) dF(t) tF(t) [ba F(t) dt

bF(b) aF(a) F(t) dt

b F(t) dt.

That is,

b

F(t) dt b- E(x).

The inequalities (7.7) give the desired estimation (7.6).
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COROLLARY 18 (see [38]) LetXbea random variable taking values in the
finite interval[a, b], with cumulative distributionfunction F(x) Pr(X_< x)
and the expectation E(x). Then we have the inequality

E(x)
a + b

--T- (l(b_a)_ sgn
a + b)F(t)dt < (b a)
2 --The constant 1/2 is the best in both inequalities.
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