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Recently, as a nice application of Furuta inequality, Aluthge and Wang (J. Inequal. Appl.,
3 (1999), 279-284) showed that "/f T is a p-hyponorma! operator for pE(O, 1], then T
is p/n-hyponormal for any positive integer n," and Furuta and Yanagida (Scientiae
Mathematicae, to appear) proved the more precise result on powers of p-hyponormal
operators forp E (0, 1]. In this paper, more generally, by using Furuta inequality repeatedly,
we shall show that "/f T is a p-hyponormal operator for p > O, then T is min{ 1,p/n}-
hyponormalfor any positive integer n" and a generalization of the results by Furuta and
Yanagida in (Scientiae Mathematicae, to appear) on powers ofp-hyponormal operators
forp> 0.
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1. INTRODUCTION

A capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (denoted by T> 0) if
(Tx, x) > 0 for all x E H.
An operator Tis said to bep-hyponormalforp > 0 if(T* T)P> (TT*)p.

p-Hyponormal operators were defined as an extension of hyponormal
ones, i.e., T’T> TT*. It is easily obtained that every p-hyponormal
operator is q-hyponormal for p > q > 0 by L6wner-Heinz theorem
"A > B > 0 ensures A >Bfor any a [0, 1]," and it is well known that
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there exists ahyponormal operator Tsuch that T2 is nothyponormal [13],
but paranormal [7], i.e., T2xll > Txl[2 for every unit vector x E H. We
remark that everyp-hyponormal operator forp > 0 is paranormal [3] (see
also 1,5,10]).

Recently, Aluthge and Wang [2] showed the following results on

powers ofp-hyponormal operators.

THEOREM A. [2] Let T be a p-hyponormal operatorfor p (0, 1]. The
inequalities

(Tn Tn)P/n (T’T)p
_

(TT*)p (TnTn*)pin

holdfor allpositive integer n.

COROLLARY A.2 [2] IfT is a p-hyponormal operatorforp (0, ], then
Tn is p/n-hyponormalfor any positive integer n.

By Corollary A.2, if T is a hyponormal operator, then T2 belongs to
the class of 1/2-hyponormal operators which is smaller than that of
paranormal.
As a more precise result than Theorem A. 1, Furuta and Yanagida [11]

obtained the following result.

THEOREM A.3 [11, Theorem l] Let T be a p-hyponormal operatorfor
p (0, ]. Then

(Tn*Tn) (p+l)/n >_ (T’T)p+I and (TT*)p+I >_ (TnTn*) (p+l)/n

holdfor allpositive integer n.

Theorem A.3 asserts that the first and third inequalities of Theorem
A.1 hold for the larger exponents (p + 1)/n than p/n in Theorem A.1.
In fact, Theorem A.3 ensures Theorem A. by L6wner-Heinz theorem
for p/(p + 1) (0, 1) and p-hyponormality of T.
On the other hand, Fujii and Nakatsu [6] showed the following result.

THEOREM A.4 [6] For each positive integer n, if T is an n-hyponormal
operator, then Tn is hyponormal.

We remark that Theorem A.1, Corollary A.2 and Theorem A.3 are
results on p-hyponormal operators for p (0, 1], and Theorem A.4 is a
result on n-hyponormal operators for positive integer n. In this paper,
more generally, we shall discuss powers ofp-hyponormal operators for
positive real numberp > 0.
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2. MAIN RESULTS

THEOREM Let T be a p-hyponormal operator for p > O. Then the
following assertions hold."

(1) Tn* Tn >_ (T* T)n and (TT*)n >_ T T,* hold for positive integer n
such that n <p + 1.

(2) (Tn*Tn) (p+l)/n >_ (T’T)p+I and (TT*)p+I >_ (TnTn*) (p+l)/n holdfor
positive integer n such that n >_p + 1.

COROLLARY 2 Let T be a p-hyponormal operator for p > O. Then the
following assertions hold:

(1) Tn* Tn

_
TnTn* holdsfor positive integer n such that n < p.

(2) (Tn* Tn)p/n >_ (TnTn*)p/n holdsforpositive integer n such that n >p.

In other words, if T is a p-hyponormal operator for p > 0, then T" is

min{ 1,p/n}-hyponorrnalfor any positive integer n.

In case p E (0, 1], Theorem (resp. Corollary 2) means Theorem A.3
(resp. Corollary A.2). Corollary 2 also yields Theorem A.4 in case
p n. Theorem and Corollary 2 can be rewritten into the following
Theorem 1’ and Corollary 2’, respectively. We shall prove Theorem 1’
and Corollary 2’.

THEOREM For some positive integer m, let T be a p-hyponormal
operatorfor rn <p < m. Then thefollowing assertions hold."

(1) Tn*Tn >_ (T’T)n and (TT*)n >_ TnTn* holdforn--1,2,... ,m.
(2) (T"* Tn)(p+)/" > (T’T)p+ and (TT*)p+ >_ (T"T"*) (p+)/" holdfor

n--m+ 1,m+2,...

COROLLARY 2 For some positive integer m, let T be a p-hyponormal
operatorfor m <p <_ m. Then thefollowing assertions hold."

(1) Tn* Tn >_ TnTn* holdsfor n 1,2,..., m 1.
(2) (Tn* T")p/n >_ (TnT"*)p/n holdsfor n m, rn + 1,...

We need the following theorem in order to give a proofofTheorem .
THEOREM B.1 (Furuta inequality [8]) IfA > B > O, thenfor each r > O,

(i) Br/2APBr/2) 1/q
_

(Br/2BPBr/2) 1/q
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and

(ii) (Ar/2APAr/2) 1/q (W/2BpW/2)1/q
holdfor p > 0 and q > with (1 + r)q >p + r.

We remark that Theorem B. yields L6wner-Heinz theorem when we
put r 0 in (i) or (ii) stated above. Alternative proofs ofTheorem B. are

given in [4,15] and also an elementary one page proofin [9]. It is shown in

[16] that the domain drawn forp, q and r in Fig. is the best possible one
for Theorem B. 1.

Proof of Theorem I We shall prove Theorem by induction.

Proof of (1) We shall prove

and

Tn" Tn (T’T)n (2.1)

(TT*)" > T"Tn (2.2)

for n 1, 2,..., m. (2.1) and (2.2) always hold forn 1. Assume that (2.1)
and (2.2) hold for some n < m 1. Then we have

Tn*Tn (T’T)n (TT*)n TnTn* (2.3)

and the second inequality holds by p-hyponormality of Tand L6wner-
Heinz theorem for nip E (0, 1]. By (2.3), we have

Tn* Tn >_ (TT*)" (2.4)

(1,1)

(1 + r)q p + r

/ (,0)

FIGURE
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and

(7-*r)n >_

(2.4) ensures

Tn+l Tn+ T*(Tn Tn)T >_ T*(TT*)nT (T’T)n+,

and (2.5) ensures

(TT*)n+ T(T*T)nT >_ T(TnTn*)T*-- Tn+ Tn+l*.

Hence (2.1) and (2.2) hold for n + < m, so that the proof of (1) is
complete.

Proof of (2) We shall prove

(Tn* Tn)(p+)/n >_ (T’T)p+I (2.6)

and

(TT*)p+I >_ (TnTn*) (p+l)/n (2.7)

for n rn + 1, rn + 2,... Let T= UI T[ be the polar decomposition of T
where ITI=(T*T)/2 and put A.=ITIzp/" and B, [T"*[p/". We
remark that T* U*IT*[ is also the polar decomposition of T*.

(a) Case n rn + 1. (2.1) and (2.2) for n rn ensure

(rm*rm)p/m (T’T)p (rr*)p (rmrm*)p/m (2.8)

since the first and third inequalities hold by (2.1), (2.2) and L6wner-
Heinz theorem for p/m E (0, 1], and the second inequality holds by
p-hyponormality of T. (2.8) ensures the following (2.9) and (2.10).

Am (Tm* zm)p/m (ZZ*)p nl. (2.9)

hi (T’T)p (TmTm*)p/m Bin. (2.10)
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By using Theorem B. for m/p > and 1/p > 0, we have

(Tm+1. Tm+l)(p+l)/(m+l) (U*IT*ITm*TmIT*[U)(p+I/(m+I
U*([T*ITm*Tm[T*[)(p+/(m+) U
U* II/2pAm/P lctl/2p’(I+I/P)/((m/p)+I/P) U

l+l/p>_UB U

U*IT*I2(p+I) U
ITI/p+)
(T’T)p+l,

so that (2.6) holds for n m + 1.
By using Theorem B. again for m/p > and 1/p > 0, we have

(Tm+1Tm+I*)(P+I)/(m+l) (UITITmTm*[T[U*)(P+I)/(m+)

U([T[TmTm*[T[)(P+)/(m+)U*
u(Alll2PBnlPAII2p)(I+llp)I((mlp)+llP)u

< UAI+I/pu
UITI/p+/U*
T*I2(P+
(TT*)p+l,

so that (2.7) holds for n m + 1.
(b) Assume that (2.6) and (2.7) hold for some n > m + 1. Then (2.6) and

(2.7) for n ensure

(Tn* Tn)P/n (T’T)p (TT*)p . (TnTn*)P/n (2.11)

since the first and third inequalities hold by (2.6) and (2.7) for n and
L6wner-Heinz theorem forp/(p + 1) E (0, 1), and the second inequality
holds by p-hyponormality of T. (2.11) ensures the following (2.12) and
(2.13).

An (Tn* Tn)p/n >_ (TT*)p B1. (2.12)

A1 (T’T)p >_ (TnTn*)p/n Bn. (2.13)
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By using Theorem B. for nip > and 1/p

_
O, we have

(Tn+ Tn+l)(p+l)/(n+1) (U*IT*ITn*TnlT*[U)(p+)/(n+I)
U*(lr*lrn*rnlr*l)(P+l)/(n+l) U
U* (Bll/2pA/pBll/2P) (I+I/p)/((n/p)+I/p) S_
U*BI+I/pU

U*[T*[2(p+1) U
IT[-(p+)

(T’T)p+I,

so that (2.6) holds for n + 1.
By using Theorem B. again for nip > and 1/p > 0, we have

(zn+ zn+l*)(p+l)/(n+l) (U[T[TnT*[T[U*)(p+I)/(+)

U(ITITnTn*ITI)(P+I)/(n+I)u
1/2p)(l+l/p)/((n/p)+l/p) U*U(AI/2PB/PA1

-< UA + U*

U[T]2(p+l) U*

[T*](P+I/
(TT*)p+I,

so that (2.7) holds for n + 1.
By (a) and (b), (2.6) and (2.7) hold for n m + 1, m + 2,..., that is, the

proof of (2) is complete.

Consequently the proof of Theorem 1’ is complete.

Proof of Corollary

Proof of (1) By (1) Theorem 1’, for n 1,2,..., m 1,

Tn*Tn > (T’T)n >_ (TT*)n >_ TnTn

hold since the second inequality holds by p-hyponormality of T and
L6wner-Heinz theorem for nip E (0, 1). Therefore Tn* T >_ TnTn* holds
forn- 1,2,...,m- 1.
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Proof of (2) By (1) of Theorem 1’ and L6wner-Heinz theorem for
p/m E (0, 1] in case n m, and by (2) of Theorem 1’ and L6wner-Heinz
theorem for p/(p + 1) E (0, 1) in case n m + 1, m + 2,...,

(Tn" Tn)P/n (T’T)p (TT*)p (TnTn’)pin

hold since the second inequality holds by p-hyponormality of T.
Therefore (T"* T")p/n > (TnT"*)p/" holds for n=m,m + 1,...

3. BEST POSSIBILITIES OF THEOREM 1 AND COROLLARY 2

Furuta and Yanagida [11 discussed the best possibilities ofTheorem A.3
and Corollary A.2 on p-hyponormal operators forp (0, 1]. In this sec-
tion, more generally, we shall discuss the best possibilities ofTheorem
and Corollary 2 on p-hyponormal operators forp > 0.

THEOREM 3 Let n be a positive integer such that n > 2, p > 0 and a > 1.

(1) In case n <p + 1, thefollowing assertions hold:
(i) There exists ap-hyponormal operator Tsuch that

(’,’ 7"n) (7"*)""(ii) There exists a p-hyponormal operator Tsuch that
(VT*)n (TnTn’).

(2) In case n p + 1, thefollowing assertions hold."
(i) There exists ap-hyponormal operator Tsuch that

(Tn*Tn)((p+l)a)/n (T’T)(p+l)a.
(ii) There exists a p-hyponormal operator Tsuch that

(TT*)(+l)a (TnTn*) ((p+l)a)/n.

THEOREM 4 Let n be a positive integer such that n 2, p > 0 and a > 1.

(1) In case n < p, there exists a p-hyponormal operator T such that
(n* Tn)" (TnT"*)’.

(2) In case n p, there exists a p-hyponormal operator T such that
(Tn*Tn) (T"Tn*)p‘/".

Theorem 3 (resp. Theorem 4) asserts the best possibility ofTheorem
(resp. Corollary 2). We need the following results to give proofs of
Theorem 3 and Theorem 4.
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THEOREM C.1 [17,19] Letp>O,q>O,r>Oand6>O. IfO<q<l or

(6 + r)q <p + r, then thefollowing assertions hold:

(i) There exist positive invertible operators A and B on 2 such that
Ae > B e and

(Br/2APBr/2) 1/q

_
B(p+r)/q.

(ii) There exist positive invertible operators A and B on ]12 such that
Ae > B e and

A(p+r)/q

_
(Ar/2BPAr/2)I/q.

LEMMA C.2 [11] ForpositiveoperatorsAandB, define the operator Ton

k-oHasfollows."

0
B1/2

All2 0
A1/2 0

(3.1)

where [2] shows the place of the (0, 0) matrix element. Then thefollowing
assertion holds:

(i) T is p-hyponormalforp > 0 ifand only ifAp >_ Bp.

Furthermore, thefollowing assertions holdfor 3 > 0 and integers n >_ 2:

(ii) (T* T")/ >_ (T* T) ifand only if

(Bk/2An-kBk/2)3/n >_ B3 holds for k 1,2,...,n- 1.

(iii) (TT*)3 >_ TnTn )3/,, ifand only if

(3.2)

A3 >_ (Ak/2Bn-kAk/2)3/n holds for k- 1,2,... ,n- 1. (3.3)
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(iv) (Tn Tn)/n >_ (TnTn*)/n ifand only if

A>B holds and

(Bk/2An-kBk/2)/n B and A3 (Ak/2Bn-kAk/2)/n
holdfor k 1, 2,..., n 1. (3.4)

Proof of Theorem 3 Let n > 2, p > 0 and a > 1.

Proof of (1) Put pl=n-l>O, ql-1/aE(O, 1), rl--l>O and
8=p>O.

Proofof (i) By (i) ofTheorem C. 1, there exist positive operators A and
B on H such that A6 _> B6 and (Brd2AP’Brd2) 1/q’ B(p’+r’)/q’, that is,

and

Ap Bp (3.5)

(B1/2An-1B1/2)

_
Bha. (3.6)

Define an operator T on )k-H as (3.1). Then T is p-hyponormal
by (3.5) and (i) of Lemma C.2, and (Tn* Tn)

_
(T’T)n by (ii) of

Lemma C.2 since the case k of(3.2) does not hold for/3 na by (3.6).

Proofof(ii) By (ii) ofTheorem C. 1, there exist positive operators A and
B on H such that Ae > B e and A(pl+rl)/ql

_
(Ar’/2BP’Ar’/2) 1/q’, that is,

and

Ap >_ Bp (3.7)

An (A1/2on-lA1/2)a. (3.8)

Define an operator Ton )k-Has (3.1). Then Tis p-hyponormal by
(3.7) and (i) of Lemma C.2, and (TT*)n (TnTn*) by (iii) of Lemma
C.2 since the case k of (3.3) does not hold for/3 na by (3.8).

Proof of (2) Put Pl n- > O, ql n/((p + 1)a)> O, rl > 0 and
8 =p > O, then we have (8 +
Proof of (i) By (i) ofTheorem C. 1, there exist positive operators A and
B on H such that Ae > B e and (Br’/2APBr/z)1/ql B(p+r)/q., that is,

Ap >_ Bp (3.9)
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and

(B1/2An-IB1/2) ((p+l))/n B(p+l)a. (3.10)

Define an operator Ton )k-o Has (3.1). Then Tis p-hyponormal by
(3.9) and (i) of Lemma C.2, and (T"* Tn) ((p+l))/n

_
(T’T)(p+I) by (ii)

ofLemma C.2 since the case k of(3.2) does not hold for/3 (p + 1)a
by (3.10).

Proofof(ii) By (ii) ofTheorem C. 1, there exist positive operatorsA and
B on H such that A6 > B 6 and A(p+rl)/ql (Ar’/2BPArd2) 1/q’, that is,

and

Ap >_ Bp (3.11)

A(p+l)a

_
(A1/2Bn-IA1/2)((P+I))/n. (3.12)

Define an operator Ton )k-Has (3.1). Then Tis p-hyponormal by
(3.11) and (i) ofLemma C.2, and (TT*) (p+I)’ (TnTn*)((p+))/n by (iii)
ofLemma C.2 since the case k of(3.3) does not hold for/3 (p + 1)a
by (3.12).

Proof of Theorem 4 Let n > 2, p > 0 and a > 1.

Proof of (1) Put Pl n > 0, ql 1/a E (0, 1), rl 1 > 0 and
p > 0. By (i) of Theorem C. 1, there exist positive operators A and B

on H such that A6 >_ B 6 and (Br’/2APBrd2)1/q
_
B(p’+r’)/q’, that is,

and

Ap >_ Bp (3.13)

(B1/An-1B1/2) Bn’. (3.14)

Define an operator T on )k-o H as (3.1). Then T is p-hyponormal
by (3.13) and (i) of Lemma C.2, and (Tn* Tn) (T"Tn*) by (iv) of
Lemma C.2 since the case k ofthe second inequality of(3.4) does not
hold for/3 na by (3.14).

Proofof (2) It is well known that there exist positive operators A and B
on H such that

Ap >_ Bp (3.15)
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and

Ap’

_
Bp’ (3.16)

Define an operator T on )k=_H as (3.1). Then T is p-hyponormal
by (3.15) and (i) of Lemma C.2, and (Tn* Tn)p/n (TnTn*)p/n by (iv)
ofLemma C.2 since the first inequality of (3.4) does not hold for/3 pc
by (3.16).

4. CONCLUDING REMARK

An operator T is said to be log-hyponormal if T is invertible and
log T*T>_logTT*. It is easily obtained that every invertible p-
hyponormal operator is log-hyponormal since log is an operator
monotone function. We remark that log-hyponormal can be regarded
as 0-hyponormal since (T* T) p >_ (TT*)p approaches log T*T> log TT*
as p --, +0.
As an extension of Theorem A.1, Yamazaki [18] obtained the

following Theorem D.1 and Corollary D.2 on log-hyponormal
operators.

THEOREM D. [18] Let T be a log-hyponormal operator. Then the
following inequalities holdfor allpositive integer n."

(1) T*T

_
(T2*T2) 1/2 _... (_ (Tn’Tn) 1In.

(2) TT*

_
(TZT2") /2 >_... >_ (rnrn’)/n.

COROLLARY D.2 [18] IfT is a log-hyponormal operator, then T is also
log-hyponormalfor any positive integer n.

The best possibilities ofTheorem D. and Corollary D.2 are discussed
in [12].
As a parallel result to Theorem D. 1, Furuta and Yanagida [12] showed

the following Theorem D.3 on p-hyponormal operators forp E (0, ].

THEOREM D.3 [12] Let Tbeap-hyponormaloperatorforp (0, 1]. Then
thefollowing inequalities holdfor allpositive integer n."

(1) (T’T)p+ <_ (T2’ T2) (p+l)/2 <_... <_ (Tn* Tn) (p+l)/n.
(2) (TT*)p+I >_ (TT’)(p+l)/z >_ >_ (TnTn*)(p+l)/n.
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In fact, Theorem D.3 in the casep /0 corresponds to Theorem D. 1.
As a further extension of Theorem D.3, we obtain the following

Theorem 5 on p-hyponormal operators forp > 0.

THEOREM 5 For some positive integer m, let T be a p-hyponormal
operator for rn- <p < m. Then the following inequalities hold for
n=m/ 1,m+2,..."

(1) (T*T)p+I<_ (Tm+l* Tm+l)(p+l)/(m+l) <_ (Tm+2* Tin+2) (p+l)/(m+2) <_’"
(Tn*Tn)(p+I)/n.

(2) (TT*)P+I> (Tm+l Tm+l*)(P+l)/(m+l) >_ (Tm+2Tm+2*)(P+I)/(m+2) >_" >_
(TnTn*)(P+I)/n.

We remark that Theorem 5 yields Theorem D.3 by putting rn 1.
Scrutinizing the proofofTheorem D. 1 andTheoremD.3, we recognize

that the following result plays an important role.

THEOREM D.4 [12,18] Let Tbe ap-hyponormaloperatorforp E (0, 1] or
a log-hyponormal operator. Then the following inequalities holdfor all
positive integer n:

(1) [Tn+l[2n/(n+l) >_ IT"l,i.e., (Tn+l*Tn+l)n/(n+l) >_ Tn*Tn.
(2) [Tn*[ 2 _> [Tn+l*[2n/(n+l), i.e., TnTn* >_ (Tn+lzn+l*)n/(n+l).
We remark that it was shown in [14] that Theorem D. and Theorem

D.4 hold even if an invertible operator T belongs to class A (i.e., TZl >_
TI) which was introduced in [10] as a class of operators including
p-hyponormal and log-hyponormal operators.

Proof of Theorem 5 It is easily obtained by L6wner-Heinz theorem
that Theorem D.4 remains valid for p-hyponormal operators for p > 0.

Proof of (1) By (1) of Theorem D.4 and L6wner-Heinz theorem for
(p + 1)In E (0, 1),

(Tn+l* zn+l) (p+l)/(n+l) (Tn* Tn) (p+l)/n (4.1)

holds for n m + 1, m + 2,... Then

(T’T)p+I < (Tm+l* Tm+l)(p+l)/(m+1) < (Tm+2* Tm+2)(p+l)/(m+2)

< <_ (Tn* Tn)(p+l)/n

holds by (2) ofTheorem and (4.1).
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Proof of (2) By (2) of Theorem D.4 and L6wner-Heinz theorem for
(p + 1)In E (0, 1),

(TnTn*) (p+l)/n >_ (Tn+l Tn+l*) (p+l)/(n+l) (4.2)

holds for n rn + 1, rn + 2,... Then

(TT*)p+] > (Tm+l Tm+l*)(p+l)/(m+l)
_

(Tm+2Tm+2*)(p+l)/(m+2)
>... > (TnTn*) (p+l)/n

holds by (2) ofTheorem 1’ and (4.2).
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