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We consider the initial-boundary value problem ofparabolic-elliptic systems on bounded
domains in 2 with smooth boundary which is a mathematical model of chemotaxis.
Making a differential inequality on the moment of solutions to the problem, we show the
finite-time blowup of nonradial solutions under some condition on the mass and the
moment ofthe initial data.
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1 INTRODUCTION

This paper is concerned with the finite-time blowup of solutions for two
types of parabolic-elliptic system considered in [19,21] which are
simplified versions of a parabolic system proposed by Keller and Segel
[20]. The parabolic system is called the Keller-Segel model, which is a
mathematical model describing aggregation phenomena of cells due to
chemotaxis, i.e., a phenomenon of the directed movement of cells il
response to the gradient of a chemical attractant.
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38 T. NAGAI

Throughout this paper, fl is a bounded domain in 2 with smooth
boundary Of. The initial-boundary value problem of the parabolic-
elliptic system in [21] is described as follows"

(P)

ut V. (Vu- XuVv) in ft,

0 Av- v + au in f,
Ou Ov

0 on 0f,
On On
u(., o) uo on ft.

t>O,
t>O,

t>O,

The initial-boundary value problem in [19] is the following:

(JL)

U " (U- Xuv) in [2, > 0,

0 Av + a(u ) in [2, > 0,
Ou Ov

0 on Of, t>O,
On On
u(., 0) uo on fl,

v(x, t) dx 0

In both these systems, a and X are positive constants, O/On represents the
directional derivative along the outward unit normal vector n on cgf. In
(JL), is the mean value of u0 defined by

u--6 T- uo dx.

We always assume that

u0 is smooth on , u0>0, 0 on [2.

Under this condition there exists T> 0 such that (P) admits a unique
classical solution (u, v) on f x [0, T], which satisfies

u(x,t) > O, v(x,t) > O onyx (O,T].

If the maximal existence time Tmax of (u, v) is finite, then

lim sup Ilu(t)llzo +c,
t---* Tmax () (1.1)
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by which we mean that the solution blows up in finite time. For these
results, see [21]. The same results are also valid for solutions of (JL)
except for the positivity of v. We remark that lim sup in (1.1) for solutions
of (P) can be replaced with lim (see [23,27]).
The finite-time blowup of solutions to the Keller-Segel model was

conjectured in [4,5,25]. They conjectured that solutions of the Keller-
Segel model may blow up in finite time with 6-function singularities.
Finite-time blowup with 6-function singularities is referred to as
chemotactic collapse. In two dimensions, to the best of our knowledge,
the first result on finite-time blowup was shown in [19] for radial
solutions of(JL) on a disk. In [21] he considered (P) on a disk f in 2, and
showed that under the condition f u0 dx > 87r/(aX) the radial solution
of (P) blows up in finite time if f uo(x)lxl2 dx is sufficiently small, but
under the condition f u0 dx < 87r/(aX) the radial solution exists globally
in time. The possibility of blowup in three or more dimensions was also
studied. The same results are also valid for (JL). Concerning chemotactic
collapse, in [11-13] they showed that chemotactic collapse actually
occurs in two dimensions. For further studies, see [14,15]. It is obtained
that in [23,27] finite-time blowup in two dimensions necessarily leads to
chemotactic collapse at each isolated blowup point, and that in [27] the
number of blowup points of solutions to (P) is finite.
We refer to [29] for the local existence of solutions of more general

parabolic systems including the Keller-Segel model, to [2,9,24] for the
global existence of the Keller-Segel model, and to [16,17] for blowup.
For related results to the Keller-Segel model we also refer to [6,7,22,26].
We remark that parabolic-elliptic systems similar to (P) appear as

models for gravitational interaction of particles (for instance, see
[1,3,8,28] and references therein). In [1,3] they studied the nonexistence
of solutions globally in time for star-shaped domains in ]R(n > 2).
The possibility of finite-time blowup for (P) and (JL) as well as the

Keller-Segel model has been shown only for radial solutions so far. In
this paper we study the finite-time blowup ofnonradial solutions (u, v) to
either of(P) and (JL) in two-dimensional domains without assuming that

is star-shaped. In Section 3, the finite-time blowup of nonradial
solutions is shown under the condition fu0 dx > 87r/(aX) when q is an
interior point of 9t, provided that f uo(x)lx q[ dx is sufficiently small.
When q is on 0f, the occurrence of the finite-time blowup of solutions
requires the condition f u0 dx > 47r/(cx), since the solution (u, v)exists
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globally in time under the condition fnuodx < 47rl(ax) (see [2,9,24]).
Under a restricted condition on 0f, we show the finite-time
blowup of nonradial solutions, provided that fnuo dx > 47r/(aX) and

f Uo(X)lx q[2 dx is sufficiently small.

2 GREEN FUNCTIONS AND RELATED INEQUALITIES

Let B= {x E I12: x] < L} (0 < L < oe), and givenfE LP(B) (1 <p < +cxz)
consider the Dirichlet boundary value problems of-A on B:

--Aw =f in B,
w=0 onOB.

The solution w is expressed as

w(x) fa G(x,y)f(y)dy for x B,

where G(x, y) is the Green function of --A on B with homogeneous
Dirichlet boundary conditions. We remark that the Green function
G(x, y) has the following representation (for instance, see [10,18])"

G(x, y) N(x y) / K(x, y),

where

N(x-y) --log Ix- yl

and K(x, y) is the compensating function. It is known that

(i) G(x, y) G(y, x) for x, y B,
(ii) K C2( B x/),
(iii) IVG(x, Y)I < C/Ix Yl on B x B for some constant C > 0.

Given rl and r2 with 0 < rl < r2, define the function b on [0, cx)
belonging to cl([0, ))N W2’((0, cxz)) by

r if0<r<rl,
c(r) air

2 -k- a2r + a3 if rl _< r _< r2,

rlr2 if r > r2,

(2.1)
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where

rl 2rlr2 r21r2
al---, a2--, a3--

r2 mr r2 -r r2mr

Define E cl(2) f"] W2’(]l2) by
(x) (Ixl),

which satisfies the following:

2x

2rlVtI)(x)
r2 rl

0

x
if rl < Ixl r2,

if Ix- q[ > r,

IV(x)l _< 2((x)) 1/2,

Aft(x) 4 for Ixl rl, Aft(x) < 2 for Ixl > rl.

Put Bj= {x IR2: Ixl <
LEMMA 2.1 It holds thatfor (x, y)

{Vb(x) V(y)}. VN(x y)

andfor (x, y). B1 x

{Vff(x) 7(y)}. VN(x y) <_

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Proof It is easy to get (2.5), since V(x)= 2x on B1 and

x-y
VN(x y)

27r lx y12

To obtain (2.6), it suffices to show that for (x, y)

{V+(x) V+(y) }. (y x) _< 2rl ix_yl2.
r2 rl

(2.7)
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For (x, y) E B1 x (B2\B1), using (2.2) and

2x. (y x) (ly[ 2 -Ixl2) -Ix yl2,
2y. (y- x) (lyl 2 -Ixl2) + Ix- yl2

(2.8)

and noting lYl- 1.1 lyl- Ixl ly xl, we have

{W(x) W(y)). (y- x)

y}(r- lyl)T (y-

r2(lyl- rl)(ly12- ixl2) fr(lyl + rl)
(r2 rl)lYl [(r2 rl)lyl

< r2Clyl + Ixl) )++ f_(ly_[ + Ixl)
(r2 rl)lYl

(lyl Ixl [ (r2 rl)lYl

< 2r ly- xl 2.
1"2 1"1

2rl }IY- xl2
r2 rl

2rl }IY x[ 2
r2 rl

For (x, y) E Bt x (2\B2) noting Ix Yl -> r2 r, we have

{V+Cx) V+(y)}. (y x) 2x. (y x) < 21xl Ix yl

21xl ix-yr2 < 2r, ix_yl2<
Ix Yl r2 rl

For (x, y) (B2\B1) x (B2\B), by (2.2) and (2.8) we have

{V+(x) V+(y) }. (y x)

rl {r2-lXl2x. Cy_x) (r2-1yl)
r2 r----- Ixl lyl

2y. (y-

r____._L_ (r2(lyl-lxl) (r2CIxl/lYl)_2)lx_Yl2}r2 rl Ixllyl
(ly12- Ixl2)

Ixllyl

-<
r2r---L--1{r2(lxl+ly’)-

rl ]xllY lY- xl2- (rm(lxl+lyl)lxlly] --2) Ix y[2 }
2r------L-- Ix yl2.

r2 rl
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For (x, y) E (n2\nl) x (]12\B2), since lY} > r2, we have

2r (r2 -Ixl)
x

2r< (lYl- Ixl)ly- xlr2 r

{V+(x)- V+(y)}. (y- x)

__< 2rl, Ix--y[2.
r2 rl

For (x, y) E (]12\B2) X (][;2\B2) since V(x) V(y) 0, we have (2.7).
Other cases are reduced to the cases above, since

{V(b(x) V(y)}. (y x) {V(b(y) 7(b(x)}. (x y).

Hence, we have completed the proof of Lemma 2.1.

Givenf E C(() let w E C2(() satisfy

-Aw+Tw=f in

Ow
=0 on Of,
On

where 7(> 0) is a constant. If 7 0, we assume that

L, x:j w x:o.
Then the function w is expressed as

w(x) f G(x, y)f y) dy for x f,

where G(x, y) is the Green function of -A + 7 on f with homogeneous
Neumann boundary conditions (see [10,18]). G(x, y) satisfies

IG(x,y)l <_ C / log+ Ix-y-----[ ]VxG(x’Y)I < Ix-y]’

where C is a positive constant and log+a= max{loga, 0} for a > 0. It
follows from (2.9) and Young’s inequality for convolutions that

Ilwll,,(/_< CpIIf[IL,() (1 < p < ), (2.10)

IlXTwllq(/_< Cql]fllz,(,I (1 _< q < 2), (2.11)

where Cp (resp. Cq) is a positive constant depending on p (resp. q).
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3 FINITE-TIME BLOWUP OF SOLUTIONS

Our first result is the following theorem.

THEOREM 3.1 Let q E f. Assume that f Uo dx > 87r/(cx). If
fuo(x)lx- ql2 dx is sufficiently small, then the maximal existence time

of the solution (u, v) to either of (P) and (JL) corresponding to the initial

function Uo isfinite, that is, the solution blows up infinite time.

We next mention finite-time blowup when q is on the boundary 0f2.

THEOREM 3.2 Assume that tgf has a line segment/o, and that f2 lies on
one side ofa line I containing lo. Let q lo be such that q is not end-points of
lo. Then, under the condition fc Uo dx > 47r/(aX), the solution (u, v) to either

of(P) and (JL) corresponding to the initialfunction Uo blows up in finite,
provided that f Uo(X)lX ql2 dx is sufficiently small.

3.1 Proofs of theTheorems for (P)

Let (u, v) be the solution of (P) with u(., 0) u0. To prove the theorems,
we begin with the following key lemma, which is shown by a method
similar to that in [1-3,21].

LEMMA 3.1 Let q f and 0 < rl < r2 < dist(q, cqf2), where dist(q, tgf) is

the distance between q and Of2. Then there are positive constants C1, C2
depending only on rl, r2 and dist(q, tgf) such thatfor (0, Tmax),

where (x) (]x ql), is the one defined by (2.1) in Section 2.

Proof For simplicity, wemay assume that the point q is the origin by the
translation xx- q, since two equations of (P) are invariant under
translations. Multiply ut V. (Vu- XuVv) by I, and integrate over f.
Since tgff/0n 0 on Of2 because of r2 < dist(q, 0f2) and the definition of
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b, integration by parts yields that

ddt jffl u(x, t)b(x) dx

f u(x, ,),,i,(x)dx + x f u(x, ,)v,I>(x). Vv(, ,)d.

By A,I _< 4 on f’t (see (2.4)) and f u(x, t) dx fn Uo dx,

u(x, t)A(x) dx <_ 4f uo dx.

Then,

ddt j u(x, t)(x) dx _<
f f

4L uo dx + XJ u(x, t)Vrb(x). Vv(x, t)dx.

(3.2)

Let us take r3, r4 such that

r2 < r3 < r4 < dist(q, 0f2),

and the function r/e C(IR2) such that

if Ix[ < r3,0 _< r/<_ 1, 7(x) 0 if Ixl >_ r4.

Put

{x N: Ixl < r4} C

B {x : Ixl < } for 1,2, 3.

By the second equation of (P), the function w(x, t) rl(x)v(x, t) satisfies

-Aw arlu + g rlv in B,
w 0 on OB

for each E (0, Tmax) where

g -2V. Vv- (A)v.
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Then w is expressed as

w(x, t) G(x,y){arl(y)u(y, t) + g(y, t) 7(y)v(y, t)} dy, (3.3)

where G(x,y) is the Green function of-A on B with homogeneous
Dirichlet boundary conditions. As mentioned in Section 2, G(x, y) has
the following representation:

G(x, y) N(x- y) + K(x, y), (3.4)

where

N(x-y) --log Ix- yl

andK E C2(B x/). Since v w on B3 and Vq 0 outside ofB2, by (3.3)
the second integral on the right-hand side of (3.2) is expressed as

(3.5)

By (3.4) and r/= on B3, I is divided into three parts as follows:
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Using Vff- 0 outside of B2, we rewrite I1 as

I a j2 fs u(x, t)u(y, t)Vb(x) VN(x y)dydx,

and by symmetry properties of the integral

fs fs u(x, t)u( y, t)V(b(x) VN(x y) dy dx

-L fs u(x,t)u(y,t)Vb(y). VN(x-y) dydx,

we have

Ii=a fs3 f u(x, t)u(y, t) {VO(x) Vdg(y)}VN(x y)dydx

Such a representation of I1 is used in [3, Theorem 2(v)]. Applying
Lemma 2.1 to the relation above yields that

The first term on the right-hand side of (3.6) is estimated as

a fs J; u(x,t)u(y,t)dydx=
a

u(x,t)dx2"x -"
27r

2

I )27r
u(x, t) dx +- u(x, t) dx u(x, t) dx

r \B

(2) (/ )( )2zr uo dx + zrr--- uo dx u(x, t)O(x) dx
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Here, we used

r2<(x) forxB1.

The second term on the right-hand side of (3.6) is estimated as

u(x, t)u( y, t) dy dx27r(r2 rl) x)\(x)

--< 7r(r2 rl)rl Uo dx u(x, t)(x) dx

Hence, the term I1 is estimated as

I <-- uodx + txr2

7r(r2-rl)r (fuodx) (ju(x,t)d(x)dx).
Since Ix Yl > r3 r2 for (x, y) B2 (B\B3), I2 is estimated as

Here, we used (2.3) and

u(x, t)(dP(x)) l/2 dx <_ (f uo dx)l/2 (f u(x, t)dp(x) dx)1/2.

By noting VxK L(B2 x B), I3 is estimated as

13 _< 2cIIVKII,W=,)= f u(x,t)u(y,t)(69(x)) 1/2 dydx

<
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Hence,

(3.7)

To estimate II, we note that

f f
II ] ] u(x, t)g(y, t)Vb(x) VxG(x, y) dy dx,

JB\B3

since g -2Vr/ Vv (Ar/)v 0 on B3. For (x, y) E B2 x (B\B3) observe
that Ix- yl-> r3 rE and

C C
IV+G(x’y)I <-Ix el <-

r3 r2

with a positive constant C. Then,

To calculate further, we apply (2.10) and (2.11) to the second equation of
(P) to get

IIv(t)llw,.,(a) <_ Cllu(t)ll,,(a/= Cllu011,,(a).
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By this inequality,

lg(Y,
t)l dy _< 2(IIAII +

< C uody,

where C is a constant depending on IlVll, IIAnll. Hence,

To estimate III, we rewrite III as

(3.8)

III jf u(x, t)Vb(x). Vb(x, t) dx,

where

(x, t) fs rl( y)v( y, t)G(x, y) dy.

Noting [VxG(x, Y)I < C/Ix Yl and using H61der’s inequality, we observe
that

v( y, t)[Wp(x, t)[ C Ix y[
dy

\2/3<C(v3dy)l/3(lx-yl-3/2dy)
<_ CIIv(t)ll,(..

Here, we used

sup [x y1-3/2 dy < +.
xB2

Applying (2.10) to the second equation of(P), by [[u(t)ll,(/= Ilu0lll(
we have
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Hence,

Therefore,

[V(x, t) _< C fa uo dx for x B.

III <- C(fn uo dx) (f2 u(x, t)l7(x)l dx)
_< (f uo dx) 3/2 (fa u(x, t)(x) dx)1/2.

Putting together (3.5), (3.7)-(3.9) yields that

(3.9)

a
u(x, Vv(x, dx

<__ 20 (fuodx)2nt-C1 (f uo dx)(fu(x,t)(x)dx)
/

Hence, substituting this inequality into (3.2) we arrive at (3.1), thereby
completing the proof ofLemma 3.1.

We are now in a position to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1 By putting

Me (t) fa u(x, t)(x) dx,

the differential inequality (3.1) in Lemma 3.1 is rewritten as

d
d-- Me(t) < H(Me(t)),

where H(s) is the function on [0, oc) defined by

cxH(s) =- (fauodx) (XX- fuodx)
Qf ) (f)3/2-I-" C1 UO dx s + C2 uo dx S1/2
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We note that H(0) < 0 under the condition fa Uo(X) dx > 87r/(aX) and the
function sH H(s) is nondecreasing. There exists aunique positive roota+
of H(s) 0 such that H(s) < 0 for s < a+ and H(s) > 0 for s > a+. Hence,
if the solution (u, v) exists for all > 0, then the function fa u(x, t) x
(x) dxmust vanish in finite time provided fa u(x, t)dg(x) dx < a+. This is

a contradiction to the positivity of fu(x, t)ag(x) dx. Thus, the proof of
Theorem 3.1 is complete.

We next give the proof of Theorem 3.2.

Proof of Theorem 3.2 We may assume that q is the origin and

10 {(Xl,X2): a < X < b, x2 O) C l= {(x,x2): x2 O)

by a parallel translation and a rotation of coordinates, since two
equations of (P) are invariant under those transformations. Given rl, r2
satisfying

0 < r < r < min{lal,b, dist(O, Ogt\lo)),

let us take /, as in Section 2. Noting Vff(x) 0 for Ix > r2 and observing
that

Off x
(0,-1)=0(x) 4"(Ixl) for x (Xl, 0) E lo,

we see that

O
0 (x) 0 on Of2.

Then, as in Section 2 it holds that

ddt fa u(x, t)dg(x) dx

<_ 4 fuodx + x ffu(x,t)7ag(x) Vv(x,t)dydx. (3.10)

Let f, be the reflection of ft with respect to the xl-axes and put

* f u f, u lo.
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For each E [0, Tmax) define the function (u*(., t), v*(., t)) on f2* by

t), v(, t))(u*(,t), v*(,t)) (u(*,t), (*,t))
ifx f,
if x E fk,

where x* (xl, -x2) for x (xl, x2). We then see that

-Av* + v* au* in f*.

To estimate the second term of (3.10), we observe that

u(x, t)W(x) Vv(x, t) dx

f. u* (, t)w(). Vv* (, t) d.

Since the origin is an interior point of f*, by the same method as in the
proof of Lemma 3.1, we obtain

f,
u*(x, t)Vff(x) Vv*(x, t) dx

O<- 27r
uo dx + C1 uo dx u* (x’ t)(x) dx

+ u;d )

2a(Zuodxy+4Cl(Zuodx)(u(x,t)ff(x)dx

Putting together (3.10) and (3.11) yields that

d5 u(x, t)e(x) dx

4uodx aX(J )uo dx

+4C(uodx)3/(u(x,t)(x)dx /
This differential inequality gives the conclusion of Theorem 3.2.
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3.2 Remark on the Proofs of theTheorems for (JL)

As in the preceding subsection, it suffices to show that (3.1) in Lemma 3.1
is valid for the solution (u, v) of (JL) with u(., 0) u0. To estimate the
second term on the right-hand side of (3.2) for the solution of (JL), we
remark that the function w(x, t) rl(x)v(x, t) in the proof ofLemma 3.1
satisfies

--Aw alu + g- a-ff67 in B,
w=0 on OB,

where g -2Vr/ Vv (Ar/)v. Let G(x, y) be the same Green function of
-A as in the previous subsection. Then, as before we have

u(x, t)rob(x). Vv(x, t) dx I+ II+ III,

where I and//are the same ones as in (3.5), and the term III is the
following:

III u(x, t)9,b(x) Vb(x) dx,
JB

(x) -aJ G(x, y)rl( y) dy.

The term I is estimated as (3.7). Similarly, (3.8) remains valid,
since _< Cllu011..l( / by (2.10) and (2.11). Noting N=
1/If l f. u0 dx, we observe that

< Cf u0 dx

with a positive constant C, and we see that III is estimated as (3.9).
Therefore, (3.1) in Lemma 3.1 holds.
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