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We investigate how the metric entropy of C(X)-valued operators influences the entropy
behaviour of special operators, such as integral or matrix operators. Various applications
are given, to the eigenvalue distributions of operators and to the metric entropy ofconvex
hulls of precompact sets in Banach spaces, for example. In particular, we provide metric
entropy conditions on operators sufficient to ensure that the operators are in certain
Schatten classes.
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1 INTRODUCTION

Let (X, d) be a metric space and B(so, e):= {s E X: d(so, s) < e} the closed
e-ball in Xwithcentre So. Given any bounded setMC Xand any e > 0, let
N(M, e) be the covering number ofM by e-balls of X; that is,

N(M, )

infNE N" there are UN
B(sk,S1,...,SN i" such that M C

k=l
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The entropy numbers ofM are

cn(M) := inf{ > O: N(M, ) <_ n} (n N),

and the dyadic entropy numbers are

en(M) := e2.-, (M) (n E N).

For a (bounded linear) operator T: E Fbetween two Banach spaces E
and F, the nth dyadic entropy number en(T) of T is defined by

en(T) := en(T(BE)),

where Be is the closed unit ball in E.
Our study of C(X)-valued operators, where (X, d) is a compact metric

space, is motivated to a considerable extent by the universality of the
Banach space C[a, b] of continuous functions on the closed, bounded
interval [a, b]. Indeed, as is pointed out in [6], Chapter 5, the universality
of C[a, b] implies universality of the class of C[a, b]-valued operators in
the following sense: given a compact linear operator T: E Fbetween
arbitrary Banach spaces E and F, there is a compact linear operator
S:E C[a,b] such that the (dyadic) entropy numbers e,,(T) of T are
equivalent to those of S in the sense that

(S) <_ 2en(S) (nien en(T) <_ N).

This explains why we study the asymptotic behaviour of entropy num-
bers of operators T: E C(X) with values in the space C(X) of con-
tinuous functions over a compact metric space. We shall see how the
geometry of the Banach space E, the entropy numbers en(X) of the
underlying compact metric space Xand the smoothness ofthe operator T
in terms of the modulus of continuity w(T, 6) of T,

w(T, 6) := sup sup{l(Tx)(s) (Tx)(t)[: s, C X, d(s, t) <_ 6},

all affect the estimates of the (dyadic) entropy numbers en(T) of T.
For some proofs we also consider the entropy numbers of operators
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T: E g(M) from a Banach spaceEto the spaceg(M) ofall bounded
number families (t)tM over an index set M and with the norm

II(t)ll := sup I ctl.
tEM

Moreover, we study the ’dual’ situation, corresponding to maps
T: gl(M) E from the Banach space gI(M) of all summable families
of numbers (t)tM over the index set M and with norm given by

to the Banach space E.
In Section 2 we investigate the entropy behaviour of operators

T: E C(X), where the smoothness property of Tis given by a Lipschitz
condition, by which we mean that

sup w(T, 6)/6 < o.
6>0

Such operators are called Lipschitz-continuous. We give a universal
result for the entropy numbers en(T) of Lipschitz-continuous opera-
tors T, where the geometry ofthe underlying Banach space Eis provided
by so-called ’local estimates’ of the entropy numbers ek(S" E ) of
finite rank operators or in terms of Banach spaces of type p, and the
rate ofdecrease ofthe sequence en(X) is oftype n log’(n + 1), for some
cr > 0 and "), > 0. This result is applied to integral operators and operators
defined by abstract kernels. We study the question ofhow entropy con-
ditions on the kernel influence the entropy behaviour ofthe correspond-
ing integral ormatrix operator, and obtain information about eigenvalue
distributions. Moreover, entropy conditions on the kernel are given
which ensure that the induced integral operator belongs to the Schatten
class

Similar problems in the ’dual’ situation for maps T:g(X)E are
treated in Section 3. As an application, we obtain optimal results in
Section 4 about the entropy behaviour of convex hulls of precompact
sets X in a Banach space of type p when the entropy numbers en(X) are
of order n log(n + 1), where cr > 0 and "y > 0.
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ENTROPY OF C(X)-VALUED LIPSCHITZ-CONTINUOUS
OPERATORS

As already explained in the Introduction, the entropy behaviour of a
compact linear operator is reflected by that of a C(X)-valued operator
on a compact metric space (X, d). Thus for our purpose, C(X)-valued
operators are universal. By the Arzelfi-Ascoli theorem, we know that an
operator T: E C(X) from a Banach space E to the space C(X) of all
continuous functions on a compact metric space X is compact if, and
only if,

lim w(T, 6) 0,
60+

where w(T, 6) is the modulus of continuity of T defined in Section 1.
A stronger condition is that of H61der continuity (cf. [6, 5.6])" an oper-
ator T" E C(X) is called H61der-continuous of type a, 0 < a < 1, if

ITI :-- sup
w(T’ 6)

6>0 5 < cx3.

When a such an operator is said to be Lipschitz-continuous. The
set Eip,(E, C(X)) of all operators from E to C(X) which are H61der-
continuous of type a becomes a Banach space under the norm

Lip,(T) max{llTl[,

where T stands for the operator norm of T. When a we write

[Eip(E, C(X)), Lip] := [ip, (E, C(X)), Lip,].

If we equip the metric space (X, d) with the metric d (0 < c < 1) we
reduce an operator which is H61der-continuous oftype c to a Lipschitz-
continuous operator:

Lip(T" E C(X,d)) Lip,(T" E-- C(X,d)).

This reduction will be crucial in the present section.
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Before stating a universal theorem about the entropy of Lipschitz-
continuous operators we recall the notion of type. A Banach space E
is said to have type p (1 <p < 2) if there is a constant C such that for all
finite sets (xi)in=l in E,

n

Zri(t)Xi
i=1

dt C IIxllp
i=1

where i)i= are the Rademacher functions; that is, ri(t) sgn(sin(2nTrt)).
The smallest constant C such that the above inequality is satisfied is
written rp(E) and called the type p constant of E. The script q-spaces
(1 < q < cxz) of Lindenstrauss and Petczynski are of type p-- min{2, q).
For example, the Lebesgue spaces Zq(,/z), the Sobolev spaces
W((0, 1)N) and the Besov spaces B((0, 1)N) are all script q-spaces,
and so are of type p min{2, q} for < q < . For more information
about type p spaces we refer to [15].
Now we state the promised universal theorem about Lipschitz-

continuous operators. This is a slight extension of the corresponding
Theorem 5.10.1 in [6] (cf. [14]), and we omit the proof as it follows the
same line as that ofTheorem 5.10.1.

THEOREM 2.1 Let (X, d) be a compact metric space such thatfor some
constants tr > 0 and’7 >_ O, the entropy numbers en(X) satisfy

supn’ log-’r(n + 1)en(X)< c. (2.1)
nEN

Moreover, let Ebe a Banach space with theproperty that there exists > 0
such thatfor each e > 0 there is a constant c(e) > 0 with the so-called’local
estimate’ homing."

ek(S) < c()llSllk-(n/k) (2.2)

for all n E N, all k E [1,n] fqN and all operators S" E g. Thenfor the
dyadic entropy numbers e,(T) ofany operator T /2ip(E, C(X)) we have
the estimate

supn+ log-’(n + 1)en(T)< cxz. (2.3)
nEN
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Remarks
(i) If T E Eip(E, C(X)) is a H61der-continuous operator of type a

(0 < a < 1), where E and Xare as in Theorem 2.1, we conclude that

supn/+log-aT(n + 1)en(T) < cxz.

This follows easily from Theorem 2.1 by using the formulae

(X’ d) En(]( aa)

and

Lip(T. E C(X, as)) Lip(T" E --, C(X, d)).

(ii) If E is a Banach space with dual E’ of type p > 1, then in the local
estimate (2.2) of Theorem 2.1 we may take 3-1- lip (see
[5, Theorem 1.8]), and thus obtain for the entropy numbers e,(T)
of an operator T E Eip(E, C(X)) the estimate

supnl-1/p+log-’r(n + 1)en(T) < o.
nElI

In particular, if E is an Eq-space, we have/3= min{ 1/2, 1/q} for
<q<c and

sup nmin{1/2’l/q}+cr log-’(n + 1)en(T) < o.

(iii) Theorem 2.1 remains true for Lipschitz-continuous operators T
Eip(E, (X)) where (X, d) is a precompact metric space satis-
fying the entropy condition (2.1).

(iv) Theorem 2.1 is optimal. Indeed for the Sobolev embedding

I" W;,(Q) C(O), Q (0,1)N,

where <p < cx and s > N/p, we know that

e,,(I) n-S/N;
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see [9], 3.3. The upper estimate in this, when 2 <p < o and 1/p <
siN < lip + l/N, can be obtained from Theorem 2.1. For we can
factorise I in the form

I" W(Q) - CS(O)-C(O),

where s- So- Nip and 0 < So < 1. This means that

I Eips W;, (Q) C(Q)).

Since e,(O) n-I/N and the dual of W,(Q) is a script p,-space,
we see from Theorem 2.1 and Remarks (i) and (ii) that

sup nl/P+s/Nen(I) sup nS/Nen(I < 00.
nN nEN

(v) An interesting generalisation of the classical Sobolev spaces is pro-
vided by the spaces Wp (X, d, #) recently introduced by Hajtasz [11].
Here <p < o, (X, d) is a compact metric space with finite diam-
eter and # is a finite positive Borel measure. A particularly impor-
tant case occurs when X is a compact subset ofn which is strictly
s-regular (0 < s < n) in the sense that there are positive constants

cl and c2 such that for all x X and all r with 0 < r _< diam X,

Cl r < #(B(x, r) f X) <_ c2r s,

# being Hausdorff s-measure. The Cantor set in n is such a set X,
with s log(3"- 1)/log 3. It turns out (see [11, Theorem 6]) that
if X is strictly s-regular and p > s, then Wp (X, d, #) is embedded
in C(X). Application of Theorem 2.1, as in (i) and (ii) above, now
shows that the dyadic entropy numbers en(I) of this embedding
map satisfy

sup nmin{l/2’l/p}+l/sen(I < x:.

We now give diverse applications ofTheorem 2.1 to operators gener-
ated by abstract kernels. For this purpose we need some more concepts.
Let C(X, Z) be the set ofall continuous, Z-valued functions on a compact
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metric space (X, d), Z being an arbitrary Banach space. Evidently
C(X, Z) becomes a Banach space when given the norm

]]KII sup

Just as for scalar-valued bounded functions f on X we introduce the
modulus of continuity

wz(K, 6):= sup{[[K(s) K(t)llz: s, X, d(s, t) <_ 6}, (2.4)

for 0 < 6 < . This is well-defined for arbitrary bounded Z-valued func-
tions K on X; such a K is continuous if, and only if,

lim wz(K, 6) O.
640+

By means of this modulus of continuity we introduce classes C(X, Z)
of H61der-continuous Z-valued functions of type a on X, for 0 <
a < 1" C(X, Z) is the subset of C(X, Z) consisting of those Kfor which

sup 6)16 (2.5)
6>0

is finite. The class C(X, Z) can be shown to be a Banach space when
given the norm

IIK[[z,o := max{l[KII, (2.6)

When Z E’, the dual of a Banach space E, the element KE C(X, E)
can be used to generate operators TK" E C(X) by the rule

TKX) (s) "= (x, K(s) ), x E, s X, (2.7)

where (., .) denotes the duality pairing betweenEand E’. These operators
are linear and bounded, and
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Moreover, it is easy to see that

(2.8)

Since lim6_,O+WE,(K, 6)=0 it follows that TK is compact, for all
K C(X, E’).
On the other hand, any compact operator T: E C(X) can be gener-

ated by an ’abstract kernel’ KE C(X, E’) in the sense of (2.7) if we put

K(s) := T’6s, s X, (2.9)

where 6sis the Dirac functional on C(X): (f, 5s) =f(s) for s X,fE C(X).
We again have

IIKII IITll, E,(K, 6) (T, 6); (2.10)

and since T is compact,

lim WE, (K, 6) O,
6--+0+

so that K C(X,E’). By (2.7) and (2.10) the operator TK generated by
Kcoincides with the original operator T since

(T,x)(,) (x, r%)= (rx, ,)= (rx)(,).

We summarise these considerations in the following well-known prop-
osition (cf. [6, Proposition 5.13.1]):

PROPOSITION 2.2 Let (X, d) be a compact metric space andE a Banach
space. Let 1C(E, C(X) be the Banach space ofall compact linear operators

from E to C(X). Then the map

O"/C(E, C(X)) C(X, E’)

defined by

ck(T)(s) := T’Ss, s X, T /C(E, C(X)),

is a metric isomorphismfrom tC(E, C(X) onto C(X, E’) as well as a metric
isomorphism from the subclass Eip(E, C(X)) of tC(E, C(X)) onto the
subclass Ca(X, E’) ofC(X, E’),for 0 < c < 1.
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Now we can reformulate Theorem 2.1 for operators generated by
abstract kernels.

THEOREM 2.3 Let (X, d) be a compact metric space and E a Banach
space satisfying conditions (2.1) and (2.2) of Theorem 2.1, respectively.
Let KE C I(X, E’) be a kernel ofLipschitz type (that is, ofHflder type 1),
and let Tic" E C(X) be the corresponding induced operator given by

(x, x e, s x.

Thenfor the dyadic entropy numbers e,(Tic) we have

sup n/+6 log-’ (n + 1)en(Tx) < o.

Moreover, Remarks (i)-(iv)following Theorem 2.1 can be carried over to

this new setting.

As a first consequence of Theorem 2.3 we give the following useful
theorem.

THEOREM 2.4 Let E be a Banach space satisfying the entropy condi-
tion (2.2) of Theorem 2.1, let X be an arbitrary index set and let
K go(X, E) be a boundedfunction from X to the dual Banach space
E. Define an operator TK: E go(X) by the rule

(TKx)(s) (x, K(s)) for x E, s X.

Ifthe image ImK= K(X) ofKsatisfies the condition

supn log-’(n + 1)en(ImK)< c (2.11)
nEll

for some cr > 0 and "7 >- O, then for the dyadic entropy numbers e.(Tic) of
the induced operator Tic we have

supn+ log-’(n + 1)e,(TK) < . (2.12)

Inparticular, ifE’ & oftypep > 1, then= lip.
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Proof Without loss of generality we assume Im K to be compact.
Let [t] "= {s X: K(s) K(t)}, Jr. On the set

)’:= (It]" X}

we introduce a metric d by the rule

d([s], It]):= IlK(s) g(t)ll.

Thus n(J) _< 2n(Im K), n E N. Next, define S" E --, go (2) by

(Sx)([d) := (r,x)(s),

so that en(T:) e,,(S), n E N. Since

I(Sx)([s]) (Sx)([t])l I(Zzcx)(s) -(Zzcx)(t)l

I(x,K(s) g(t))l _< IlxllllX(*)- g(011

<_ Ilxlld([s], It]),

we see that

SeZip(E,e(2)).

Theorem 2.3 and Remark (iii) after Theorem 2.1 now give the desired
estimate (2.12). The remaining part of the theorem follows from
Remark (ii) after Theorem 2.1.

The rest of this section is devoted to consequences of the previous
theorems.

Example 2.5 Let < q < oe, let (Y, u) be a measure space, let Xbe any
set and define the integral operator Tr, "Lq(Y, u) go(X) by

(Tr#f)(s) fyK(S, t)f(t)du(t), s e X, (2.13)

where the kernel K satisfies the condition

sup IlK(s, ")11,,(,) < . (2.14)
sX
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This operator can be handled in our general framework. Indeed, let
K(s) := K(s, .), s E X; then the kernel K can be considered as an abstract
kernel in t(X, Lq,(Y, b,)). If we additionally assume that the entropy
numbers n(Im(K)) of the image

Im(K) := (K(s, .): s E X) C Lq,(Y, u) (2.15)

ofK satisfy the condition

supn" log-’r(n + 1)en(Im(K)) < cxz (2.16)

for some cr > 0 and -), > 0, then the dyadic entropy numbers en(T/,,) of
the integral operator T/(,, satisfy

supnmin{1/2’l/q}+rlog-’r(n + 1)e,(T:,) < .
nN

(2.17)

This follows from Theorem 2.4 with/3 min{ 1/2, 1/q), because the dual
of Zq is of type min{2, q’}.

Example 2.6 Let p, q (1, o), let (X, #) and (Y, u) be measure spaces
and let K be an (X x Y, # x u)-measurable kernel satisfying the Hille-
Tamarkin condition

(2.18)

The integral operator T:,#, given by

TK,,uf (s) jK(s, t)f t) du(t)

maps Lq(Y, ) into L,(X, #), as an application of H61der’s inequality
shows. Letting K(s):= K(s, .), we may consider K as a p-integrable,
Lq,-valued kernel K Lp((X, #), Lq,( Y,/)). Ifin addition we assume that
(X, #) is a finite measure space and that the entropy numbers of the
image of K,

Im(K) {K(s, .): s X} C Lq,(Y,
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satisfy the condition

supn" log-’(n + 1)en(Im(K))< c (2.19)

for some cr > 0 and 7 _> 0, then the dyadic entropy numbers of the
Hille-Tamarkin integral operator TK,.,. satisfy

supnmin{l/2’l/q}+log-’(n + 1)en(TK,,,u) < (2.20)

To see this, note that as Im(K) is precompact we have

sup [IK(s,’)IILq, . 0;
sEX

and as #(X) < we may, with the help of H61der’s inequality, factorise

T/,., as follows:

tq( Y, ) Tx,,,,,____ Lp(X, #)
T,,,u"N / I

Here I is the natural embedding and 0T,.,u satisfies the conditions of
Example 2.5. The multiplicity of the entropy numbers

en(TK,v,V) <_ en 0T , ,..)IIIII < en(T,,,)Iz’/P(X),

and Example 2.5 now give (20).

As a consequence ofthe last examplewe obtain an improvement ofthe
main theorem in [10], which is set in a Hilbert space context.

Example 2.7 Let (X, #) and (Y, u) be finite measure spaces and let
KE L2(X Y, lz u) be a Hilbert-Schmidt kernel. Let

Kx := (K(s, .): s E X} C L2(Y, u)

and

rr := {K(.,t): Y} C
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and suppose that for some r > 0 and , > 0,

sup n log-7 (n + 1)n(Kx) < cx or
nEll

sup n log-7 (n + 1)n(gy) < o.
nan

Let TI<.,.,.," L:z(Y, u) --> L:z(X, #) be the integral operator given by

(TK,,,,f)(s) j2 K(s, t)f(t) du(t).

Then the dyadic entropy numbers of T/,,,u satisfy

sup nI/2+ log-- (n + )en (TK,u,#) < .
nan

(2.22)

Indeed, application of Example 2.6 with p =q 2 to TK,,, as well as
to the dual operator T,,u immediately gives (2.22) since en(T/,,u)
e,(T,,).

In particular, when (2.21) holds with 7 0, we see that T/,,u belongs
to the weak Schatten class s,o, with 1/s (1/2) + a. The class/2s, can
be characterised by the dyadic entropy numbers as follows:

T E/s, if, and only if, supnl/se,(T) <
nan

(see [6, p. 27]). The case studied in [10] corresponds to cr > 1/2. In fact,
since in a Hilbert space setting entropy ideals coincide with approxima-
tion ideals (see [2] and [6, p. 120]), which in turn are related to nuclear
operators (see, for example, [13, p. 66, Proposition I.d. 12]), we see that
when a > 1/2, T is nuclear. This is the result in [10].

Finally, we turn to the eigenvalue distributions of integral opera-
tors generated by Hille-Tamarkin kernels satisfying certain entropy
conditions.

THEOrEM 2.8 Let <p < cz, let (X, #) be a finite measure space,
suppose that K" X x X--- C is a # x #-measurable kernel satisfying the
Hille- Tamarkin condition

J [K(s, t)lt’’ d#(t) d/z(s) < c, (2.23)
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andput

(TK,uf)(s) JK(s,t)f(t)d#(t), f E Lp(X,#), s X.

Then TI,, maps Lp(X, #) into itself. Assumefurther that the entropy num-
bers e,,(Im K) ofthe image

Im(K) := {K(s, .)" s X) c Lp,(X, #)

satisfy

sup n%,(Im(K)) < (2.24)

for some cr > O. Then the eigenvalues ,k,(Ti,,) of TI,, satisfy

supnmin{1/2’l/P}+l,kn(T:,,)[ < o. (2.25)

Here the eigenvalues are counted according to their algebraic multiplic-
ities and ordered by decreasing modulus; if TK,u has only m eigenvalues,
we put ,kn(TK,u) 0for n > m.

Proof The assertion follows immediately from Example 2.6 and the
well-known inequality between eigenvalues and entropy numbers (see [2]
and [6, p. 146])

IAn(Tc,)I < V/en(TK,tz).

A typical application of the last theorem is the following:

COROLLARY 2.9 Let <p < c, let (X, #) be afinite measure space, let
(X, d) be a compact metric space satisfying the condition

sup nEn(X) < oo

for some cr > 0, and let K" X x X--- C be a # x #-measurable Hille-
Tamarkin kernel:

fx(fxlK(s, t)lP’ d#(t))P/P’ d#(s) < cxz"
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Suppose thatfor some c E (0, 1] and some p > 0 the kernel K satisfies the
following integral H6lder conditionfor all So, sl X:

(fx [K(s0, t) K(s, t)[p’ d/z(t))lip’ <_ pd(so, sl). (2.26)

Then the induced integral operator T/c,u,

(Tic,uf)(s) fxK(s,t)f(t)d#(t), f Lp(X,#), s X,

maps Lp(X, #) into itself Its eigenvalues ,(Tl,u), defined according to

the conventions of Theorem 2.8, satisfy

sup nmin{/2’/P}+l)n(TIc,u)l < cx. (2.27)

Proof As before we put K(s):= K(s, .) and consider K as a map from
X to Lp,(X, #). Because of the integral H61der condition (2.26) we have
for all So, s X,

IlK(s0) g(sa)ll  ,

which implies that

en(Im(K)) < pe(X).

Since SUpncr,n"en(X) < cxz, it follows that

supnaen(ImK) < c,

and the desired assertion is now an immediate consequence of
Theorem 2.8.

Example 2.10 If we put X=[0, 1]N and take # to be Lebesgue
N-measure in Corollary 2.9, then since

sup nl/Nen([O 1] N) < cx,
nN
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we obtain

sup nmin{1/2’l/p}+/N ],,n(ZK,#)[ < .
nEN

This contains as a special case the example given in [10] to illustrate
their Theorem 1.

ENTROPY OF LIPSCHITZ-CONTINUOUS
OPERATORS ON (X)

Here we study the situation ’dual’ to that of Section 2. We consider
operators T" gl(X) E, where (X, d) is a precompact metric space andE
is a Banach space. Such an operator Tis said to belong toip(1 (X), E),
0 < a < 1, and is called H61der-continuous of type a, if its dual T’
belongs to Eip (E’, go(X)). This is equivalent to the condition

suP(llT(f) T(fs)ll/d(s,t) s,t E X, s t) < cxz,

where (ft) is the canonical basis ofI(X). The quantity

Lips(T := Lip(T’) max{llZll, IT’ll)

is a norm on Eip(gl(X),E), and with this norm the space becomes
a Banach space. When 1 we suppress the index 1 and simply write
[Eip(gl (X), E), Lip], calling the operators Lipschitz-continuous. As in
Section 2 we can transform H61der-continuous operators into Lipschitz-
continuous ones by a change of metric.
Now we can state a theorem corresponding to Theorem 2.1.

THEOREM 3.1 Let (X, d) be a precompact metric space such that for
some cr > 0 and 9/> O,

supn log-’(n + 1)en(X) < cxz. (3.1)
nEl

Let E be a Banach space with the property that there is a constant t3 > 0
such thatfor each e > 0 there is a constant c(e) > with

ek(S) < c(e)l[Sllk-(n/k) (3.2)
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for all n E N, all k N with < k < n, and all bounded linear operators
S’g E. Then for any Tip(e(X),E) we have for the dyadic
entropy numbers en(T) the estimate

supn+ log-’r(n + 1)en(T)< x. (3.3)
nEN

In particular, ifE is a Banach space oftype p > 1, we have/3-- 1/p.

We omit the proof of this theorem as it proceeds along similar lines
to that of Theorem 3.3 in [5], where ,y 0. Note that ifE is an Zq space,
a Sobolev space W or a Besov space B, we have/3 min{ 1/2, 1/q}
when < q <
Remark IfT ,ip(gl(X),E) for some c, 0< c< 1,in Theorem 3.1,
then just as in Remark (i) following Theorem 2.1 the conclusion is
changed to

sup n+log-’(n + 1)en (T) < cxz.
nEN

As an immediate consequence of Theorem 3.1 we recover the main
result in [3].

COROLLARY 3.2 Let E be a Banach space of type p > and let
S: 1(N) E have the property thatfor some cr > O,

sup nllSfl[ < , (3.4)
nEN

where (f,) is the canonical unit vector basis in gl(N). Then the dyadic
entropy numbers ofS satisfy

supnl-I/P+en(S) < cxz. (3.5)

Proof We consider

X :: {n-*fn: n N} C 1(1)

as a subset of g(N) and equip it with the metric d defined by

t) I1. - tile, for s, X.
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We thus have a precompact metric space (X, d) with

sup n’en (X) < .
Define T" gl(X) E by

Tt Sfn for n-fn E X;

here denotes an element of the canonical unit vector basis in I(X).
Then the dyadic entropy numbers of Tand S coincide:

e,(T) e,(S).

Moreover, given any s, E Xwith s t, so that s m-fm and n-f,,,
say, we have

IIZ zll- IlSfn Sfll IIsLII + IlSfmll
< (n + m-) sup kallsfkll

kEN

IIn-f m-fmll sup kllSAII
kEN

d(t,s) sup kllSAII.
kEN

Hence T EEip(gl(X),E). Application of Theorem 3.1 with /3=
1/p, ,y 0 and tr > 0 now gives

sup nl-1/p+en(S sup nl-1/P+%n(T < o,

as required.

The next result can be reduced to the previous corollary by using
B-spline techniques.

COROLLARY 3.3 Let E be a Banach space of type p > 1, let s > O, let

B{((0, 1)) be the usual Besov space and let, T: B{ (O, 1)) E be an
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operator which can befactorised asfollows

T
B((0, 1)) ---+ E

B(((O, 1))

Here s > >_ O, I is the natural embedd&g and S is a bounded linear oper-
atorfrom B(((O, 1)) to E. Then the dyadic entropy numbers ofTsatisfy

sup nl-1/P+S-ten(T) < oo. (3.6)
nEN

We shall not give the details of the proof as the result is contained in
the following Proposition, for which we provide a direct proof using
B-spline techniques.

PROPOSITION 3.4 Let s >_ O, let n E N, put Q-- (0, 1)N and let F stand

for the Sobolev space W{(Q) or the Besov space B(Q) ifs > O, andLl(Q)
ifs O. Suppose that E is a Banach space oftypep > and that T" F E
is an operator which can befactorised asfollows

T
F -- E

Here s > >_ 0, I is the natural embedding and S is a bounded operator.
Then the dyadic entropy numbers ofTsatisfy

sup nl-1/P+(s-t)/Nen(T < oo. (3.7)

Proof We need some basic facts about spline functions (see [1,8,12]
and also [9, Chap. 2]). Divide the cube Q into cubes of side 2-k. The
corresponding space of smooth splines of degree g is denoted by

S := S(N, g) C Cg-1
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and has dimension dk := d,(N, t) with

co2‘u <_ dk <_ c12kN,

where c0 and c are positive constants independent of k. The space
Sk is spanned by tensor products of one-dimensional B-splines Mj :--

Mj(k, , N), normalised by

yM(x)= for all x a O.
j=l

We identify a .’J*:l ajMj Sk with the sequence of coefficients ay
and denote by A" S g the corresponding isomorphism. Then

[IAk’L, gdll <_ c2N, and IIA-"g L,[I < c2-kN. (3.8)

In what follows we choose g so large that Sk C F. Then we have the
following well-known inequalities of Berstein and Jackson type respec-
tively for Fi (see [8,12] and [9, Chapter 2]):

IlallFf < c2llallL,, a E Sk (3.9)

and

IIi- Pk.F LI[ < 2-ks for some Pk’F S, (3.10)

where I is the embedding map from F to L.
From now on c, Co, el, will always denote positive constants which

may depend upon s, t, p and N but not on k, m and n. Let X0 :--P0,

Xk := P,- Pk-1, where the P :FI S are so chosen that the Jackson
inequality (3.10) is satisfied. The embedding map

I’F--.F[, s>t>O,

has a representation

I-- Z Yk, Yk’F --* F, (3.11)
k=O
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with the Yk defined by the diagram below:

(3.12)

Here the Ak are defined as above and the Ik denote embedding maps.
The following norm estimates hold for these operators:

Ilxll _< III- ell + IIz- P- -< co2-ks,

IIAII _< Cl 2kN, IIAVII _< C22-kN,

III11 _< 32-kt"

(3.13)

Let

L(S) := supnl/aen(S), cr > O;
nN

this gives a quasi-norm on the entropy classes

, {S E ,: supnl/en(S) <

where denotes the ideal of all bounded linear operators between arbi-
trary Banach spaces. Then

L(TYk) < IIAXIIL(T&A;) < c42-ks+cUL(TIkA-l).

Choose a so that 1/a > 1 1/p. Then

L(TIkA- <_ c52kN(/"+/I-) T&.4V <_ c62k(1/"+l/’-)+k(t-ff TII.

This follows from the fact that for the dyadic entropy numbers of arbi-
trary operators S from g{ into a Banach space E of type p we have the
estimate (cf. [4])

ek(S’t----> E) < c7[[Sl[(,lg(n + 1)) -I/p, l<k<n.
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Combining the previous two estimates we have

Zr(TYk) <_ c82k(-s+t)+N(1/r+l/p-1)kllTII.

Write

m-1 x

k=O k=m

Since L is equivalent to an r r(cr) norm ([16, (6.2.5)]) we find that for
(l/a) > (s- t)/N+ l/p,

L TYg <_ c9 L; TY
\k=O \k=O

_< c01lzll 2rk(-s+t+N(l/r+l/p-1))
\k=0

Hence

e2mN- ( -- Cl2II TI[2-mN(1-1/p+(s-t)/N)

To estimate the remainder oEk=m TYk we now choose r so that 1-
lip < 1/cr < (s t)/N+ 1 lip. Then

k=m k=m

C14[[ T[[2-mN((s-t)/N-1/tr+l-1/p).

Consequently
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The additivity of the dyadic entropy numbers gives us

c1611TI]2-mN((s-t)/N+l-l/p).

Finally, the monotonicity of the entropy numbers gives the desired
result

e,(S) < CTllTlln-((s-t)/v+-/p).

Remarks
(i) The representation (3.11) of the embedding map

k=0

by the Yk and the factorisation (3.12) viatak indicate that the entropy
numbers of S= TI can be estimated by those of an operator
R" tl(N) E with

sup nl-1/p+(s-t)/Nen(R) < oc
nEN

(see Corollary 3.2).
(ii) We have formulated our result for the cube Q only. However, exten-

sion theorems for Sobolev and Besov spaces show that it also holds
for bounded domains in In with sufficiently smooth boundary.

That the conclusion in Proposition 3.4 is asymptotically optimal is
shown by the following example.

Example 3.5 Let s>t>0, l<p<2 and s-t>N(1-1/p); let
I" W(Q) w((Q) be the natural Sobolev embedding. Then the dyadic
entropy numbers of I satisfy

en(1) tl -(s-t)/N.
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The estimate from above follows easily from Proposition 3.4. Indeed,
choose So such that So- N(1- l/p). We may then factorise I as
follows"

I
W(Q) ---+ W(Q)

w(Q)

Since W[ is of type p we conclude from Proposition 3.4 that

sup n(S-t)/Nen(I) sup n(S-S)/N+l-1/Pen(I < cx.
nN nN

The estimate from below is also well-known: see [9, Chap. 3].

A typical application of Proposition 3.4 is the following result about
the eigenvalue distribution for operators acting on L1() with values
in W(f).

COROLLARY 3.6 Let f be a bounded domain in ],N with C boundary,
and let S" L,(f2) Ll(f) be an operator such that S(L1 (f)) C W(f),
where < q < o and s > O. Let the eigenvalues ofS be denoted by An(S),
in accordance with the convention ofTheorem 2.8. Then

sup nmin{l’2’l-1/q}+S/NlA,(,5)[’ < .
nEN

Proof By the closed graph theorem we may factorise S as follows:

s

Here I is the natural embedding, which is compact, and So is bounded;
note that S is compact, and so it makes sense to discuss the eigenvalues
of S. The principle of related operators [16] shows that the non-zero
eigenvalues of S coincide with those of the operator T which has the
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factorisation

T

0; \ TS0

wf(a) Ll(a)

Since W(gt) is of type min{2, q}, Proposition 3.4 shows that

sup nmin{l/2’l-1/q}+s/Nen(SoI < cx3,
nEN

and hence the same estimate holds for en(T). The desired result now
follows from the well-known inequality [2]:

In(S)[ In(V)l <_ n 1.

Remark The eigenvalue estimate is optimal. This may be seen by con-
sidering operators constructed in a similar fashion to the corresponding
ones in [3].

ENTROPY OF CONVEX HULLS IN
BANACH SPACES OF TYPE p

In the final section we show how the rate of decay of entropy numbers
e,(X) of a precompact subset Xofa Banach space E oftypep influences
the rate of decay of the dyadic entropy numbers e,,(co(X)) of the (sym-
metric) absolutely convex hull co(X) of X. We obtain optimal results
which complement work of[5] and refine a Hilbert space theorem of [7].

PROPOSITION 4.1 Let E be a Banach space oftype p > 1, and let X be a

precompact subset ofE such that

supnlog-7(n + 1)en(X)< cz (4.1)

for some cr > 0 and "7 > O. Then the dyadic entropy numbers e,(co(X)) of
the absolutely convex hull ofXsatisfy

supnl-/P+log-’(n+ 1)en(co(X)) < cx. (4.2)
nN
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Equivalently, if the covering number N(X, e) ofXsatisfies

N(X, e) <_ toe-1/ logT/(1/e) as e O, (4.3)

then

logN(co(X),e) < CI-l/(l-1/p+cr) logT(1/e). (4.4)

Proof Define T: gl(X) E by

Tft= for X,

where (f) is the canonical unit basis of gl(X). Then

(T’a)(t) (t,a) for E X, a E E’.

Since

I(Z’a)(t) (T’a)(s)l I(t- s,a)l < lit- sl[

we see that the modulus of continuity of T’ satisfies

w(T’,6) sup suP{l(T’a)(t) -(T’a)(s)[: s,t X, }Is- tll _< 6) _< 6.
Ilall<l

Hence

Lip(T) max { IlZll, sup w(T’, 6)/6} < max { sup Iltll, } < c.
6>0 tEX

This means that T /::ip(gl (X), E). Since E is a Banach space of type p
and e,(co(X))<_ e,(T), the desired estimate (4.2) follows immediately
from Theorem 3.1.
We observe that this result is optimal. To see this, let 1 <p < 2, let (fn)

be the canonical basis for gp and take

X= {n logT(n + 1)fn: n N} c gp.

Then

sup n log-7 (n + 1)en (X) < cxz,
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and just as in [3] we have

en(co(X)) .. n-(1-1/P)-log’r(n d- 1), n E N.

Remark Proposition 4.1 provides a refinement of the Hilbert space
result ofDudley [7]. For ifwe takep 2, which includes the Hilbert space
case, and set -y- 0, then the proposition tells us that if

sup nrn(X") < cx:,

then

sup nl/2+en(cO(X)) <

or in terms of the covering number,

N(X, e) <_ COe-l/or as e --+ 0+

implies that

logN(co(X),) <_ c-/(/+’).

This is what Dudley proved, for Hilbert spaces.
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