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1 INTRODUCTION

In this paper we are concerned with the extensions to measure chains
of some of the fundamental ideas in the theory of nth order linear
differential equations on the real line. In particular our object is to show
that the factorizations of disconjugate differential operators developed
by Polya [10] and extended to difference equations by Hartman [4]
is valid also in the measure chain setting. Similarly, we show that the
canonical factorization due to Trench [11] and extended to difference
equations by Krueger [7] is also valid for measure chains. Let1 be the set
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288 L.H. ERBE et al.

ofreal numbers and let "i[’ be a closed subset ofN. Let ql" denote qr\sup "r
and let "r" be defined inductively by "r" (’It -1 ). Define tr" "It"
by or(t) inf{s E "ll’: s > t}. cr is called the right jump operator. Similarly,
the left jump operator p is defined by p(t)=sup{sE’r: s < t}. The
so-called A-derivative of a function f: ql" ]R is denoted by f6 and is
defined by

fA(t limf(tr(s)) f(t)

or equivalent by

fA limf(Cr(t)) f(s)
s-,t or(t) s

See the papers by Erbe and Hilger [3] and Hilger [5] for details regarding
measure chains and A-derivatives. We use the standard notationf for
the functionf: ---,f(r(t)) defined on "r ’. Throughout this paper I will
denote an interval of qr which is just an interval of IR intersected with
The existence, uniqueness, and extension theorems for solutions of

initial value problems as well as the continuous dependence ofsolutions
on initial data, all familiar from differential equations on IR, are also valid
for differential equations on measure chains. Again see [3] and [5] and the
book [8] for details.

2 ABEL’S THEOREM

Consider the nth order A-differential equation

n

Ln[y] "= yZX" + Zaiy (1)
i=1

where y AJ denotes thejth A-derivative ofthe real-valued function y and
each ai is a real-valued, right-dense continuous function on’r. Recall that
a function is right-dense continuous on the interval I of "It if it is
continuous at right-dense points of Iand the left-hand limit exist at left-
dense points. Note that tr is right-dense continuous. Let/be an interval
of ’lr ". Let wn(t) W(Xl,X2,... ,xn)(t) det[xX-]. A typical term of
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this Wronskian determinant is e(i)xi i2 i3 ""xi, where e(/) is the
sign of the permutation (il, i2,. in) of (1, 2,..., rt). Applying the
product rule (uv)A uAv + UVA for the A-derivative to this typical term
of w, gives the terms

All but the last term in this sum contains a pair of factors of the form

xijzxjX+.A This corresponds to the determinant ofa matrix with two equal
rows which gives 0 for that determinant. Hence w is the sum over all
terms oftheform(i A zX2 A"- a"

,,Xil Xi2 Xi3 Xin_l Xin Since u u + UA# where
#(t) a(t)- t, then the typical term has the form

A A A A"-2 An-1 Ae(i )(xil q-- Xil )(xi2 + xi2 [) (Xin_l + Xin_l [)Xin

When this product is expanded, many terms contain products ofthe form

xx/. These sum to zero since again they correspond to the deter-
minant of a matrix with two equal rows. Hence there remains only the
sum of the terms

A An-2 A An-3/’ An-2 ) Ae(i)xi, xi2 xi._, xn + e(i)x6xAi2 Xin-2 Xin-1 [/Xtt "Jr-

A A An-l A n-2+ e(i)xilxi2 Xi Xin_l Xn

+ e(i, axaxZV x-’ a, -)Xil i2 i3 n-1 Xn

A" A"-’ A is the sum ofn determinantsNow by (1), xk in= aixk Hence w.
with typical columns

Xk
Axk

--alxk

Xk
Axk

xk
xf--a2xk

Xk
Axk

An-4xk
x--Ix

-a3xk

ux
IXk

An_l
#Xk

anXk
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respectively. To evaluate these determinants first interchange rows to
give

A._
Wn --alWn + a2#Wn a3#2Wn +

+ (-1)iai#iwn +... + (-1)"#n-wn

where P* (s) /u= a:i_. Thus we have proved

THEOREM (Abel’s Theorem) Let x1,x2,... ,xbesolutions to(l). Let
Wn w(x, x2, xn) be the Wronskian ofthese solutions. Then

mwn (t) -Pn (Iz(t))wn(t), (2)

where P*(s) l aisi-I and #(t)= a(t)- is the graininess.

Observe that if ql" is an interval of , then #(t)= 0 for all E in q1TM.

Thus -P, (-#) -al. Hence (2) becomes the familiar wn -a Wn for
differential equations. For T Z, the set of integers, (1) is the difference
equation A"xt + ,i= aiAn-ixt 0. When written as an n-term recur-
rence relation, the coefficient b, ofxt is bn (- 1)n + i=l ai(- 1)n+i, and
thus (-1)nbn + Ein=l ai(--1) Ein__l ai(-1)i- e,(-l).
In order for this recurrence relation form of the difference equation to
be disconjugate, it is necessary that (- 1)"b,, > 0, i.e., P, (- > 0. But
in this case #(t)= for all t, so -#(t)P(-#(t))=- ,il ai(-l)i-l.
Hence the condition (- 1)b, > 0 can be written as P, (- 1) > 0. In the
case of an arbitrary measure chain q[’, this condition would be

#(t)P(-#(t)) > O, (3)

where #(t)=a(t)-t. The general exponential function eh(a,r), as
defined by Hilger [5,6], is given by eh(c, r)(t) exp(f h(a(s)) ds) where

flog(zh+l), h>O,
h(z)

z, h =0.

Thus the solution of (3) which equals when r is given by exp(f
(-P,(#(s)))ds). In this case, zh +I=-#(s)P::(#(s)) + I. Then (3)
implies that log(zh+ 1)= log(1- #(s)P(#(s))) is real-valued, and
hence eh(o, 7") > 0. Then wn(t) wn(r)e,(t)(-#(t)P(-#(t)) which is an
extension of Abel’s formula to measure chains under the assumption (3).
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3 POLYA FACTORIZATION

In 1922 Georg Polya [10] showed that if an nth order linear differential
equation

n

L[y] := y(n) + Z aiy(n-i) 0
i=1

is disconjugate on an interval I or JR, then for a given point a E/, L has
the form

t [y] (... ")’)’

on I fq (a, c) where each ai > 0 on Ifq (a, c). In this section we show
that the analogous result holds on measure chains. We begin with
the definition of disconjugacy on an interval I of a measure chain ql".

DEFINITION We say that the function x:I--. JR, where I is an interval

of the measure chain 7, has a generalized zero at 7 I in case either
(i) x(r) O, or (ii) 7" > p(7") I and x(p(7"))x(7") < O. We say that x has a

generalized zero of multiplicity k at 7" I in case either (i) xzxj (7") 0

for 0 <j <_ k and xzx (7") :/: O, or (ii) 7" > p(7-) /, xAj (7-) 0 for
0 <j <_ k 2, and

> o. (4)

We say that the operator Ln is disconjugate on the interval I of q in case
each nontrivial solution y of L[y] 0 hasfewer that n generalized zeros
counting multiplicity in I.

The first step in the Polya factorization is to get a collection of posi-
tive Wronskians as we do next. In Theorem 4 we show that with the
fundamental set of solutions x,..., x that will be chosen presently,
Wk(t) can neither equal zero nor change sign for > tyn-2(a) when (1) is
disconjugate. Then by successively replacing xi by -xi as needed, we
could inductively choose solutions x1, x2, Xn so that each Wk(t) would
be positive. This requires that > tr’-2(a). To extend this positivity ofthe
Wk(t) to the entire interval in the case of a compact interval, we must
show, as is evident in the proof of Theorem 5, that the fundamental set



292 L.H. ERBE et al.

of solutions x1,x2,...,xn defined next gives the positivity of the
Wronskians wk(t). Throughout the remainder of this section, x,..., xn
will be the fundamental set of solutions of (1) satisfying the initial
conditions

(--1)i-1 j= n q- i,x-’ (a)
0, otherwise.

Also, Wk will denote the Wronskian determinant ofx,..., xk. When first
considering Lemma 2, we assumed the result would be found in the
literature. However, our search produced no reference to this result, so
we have included the statement and proof here.

LEMMA 2 Let a be some point in IN’" and let x1,x2,...,xn be n
solutions of(l) satisfying (5). Let w denote the Wronskian determinant of
x, x2, Xk. Ifor(a) --a, then Wk has a zero ofmultiplicity k(n k) at a
and,for small e > O, Wk(t) > 0for 0 < a < e.

Proof Let A, A2,..., Ak be integers with 0 < A < A2 <... < Ak _< n 1,
and let D(A1,..., Ak) denote the determinant of the k x k matrix whose
ith row is the row of derivatives x),..., X(k). Also let D()(A,..., Ak)
denote the jth derivative of D(A,...,Ak) with respect to t. For
<j< n k, W(k:) is the sum of determinants of the form D(A,..., Ak)

where A "= A + A2 +... + Ak =j+ k(k 1)/2 since each differentiation
increases A by 1. In order to have a determinant which is not zero at a,
we must have the term D(n k, n k + 1,..., n 2) 1. This determi-
nant arises if we avoid differentiating the kth row of D(A,..., A_,
n- 1) and will first occur after k(n- k) differentiations. Note that for
j n- k- 1, W(k:) involves

n-I

D(A1,..., Ak-l,n) y.an-iD((Al,..., Ak-l, i).
i=1

D(A,..., A_, n) need not be differentiable, but it is the sum of terms
each being the product ofthe right-dense continuous coefficient -a,_ and
the differentiable function D(A, A_, 0. The order ofthe zero at a of
these determinants must be larger than the order of the zero at a of the
other determinants D(#,..., #,) in the sum in (3) since # + #2 +"" +
#k A + A2 +"" + A_ + n > Al + A2 +... + Ak_! + i. Since each
application of the derivative, or derivative of each D(A1,..., Ak-, /)
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in the sum in (3), increases by the index of the derivative in one row of
the determinant, we arrive at the first nonzero determinant D(n- k,
n k + 1,..., n 2) after each ofthe k rows has been moved down n k
positions, i.e., k(n k) differentiation operations have been performed.
The coefficient of D(n- k, n- k + 1,..., n- 2) in this final sum is a
positive integer, so wk(t) must be positive for 0 < a < e when e is small
enough.

LEMMA 3 Letabesomepo&tinlf3 "andletx,. ..,xnbethesolutions
to (1) satisfying (5). Suppose that a < or(a) <... < err(a) trr+(a)forsome
integer r, < r < n 1.

(i) Ifn -j> r, then wn-j has a zero oforderj at a and Wn_j(trJ(a)) > O.
(ii) If n -j < r, then wn_ has a zero of order (n -j)(j- r) at err(a) and

wn_ (t) > 0for 0 < trY(a) < for some small .
Proof Suppose that a < or(a) <-.. < crY(a) tr+(a) where < r < n.
Recall that for an n x n matrix A---[au], the antidiagonal is the set of
entries ao. with +j n + 1. We say the matrix A is lower anti-triangular
in case ao.= 0 if +j < n + 1, i.e., if all entries above the antidiagonal
are 0. Also we say that such a matrix A is alternately signed if

{=0, fori<n+l-j,
(-1)Ja/j > 0, for i=n+ -j,

>0, fori>n+l-j.

Let Ma denote the n n matrix ofinitial values at a, i.e., M [m0.], where
mi=(-1)-6j,n+_i. We now use the equation x(t)= x(t)+ xZX(t)#(t)
to get the (n- 1) (n- 1) matrix Mr(a) of initial values for x (tr(a)),
0 < j < n- 2. Note that this is again an alternately signed lower anti-
triangular matrix (ASLAT). Ifwe continue using x(t) x(t) + xZX(t)#(t)
for r(a), tr2(a),..., tr-(a), we will generate the r initial value
matrices M,(a), < i<r. Each of these is again ASLAT. Now
Wn_j(orJ(a)) M,(a) > 0 for <j < r. Thus, if r=n- 1, each w is
positive at some point. Suppose that r < n 2. Since err(a) is right-dense
and since the matrix of initial values M,() is ASLAT, the argument of
the previous lemma, with n there replaced by n r and k replaced by n -j,
applies to give a point > trY(a), where wn_(t) > 0 forj > n r. The order
ofthe zero ofw_(t) at trY(a) is (n -j)(n r (n -j)) (n -j)(j- k) by
Lemma 2.



294 L.H. ERBE et al.

THEOREM 4 Suppose (1) is disconjugate on the interval I c_ q and (3)
holds. Let a E I. Then there are solutions xl, x_,..., xn of (1) so that the
Wronskians wi := w(xl, x2, xi) satisfy

wi(t) > 0 for E (o"n-i-1 (a), o)fq ’fq I, < i< n- 1. (6)

Proof Let xl, X2, Xn be the collection of solutions of (1) defined in
(5). First observe that w Xl has a zero ofmultiplicity n ata, so that
x can neither equal zero nor change sign for > crn-(a) since otherwise

An-Ix would have n generalized zeros. But x (a) 1, so x(t)> 0 for
t>a(a). Next consider w for l<k<n. If w(to)=0 for some

to > a"-k-(a), then there are constant c, c,..., Ck, not all zero, so that
y := ClXl + c2x2 /... + CkXk has a zero of multiplicity k at to. But y has a
zero of multiplicity n k at a giving y a total of at least n zeros. Since y
is nontrivial, that contradicts the disconjugacy of L. Hence Wk(t) 0
for > a-k(a).
Next suppose there are points t < t in I (or"-- (a), ) T so

that wk(t)Wk(t:)<O. Let to=sup{tEl: Wk(t)Wk(S)>O for t <s<t}.
Then to < t:. Since Wk(to)0, W(t)Wk(tO)> 0. If to were right-dense,
then we could find a sequence Sm t so that W(tl)Wk(tm)< 0. But
Wk(tl)Wk(Sm) Wk(tl)Wk(tO) > 0, and that is impossible. Hence to must be
right-scattered. Next let x be the solution to the BVP L,,[x]=O,
xX’(a)=0 for O<i<n-k-1, X(to)-l, and xZX’(a(t0))=0 for
0 < < k 1. Then x cx + cx. +... + cgxg since x has a zero of
multiplicity n- k at a. Let W be the (k + 1) x (k + 1) matrix with first
column [x(to),x(a(to)),...,xZX-(a(to))]r= [0,0,...,0, xzx-(a(t0))]
and column j + equal to [x(t0), x(a(to)), x(a(to)),...,x- (a(t0))]
for <j<k. Then 0 det W= Wk(tY(to)) q-(--1)kxA*-(a(to))det W
where W is the k xk matrix with jth column [x(to),xj(a(to)),

Ak-2 Txx (a(to)), ,x) (a(t0))] for <_j <_k. For function y on q which is
A-differentiable at we have y(t) y(t) + yA(t)#(t). Using this identity
on the columns of W we get that the jth column of W has the form

Ak-2[xj(to), xj(to) -F x(to)lZ(to),..., x) -F x;-1 (to)#(to)] T for <_j <_ k.
But #(to) > 0, so elementary row operations applied to W,, give det W
(#(to))k-lw(to). Then 0 det W= w(a(to)) + (--1)kxzx- (a(t0))
(#(t0))g-12(t0). Now Wk(to)wk(tr(to)) < 0, SO (--1)/x/x*- (r(to))X(to) > 0
since X(to) 1. Then (4) holds with 7- a(to), and x has a generalized zero
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of multiplicity k at to. This contradicts the disconjugacy of Ln on I. We
conclude that w(t) does not have a change ofsign for (’-- (a), oe)
cl I Cl "It. It remains only to show that w(t)> 0 for some t. But this
follows from Lemmas 2 and 3.

THEOREM 5 Suppose (1) is disconjugate on I= [a, cr’(b)], a compact
interval of the measure chain 7. Then there are n solutions y, Y2,..., Yn
of (1) so that the Wronskians Wk(t):=w(y,y2,...,yk) are positive
on [a, b].

Proof Let Yi,,, < < n, be the solution of the BVP

Yi,,AJ (a) { 0,
(- 1)i-1 en-i-J/(n --j)!, O<j<n-i,

n-i<j<n-1,

where e > 0. Then Wk,(t) := w(y,,(t),y2,e(t),...,yk,e(t)) > 0 for
>_ a-k-(a) since Wk,,(t) Wk(t) as e0+. Here Wk and xk are as

defined in Theorem 4. We look first at the case k 2 which gives insight
into the general case. Here we must show that w2,, for a < < ’-3(a).
Note first that w_,,(a)= (evn-4)/(n- 1)!(n- 2)! > 0. For convenience of
notation we denote

w2,e(t)
yl,,(t) y2,(t)
yA Al,,(t) Y2,,(t)

by y(t)
yZX(t)

Then

w2, (r2 (a))
y(tr(a)t)

yA(tr(a))

y(a)

yZX(a)
+

>0

y(a) + yZX(a)#(a)

yA(a + yA2 (a)#(a)
y(a)

#:
yA(a)

yA2 (a)
+ (a)

y/X (a)

since each of the determinants is positive.

w2,(tr:(a)) w2,,(tr(a))+ #(tr(a))
y(tr(a))
yA(r(a)) + #2(a)
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which can be written as a linear combination, with coefficients products
and powers of#(a) and #(tr(a)), of the determinants of2 x 2 submatrices
of the matrix E whose ith column is the column of initial values of Y,c
at a. All these determinants and indeed the determinant of each of
k x k submatrices obtained by deleting n k rows and the last n k col-
umns ofE is positive. Hence we get that w2,e(crJ(a)) > 0 for 0 <j < n 4.
In the case of a general k, Wk(rJ(a)) is a linear combination of positive
determinants of k x k submatrices of E with coefficients #(r(a)),
0 < <j- 1, and products and powers of these nonnegative numbers.
Hence Wk,(trJ(a)) > 0for0 <j < n k 2,and thus wkis positive on [a, b].
To show that the matrix E has this positive submatrix determinant
property, recall that the polynomials 1, t, t2/2!, t3/3!,..., t"-/(n 1)!
form a Descartes system on (0, ) for the disconjugate differential
equation dny/dtn=O. See Coppel [2]. That means that if k columns
<j <J2 <"" <jk < n are selected from the Wronskian matrix Wofthis

set of solutions, and the bottom n- k rows are deleted, the resulting
submatrix has a positive determinant. Now consider the transpose W
which has the property that if the k rows <_ i < i2 <... < ik <_ n are
selected and the last n k columns are deleted, the resulting matrix has a
positive determinant. Next reverse the order of the rows placing row
n- i- as the ith row for < < n to obtain a new matrix I. Next
multiply the even numbered columns of I by -1 to give the matrix E
with e t. Consider the submatrix Mformed by deleting n k rows and
the last n- k columns of E. The determinant of the corresponding
submatrix in Wr has undergone k(k-1)/2 sign changes in the
transformation from Wr to I and [k/2J changes in going from I to
M. But (k(k 1)/2) + [k/2J is even, so det S > 0 as claimed.

X
An-!THEOREM 6 (Polya Factorization) Let Lnx xX"+ a +...+

an-Ix 4" an where each ai is right-dense continuous on the interval I of the
measure chain q. Suppose Lx 0 is disconjugate on L Then L is given by

L.x xn(u.- (n-(" u(c (ooX)’a)zx.. .)zx)zx)zx, (7)

where each i(t) is right-dense continuous on (a,b) and positive for
(rn-(a), b) ifpn(b) I.

Proof Supposexl, x2,... ,xnfOrmalinearlyindependentsetOfsOlutiOns
to L,x 0. Note that xt, x2,..., x, are solutions to W(XI,X2,..o Xn, X) 0
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where w is the Wronskian determinant. Then both L, and w(x, x2,...,

x,,,x)/w,,, where w, w(x,x2,... ,x,,), are linear A-differential opera-
tors which annihilate Xl, x2, xn and have leading coefficient 1. Hence
L,,x w(xt, x2,..., x,,, x)/w,,. Suppose now that x, x2,..., xn are solu-
tions to L,,x 0 so that wi := w(x, x2,..., xi) > 0 for < < n. Con-
sider the linear A-differential operator MkX=(W(X,X2,... ,Xk-1, X)/
Wk)zx. MkX=O for < < k, and the coefficient of x6 in Mkx is

w_/w. Hence (w/w_la )MkX W(Xl, X2, Xk, X)/Wk, and thus
w(x,x,...,Xn, X) WkWk/W_(W(X,X2,...,Xk_,X)/Wk)zx. Next
apply the last result successively starting with w(xi, x2,..., x,,, x) to get

W(Xl, X2, Xn, X)

WnWn

Wn_

Set c, (wnw’)/w, and Ok (Wt,W)/(Wt,+Wk_t) for O<_k<_n,
where Wo w_ 1. This gives each Ck > 0 and shows the representation
(6) for L,.

4 TRENCH FACTORIZATION

We now turn our attention to a special form of an operator that has a
Polya factorization. This form, the Trench factorization, is given by

(8)

where each fli > 0 on Iand fb/3i(7-)AT- cxz for < < n. We assume that
b is a left-dense point in the closure of I in qI’. If sup qI’ c, then b
is allowable. We denote by P(a, b) the collection of linear nth-order
A-differential operators which have aPolya factorization (7) with eachc
right-dense continuous and positive in (a, b). Our goal in this section to
show that the Trench factorization (cf. [11 ]) is valid as well on measure
chains.
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THEOREM 7 (Trench Factorization) Let L 79(a, b) with b a left-dense
point in "F. Then L has a factorization (8) where each i is right-dense
continuous andpositive and fbi(-)A cx, <_ n 1. This determines
the i up to positive constants with product 1.

This theorem shows that the Trench factorization serves a canonical
form for the non-unique Polya factorization of L P(a, b). The non-
uniqueness for the Polya factorization is evident from the proof of
Lemma 9 below. Lemmas 8 and 9 serve as the first two steps in the
induction process used to prove Theorem 7. The statements and proofs
of the lemmas and Theorem 7 as well as the subsequent material on
the Trench factorization are adaptations to measure chains of the
corresponding material in Trench’s original paper [11 where the analysis
is for differential equations, i.e., for the case that the measure chain is R
itself. Krueger [7] has recently shown the Trench factorization for
difference operators written as recurrence relations.

LEMMA 8 ff L (a,b) is given by Lx= {1/2(l/l(x/o)) where
fal(r)Ar<, then L can be written as Lx= 1/2(1/l(x/o))
where f3(r)Ar .

bProof An easy calculation shows that if o(t)= ao(t)ft a(r)Ar,
b b2(t) a2(t) Lt) al ()A, and (t) a (t)/( a (r)Ar L(t) al ().

At, then the representation ofL in terms of the s is correct. Note that
((b e(r)Ar)-) fll (t), so that for a < c < b, we have

1(r)r lim
1(T)T f 1(T)T

as desired.

LEMMA 9 If L E 79(a,b) is given by Lx= 1/o3(1/a2(1/al(X/tXo)A)A)A
where fa(-)A-=o and fa2(7-)AT" < cx, then L can be written as
Lx 1/3(1/fl2(1//(x//o)ZX)a)zx where each ]i is right-dense continuous

andpositive on (a, b) and ffli(r)Ar cxfor 1, 2.

Proof An application of Lemma 8 to 1/a3(l/a2(./a)zx)zx. gives
L= 1/73(1/’y2(1/7 ( /70)zx)zx)zx where 72(t) a2(t)(ba2(r)Ar x

t) 2(T)T) 0=0, l(t) al(t) ba2()A, and 73(t) a3(t)
fa(t) 2(T)T" By Lemma 9 we know that fb72(r)A=. Hence, if
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fbTl(r)Ar=cX3, we have the desired representation of L. If
fb71(T)AT < C, apply Lemma 8 to the operator 1/72(1/71(./70)A)zx
to get L= 1//33(1/2(1/(./0)zx)zx)A where/0(t) 70(0 f,bTl(r)Ar,
/32.(0 72(t) ft) 7 (r)Ar, 3 73, and fl (t) 7 (t)(ftb’,./ (T)AT
f;t)7 (T)AT)-" fbfl(T)A’r= C clearly holds. To show that fbfl2(T) X
AT=O, let c E(a, b) and let {b,} be a sequence from (c,b) with

as n cx. Then f?" flE(T)AT f?n 72(s)(fs)7t (w)AT)Asb./’b
fb" (1/ff a(rlar)zx f,) a2(T)ATAs. Applying the integration by parts
formula

gives

b"

fs
bn

/2(T)AT-- f" O2(T)AT
7ITATI"

We now turn to the proof of the existence part of Theorem 7 by
showing that a representation as in (8), with fbiAT Or, <_ <_ n l,
is always possible provided (7) holds. We delay the essential uniqueness
until further terminology and techniques have been introduced. Our
proofmimics the original proofofTrench [1 l] for differential operators
when ql" JR. Some of the details are included here for clarity.

Proof(Existence in Theorem 7) As noted above, the preceding lemmas
show the existence ofrepresentation (8) for n 2 and n 3. Suppose this
representation exists for every Polya operator of order n- _> 3. Let
L E T’(a, b). Then
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where each/3; > 0. By the induction assumption applied to the operator
1/13n_l(1/13n_E(...1//31(Y/o)A...)zx)zx we may assume that fbi=o
for <_ <_ n--2. If fbl3n_ cx, we have the desired representation.
Iffb < c, consider the sequence of representations ofL given by

where

j,o=j,o<_j<_n, and fori>0,

j,i j,i-I for j{n + 1,n 1,n i- 1},

/n+l-j,i ]n+j- ,i-1 /n-j,i- AT",
(t)

/n-i,i ]n-i,i-l.

For i= 1, the divergence of fbln_2,oA’r is transferred to /,_,, as in
Lemma 8, leaving fb,_.,A, either finite or infinite. If it is infinite, we
have the desired representation. If it is finite, the transformation from
/3,_.,1 to /3,-,2, which is the transformation in Lemma 9, gives
fbfln_,,2A-= fbfln_2,ZA= 0, but fbfln_3,ZA" could be finite. If it is
infinite, we again have the desired representation for L. If it is finite,
the next step in the sequence of representation gives fbfl,,_3,3Ar--cxz
and fb3,_a,2Ar c as in Lemma 9. We continue in this fashion apply-
ing the second half of the proof of Lemma 9. Since fb/3,,_y, jar < c can
only hold forj E {0, n, + }, if this process does not terminate prior to
i=n-1, it does terminate for i=n-1 since then fbfln_j,n_lmT"--’o(3
except for j= 0 and j n. Hence every Polya operator has a Trench
factorization.

Before showing the essential uniqueness of the Trench factorization
(8), let us consider why it is important. Suppose that L has the fac-
torization in (8). Let (a, b). Then x =/3o is a solution to (1) as are

x2 =/30(t) fct/3(q)AT"l and x3 =/30(t) fct/31(7"1) ff’ /:(r:)A-2A-. In
general,

Xk+ =/30(0 (9)



OPERATORS ON MEASURE CHAINS 301

is a solution to (1) for <_ k <_ n- 1. Now observe that XI/X2-- 1/
f[/3,A-i --+ 0 as t/b. Next x21x3 f[ f’ n2( -2) x
67"2A’1. By L’H6pital’s Rule on measure chains, see [1], the last quantity
has the same limit as 1/ft/32(2)A’2 which has limit 0 as t/b. By
repeated application of L’H6pital’s Rule on measure chains, we get that

lim
Xk(t) 0. (10)’/bXk+l(t)

A collection (Xl,... Xn} ofn solutions to L,x 0 which are positive near
b and satisfy (10) is called aprincipal system ofsolutions at b for L,x O.
We state this result here formally as a corollary.

COROLLARY 10 Let b <_ o be the left-dense right endpoint ofthe inter-

val L Suppose that Ln has a representation in theform (8). Then (l) has a
principal system ofsolutions at b.

The next lemma was stated for differential equations by Levin [9]. It is
the principal tool used in showing the essential uniqueness ofthe Trench
factorization.

LEMMA 11 Suppose that {Xl,...,Xn} and {Yl,...,Y,} are pr&cipal
systems ofsolutions at bfor (1) where the coefficients ofL are right-dense
continuous on (a, b). Then Yi = aO’xj, where each aij is constant and
aii>Ofor <_i<_n,

Proof Let S be the solution space of L,y=O. For <k _< n, let

Vk {y E S" y(t)/Xk(t) 0 as t/b}. Clearly, xi, Xk- Vk and span
Vk. Since yj Vk implies that Yi Vk for <j, then Ys,...,Yk-1 Vk.
It follows that Yi _,= aO’x for constants a, <j< i. Then yi/xi
Yj=t aij(xj/xi) aii as t/b. Since both Yi and xi are positive for
near b, aii > 0.

We are now prepared to finish the proof of Theorem 7.

Proof (Theorem 7 essential uniqueness) Suppose that L, has a
Trench factorization as in (8). Then x,..., x,, as defined by (9), form
a principal system of solutions at b. Define Lox X/o and Lx
1//3(L_ x)A for _<j < n. Then Lx+ for 0 <j _< n and Ljx= 0 for
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<j < n. Now suppose that

is a second representation ofL.. Let Yl, Y. be the principal system of
solutions of(1) at b defined by (9) with/3 replaced by a. By the preceding
lemma, Yi ]=1 aijxj, and so Li_lYi a, for < < n. Now
yl=ao=allxl=allflO. Hence all=ao(t)//3o(t) Next, a.2 =Ly2
1//3(t)(ao(t)//3o(t) ftc a(7-)A-) zx= a(a(t)//3it), so a22/all
/31(0. Suppose that agg=ag_l(t)/(13g_l(t))ag_l,g_l for 2 <j<_k. Then
ak+,k+=Lky+=akk(ak/k, SO in general we have tk(t)//3g(t)=
ak+l,+l/akk for l<_k<_n-1 and all=Co(t)//3o(t). Now let x.+ be
given by (9) for k=n. Then L.x.+ 1. But L.x.+ =/3.(t)/(t.a..(t)).
Hence a,,(t)/,,(t)= l/a.. and Hin=-(ci(t)/i(t)) all(1-Iin__- ak+,k+/
ak,k)/ann 1.

The interested reader can check that the necessary and sufficient
condition for L,x=O to have a fundamental principal system of
solutions on (a, b), i.e., principal at both a and b, given in Theorem 2 of
I1 l] also extends to the measure chain setting if a is right-dense.

Acknowledgments

L.E. Erbe was partially supported by NSERC-Canada.

References

[l] Ravi P. Agarwal and Martin Bohner, Basic calculus on times scales and some of its
applications, Results in Mathematics 35 (1999), 3-22.

[2] W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics Vol. 222, Springer-Verlag,
New York, 1971.

[3] Lynn Erbe and Stefan Hilger, Sturmian theory on measure chains, Differential
Equations and Dynamical Systems (1993), 223-246.

[4] Philip Hartman, Difference equations: disconjugacy, principal solutions, Green’s
functions, complete monotonicity, TAMS 246 (1978), 1-29.

[5] Stefan Hilger, Analysis on measure chains a unified approach to continuous and
discrete calculus, Results in Mathematics 15 (1990), 18-56.

[6] Stefan Hilger, Special functions, Laplace transforms and Fourier transforms on
measure chains, preprint.

[7] Robert J. Krueger, Disconjugacy of nth order linear difference equations, Ph.D.
dissertation, Univ. ofNebr.-Lincoln, 1998.



OPERATORS ON MEASURE CHAINS 303

[8] V. Lakshmikantham, S. Sivasundarum and B. Kaymakcalan, Dynamical Systems on
Measure Chains, Kluwers Academic, Publishers, Boston, 1996.

[9] A.Ju. Levin, Non-oscillation of solution of the equation x0’ +p(t)xn- +... +
p,,x =0, Uspehi Mat. Nauk 24 (2; 146) (1969), 43-96 (Russian Math Surveys 24(2)
(1969), 43-99.

[10] Georg Polya, On the mean-value theorem corresponding to a given linear
homogeneous differential equation, TAMS 24 (1922), 312-324.

[1 l] William F. Trench, Canonical forms and principal systems for general disconjugate
equations, TAMS 189 (1974), 319-327.


