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In this paperwe prove two theorems for noncoercive elliptic boundaryvalueproblemsusing
the critical point theory ofChang and the subdifferentiable ofClarke. The first result is for
a Dirichlet noncoercive problem and the second one is for Neumann elliptic problem with
nonlinear multivalued boundary conditions. We use the mountain-pass and the saddle-
point theorems to obtain nontrivial solutions for these problems.
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1 INTRODUCTION

In this paper, using the critical point theory of Chang [1] for locally
Lipschitz functionals, we study nonlinear noncoercive elliptic boundary
value problems with multivalued terms. Let Z C_ Rv be a bounded
domain with C-boundary F. The first problem under consideration is

-div(llDx(z)llP-2Dx(z)) + Oj(z,x(z)) f(z,x(z))
xlr =0, 2 _<p <

a.e. on Z,

where Oj denotes the subdifferential in the sense of Clarke ofj(z, .).

* E-mail: nick@math.ntua.gr.
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306 N. HALIDIAS

Problem (1) is a hemivariational inequality. Such inequalities arise
in mechanics when one wants to consider more realistic nonmono-
tone, multivalued mechanical laws. The lack of monotonicity does not
permit the use of the convex superpotential of Moreau. Concrete
mechanical and engineering applications can be found in the book of
Panagiotopoulos [11]. Problems similar to (1) were studied recently by
Goeleven et al. [4] (semilinear inclusions, i.e. p 2) and Gasinski and
Papageorgiou [5,6] (quasilinear inclusions).
The second problem is a Neumann elliptic boundary value problem

with multivalued nonlinear boundary conditions. Let Z c_ Rv be a
bounded domain with a C-boundary F"

-div(IIDx(z)IIP-2Dx(z)) =f(z,x(z)) a.e. on Z,
Ox (2)

Oj(z,’r(x)(z)) a.e. on F, 2 _< p < .Onp

Here the boundary condition is in the sense of Kenmochi [8] and the
operator - is the trace operator in W’P(Z). Our result here is closely
related to the work of Halidias and Papageorgiou [7].

In the next section we recall some facts and definitions from the critical
point theory for locally Lipschitz functionals and the subdifferentiable
of Clarke.

2 PRELIMINARIES

Let Ybe a subset of X. A functionf: Y R is said to satisfy a Lipschitz
condition (on Y) provided that, for some nonnegative scalar K, one has

If(y)-f(x)l _< K[ly-

for all points x, y E Y. Letfbe Lipschitz near a given point x, and let v be
any other vector in X. The generalized directional derivative offat x in
the direction v, denoted byf(x; v) is defined as follows:

f(x; v) lim sup
y--}x
q0

f(y + tv) f(y)

where y is a vector in X and a positive scalar. Iffis Lipschitz of rank K
near x then the function v f(x; v) is finite, postively homogeneous,
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subadditive and satisfies If(x;v)[<_ Kllvll. In addition f0 satisfies
f(x;-v) -f(x; v). Now we are ready to introduce the generalized
gradient denoted by Of(x) as follows:

Of(x) {w E X*: f(x; v) > (w, v) for all v e X}.

Some basic properties of the generalized gradient of locally Lipschitz
functionals are the following:

(a) Of(x) is a nonempty, convex, weakly compact subset of X* and

II wll, _< g for every w in Of(x).
(b) For every v in X, one has

f(x; v) max{(w, v): w Of(x)}.

Iff,f2 are locally Lipschitz functions then

o(A +f2) c_ oA + of2.

Let us recall the (PS)-condition introduced by Chang.

DEFINITION We say that Lipschitzfunctionfsatisfies the Palais-Smale
condition if any sequence {Xn} along which If(xn)l is bounded and
A(xn) MinwEof(x,) Ilwllx. 0 possesses a convergent subsequence.

The (PS)-condition can also be formulated as follows (see Costa and
Goncalves [3]):

(PS),+ Whenever (xn) c_ X, (en), (6n) c_ R+ are sequences with en 0,
6 0, and such that

f(Xn) --* c

f(xn) <_ f(x) h- enllX xnl[ if ]Ix- xnll < 6,,

then (xn) posseses a convergent subsequence: xn,

Similarly, we define the (PS) condition from below, (PS)*_, by
interchanging x and x in the above inequality. And finally we say thatf
satisfies (PS)* provided it satisfies (PS)*,+ and (PS)*,_.
Note that these two definitions are equivalent when f is locally

Lipschitz functional.
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Consider the first eigenvalue A of (-Ap, Wo’P(z)). From Lindqvist
[9] we know that A > 0 is isolated and simple, that is any two solutions
u, v of

Apu -div(llDullp-2Du) AlulP-2u a.e. on Z, ’ulr=0, 2<p<
(3)

satisfy u cv for some c R. In addition, the A-eigenfunctions do not
change sign in Z. Finally we have the following variational characteriza-
tion ofA (Rayleigh quotient):

A,= infl[lDx’l" ]Ilxll 
x W o’p(z), x # o

Let us now recall the two basic theorems that we will use to prove the
existence results.
The first is the saddle-point theorem.

THEOREM Let X be a reflexive Banach spacef is a locally Lipschitz
functional defined on X satisfies ( PS)-condition. Suppose X X @ X2,
with afinite-dimensional X, and that there exist constants b < b2 and a
neighborhood ofO in X, such that

flx > b2, f[ON <--bl;

thenfhas a criticalpoint.

The second is the mountain-pass theorem.

THeOReM 2 Ifa locally Lipschitzfunctionalf: X--. R on the reflexive
Banach space X satisfies the (PS)-condition and the hypotheses

(i) there exist positive constants p and a such that

f(u) >_ a for all x E X with Ilxll p;

(ii) f(0) 0 and there exists a point e Xsuch that

Ile[I > p and f(e) < O,

then there exists a critical value c > a offdetermined by
c inf maxf(g(t)),

gG tE[O,l]
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where

G {g e C([O, 1],X)" g(O) O, g(1) e}.

One can find a proof for the generalized mountain pass theorem
for locally Lipschitz functionals in the paper of Motreanu and
Panagiotopoulos 10, Theorem and Corollary 1].

In what follows we will use the well-known inequality

N

(a(n) aj(n’))(n- n’) _> Gin n’l.
j=l

for , rl’ E RN, with a1 (r/) Ir/[p- 2.j.

3 DIRICHLET PROBLEMS

In this section we prove an existence result for problem (1) using the
mountain-pass theorem of Chang for locally Lipschitz functionals.

Let us state the hypothesis on the data, i.e. onfand/3.

H(f) f: Z R R is a Carath6odory function such that

(i) for almost all z Z and all x R, If(z, x)[ _< cllX[p- + clxlp*-,
with p* Np/N-p,

(ii) there exists 0 >p and ro > 0 such that for almost all z Z and all

Ixl _> r0, 0 < OF(z, x) <f(z, x)x,
(iii) lim SUpxo(pF(z,x))/lx[p < O(z) < A for almost allz 6 Zwith O(z)

L(Z) and O(z) < A in a set with positive measure.

Remark 1 It is easy to see that the function f(z,x)-O(z)lxl-2x /
Ixl*-=x with 0 L and O(z) < A in a set with positive measure, satisfies
the above hypotheses.

Remark 2 Note that from Hypothesis H(f)(ii) we have that
F(z,x) >_ clxl for Ixl >_ r0. Indeed, we have that O/x <f(z,x)/F(z,x).
Integrating on Jr0, x] we have 0[lnlxl In r0] < In F(z, x) In F(z, ro) that
is F(z, x) > clxl for Ixl _> ro.
H(j):z j(z, x)is measurable andj(z, .) is a locally Lipschitz function,
for almost all z Z, j(z, 0)=0, for almost all z E Z, all x R, for all
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vE Oj(z,x) we have vx < Oj(z,x) and Ivl < a(z) + clxlp*- and finally we
have lim sup_o(1/P) fzj(Z, ) dz < .
THEOREM 3 If hypotheses H(f), H(j)t hold, then problem (1) has a
solution x W ,p(Z).

Proof Let ,b" Wt’P(Z) --, R be defined as

O(x) f(z, r) dr dz F(z, x(z)) dz

Zxwith F(z, x) f(z, r) dr

and

(x) IlOxll + j(z, x(2)) dz.

Then we set the energy functional R + .
CLAIM
Goncalves.

R(.) satisfies the (PS)-condition in the sense of Costa and

Indeed, let {Xn}n>_l C_ WI’p(z) such that R(x,,) c and

R(x.) <_ R(x)+ .llx- Xnll with Ilx- x.II _< 6.

with e., 6. --. 0.
Let x x. + 6x. with 6[Ix.[[ <_ 6.. Divide with 6 and in the limit when

6 0 we have that

(x.) (x. + ex.) ,-"-’x.;x.
6

with ’(xn;xn)=-fzf(Z, Xn(Z))Xn(z)dz. Also we have, IlOx.llpp-
IlDx, + 6DxnllPp 1/PI[DxnIIPp(1 (1 + 6)P). Nowdividethiswith 6, then
in the limit we have that is equal to -]]Dxllpp. Let VI (X) fzj(Z, x(z)) dz.
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Then from above it follows that

fzf(Z, Xn(Z))Xn(Z dz + IlOxllpp + VOl (Z, Xn(Z);Xn(Z)) dz > -llxll

(see Clarke [2, p. 25]). From Proposition 2.1.2 of Clarke [2] we have that
there exists u,, E OVa(x,,) such that V(z, xn(z); Xn(Z)) fz Un(Z)X,,(Z) dz.
Thus, we have

zf(z,
xn(z))xn(z dz IlOx.llpp L u.(z)x.(z) dz <_ llxll.

From the choice of the sequence {x,,}

_
W’’(Z), we have that

OR(xn) < MI for some M > O. (6)

Adding (5) and (6) we have

IlOx.ll / (f(z, xn(zllxn(z) OF(z, xn(zl)dz)

+ fz(Oj(z, Xn(Z))- Un(Z)Xn(Z)dz) _< IlOx.llp / M2

for some M2 > O. Since un E 0V(x.), we have that u,,(z) Oj(z, x,,(z))
13(z,x,,(z)) a.e. on Z. Then using the hypotheses H(f)l(ii) and H(j),
we have

z(f(z, xn(z))xn(z) OF(z, xn(z))) dz >_ 0

and

Oj(z, Xn(Z)) Un(Z)Xn(Z)) dz >_ O.

So, we can say that

(0)- IlOx.llpp _< IlOx.llp + M.

Since O>p from the last inequality we have that {Dx,,} C_ LP(T,RN)
is bounded, thus {x,} c_ WoP(z) is bounded (Poincare inequality).
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From the properties of the subdifferential of Clarke [2, p. 83], we have

OR(xn) C_ O(x.) + O(x.)

So, we have

(wn.y) (Axn. y) + (rn.y) fzf(z, xn(z))y(z)dz

with r,,(z)E Oj(z, x,,(z)) and wn the element with minimal norm of the
subdifferential of R and A:W’P(Z) W’P(Z) such that (Ax, y)=
fz(llDx(z)llP-=(Ox(z), Dy(z))R de) for all y W’P(Z). But xn x in
W’P(Z), so x, x in LP(Z) and x,(z) x(z) a.e. on Z by virtue of the
compact embedding W’P(Z) c_ LP(Z). Thus, r, is bounded in Lq(Z) (see
Chang 1, p. 104, Proposition 2]), i.e rn w r in Lq(z). In addition we have
that fzf(Z, Xn(z))y(z)dz fzf(Z,X(z))y(z)dz. Choose y=x,,-x.
Then in the limit we have that lim sup(Ax,, xn x) 0. By virtue of the
inequality (4) we have that Dx,, Dx in LP(Z). So we have x,, x in
W’P(Z). The claim is proved.
Now we shall show that there exists p > 0 such that R(x) > r/> 0 with

Ilxll- p. In fact we will show that for every sequence {Xn)n>l -- WIo’P(Z)
with IIx ll m 0 we have R(x,,) .L O. Suppose that this is wrong. Then
there exists a sequence as above such that R(x,,) < O. Since IIx ll --, 0 we
have x,(z) 0 a.e. on Z. So, sincej(z, .) > O, we have

 llOx.ll LF(z, xn(z))dz.
p

Dividing the last inequality with IlXnllPp and using the variational char-
acterization of the first eigenvalue, we have

Az < [ pF(z,x.(z)) Ix.(z)[p

7- Jz n(’)[p P[lXn[[Pp
dz.
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In the limit and using Fatou’s lemma we have that

O(z) Ix,(z)[p L ]x"(z)lP1 < lira sup dz + lim sup dz

with A C_ Z such that O(z) < A on A and [AI > 0. In the last inequality we
have used the hypothesis H(f)l(iii). Thus we have that I/p< 1/p, a
contradiction. So, there exists p > 0 such that R(x) _> r/> 0 for all
x W’P(z)with [[x[[ p.

Also, from the hypothesis H(f)l(ii), for almost all x E Z and all x E R
we have

f(z, x) clxl for some c, c > 0

(see Remark 2). Then for all > 0, we have

R(u) I[Du I[Pp + j(z,u (z)) dz F(z, Ul (z)) dz

<_ p IlDu, IlPt, + fzj(Z, (u, (z)) dz c2[[u,

for some c2 > 0

P(Cl C2O-p) -[’- [j(z, tl (Z)) dz
dz

(7)

By virtue of hypothesis H(j), for (>p big enough we have that
R((u) < O. So we can apply theorem and have that R(.) has a critical
point x Wo’P(z). So O EO(b(x)+(x)). Let bl(X)= [[Dx[[P/p and
bz(x) fzj(Z, r(x)(z))dz. Then let LP(Z) R the extension of
bl in LP(Z). Then 0b (x) c_ 01 (x) (see Chang [1]). It is easy to prove
that the nonlinear operator D(A) C_ If(Z) --, Lq(z) such that

(fiX, y) fZ [[Vx(Z)llP-2(Vx(z)’ Vy(z)) dz for all y W’P(Z)

with D(A) {x WI,P(Z) ftx e Lq(z)}, satisfies , 0..Indeed,
first we show that J c_ 0 and then it suffices to show that A is maximal
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monotone:

.f7 IIDx(z)llP-(Dx(z)’DY(z) Dx(z)) dz

ilOxllp + IlOyll_____  
q p

1 (Y) 1 (X)
The monotonicity part is obvious using inequality (4). The maximality

needs more work. Let J:LP(Z)---Lq(Z) be defined as J(x)=
Ix(.)lP-Zx(.). We will show that R(] + J)= Lq(Z). Assume for the
moment that this holds. Then let v 6 LP(Z), v* 6 Lq(z) 8uch that

(A(X)- V*, X- V)pq 0

for all x D(A). Therefore there exists x D(]) such that J(x)+
J(x) v* + J(v) (recall thatwe assumed that R(A + J) Lq(z)). Using
this in the above inequality we have that

(J(v) J(x),x- V)pq

_
O.

But J is strongly monotone. Thus we have that v x and J(x) v*.
Therefore A is maximal monotone. It remains to show that R(] + J)
Lq(z). But J Jlw,,,(z)" WI’p(Z) W’P(Z) is maximal monotone,
because is demicontinuous and monotone. So A + j is maximal mono-
tone. But it is easy to see that the sum is coercive. So is surjective.
Therefore, R(A + )) WI,p(z )*. Then for every g E Lq(z), we can find
x W’P(Z) such that A + )(x) g = A(x) g- )(x) Lq(z) =#

A(x) J(x). Thus, R(A + J) Lq(z).
So, we can say that

fzf(z’x(z))y(z) fz [[Dx(z)[]P-E(Dx(z)’DY(z)) dz + fz v(z)y(z) dz
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with v(z) E Oj(z, x(z)), for every y W’P(Z). Let y ff C(Z). Then
we have

zf
(Z, X(Z))C(z) dz

fz "Dx(z)’[P-2(Dx(z)’Dc(z))dz+ fz v(z)(z)dz.

But div([[Dx(z)[[p-2Dx(z)) W-’q(z) then we have that
div([[Dx(z)[[p-2Dx(z)) Lq(z) because f(z, x(z)) Lq(z) and v(z)
Lq(z). So x G_ WI’p(z) solves (1).

Remark Gasinski and Papageorgiou [6] have an existence result when
the nonresonance hypothesis at zero H(f)(iii) is to the right of A1.

4 NEUMANN PROBLEMS

In this section we consider a quasilinear Neumann problem with
multivalued boundary condition. More precisely, we study the following
problem"

-div(llDx(z)llP-2Dx(z)) f(z,x(z)) h(z) a.e. on Z )
Ox

-__-::-_ (z) /3(z, r(x)(z)) a.e. on r, 2 _< p <
,np

(9)

Here Ox/Onp(Z)=(llDx(z)l[p-2Dx(z),n(z))g with n(z) denoting the
outward normal at z F and - is the trace operator on WI’p(z). On F we
consider the (N- 1)-dimensional Hausdorffmeasure.
Our hypotheses onf(z, x) and/3(z, x) are the following:

H(f)2 f: Z x R R is a Carath60dory function such that

(i) for almost all z E Z and all x R, If(z, x)[ _< a(z) + c[x[- with
a L(Z), c > O, <_ 0 < p;

(ii) Uniformly for almost all z Zwe have thatf(z,x)/([x[-2x) f+(z)
as [xl + wheref+ L1Z, f+ >_ 0 with strict inequality on a set
of positive Lebesgue measure.

H(/):(z,x) Oj(z,x) where z j(z, x) is measurable and j(z, .) is a
locally Lipschitz function such that for almost all z Z and all x R,
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I/3(z, x)l sup[lu[" u E/3(z, x)l <_ a(z) + clx[’, 0 < # < 0 (0 the same
as H(f)2(i)) with a E L% el > 0 andj(-,0) L(Z) and finallyj(z, .) >_ 0
for almost all z Z.

Remark
convex.

In Halidias and Papageorgiou [7],j(z, .) was assumed also to be

THEOREM 4 Ifhypotheses H(f)2 and H(fl)2 hold, then problem (9) has
a nontrivial solution.

Proof Let " W’P(Z ) R and " W’P(Z) R+ be defined by

(x) -fzF(z,x(z))dz
and

(x) IIDxllp + j(z, (x)(z)) dr.

In the definition of(.), F(z, x) Jf(z, r) dr (the potential off), 7-(.)
is the trace operator on W’P(Z) and dcr is the (N-1)-dimensional
Hausdorff measure. Clearly C(W’P(Z)), so is locally Lipschitz,
while we can check that b is locally Lipschitz too. Set R + !k.
CLAIM R(’) satisfies the (PS)-condition (in the sense of Costa and
Goncalves).

Let {xn}n_>l C_ WI’p(z) such that R(xn) c when n and

R(x.) R(x) + .llx- x.II with IIx- x.[I

with en, 6, --* 0. Choose x x,,- 6x, with 6[Ix,,[[ < 6,. Divide with 6 and
let n --, . Note that C(W’P(Z)), so we have

(x.) (x. x.) _0 ’(x.; x.)
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with ’(xn;xn)=-fzf(Z, Xn(Z))Xn(z)dz. Also, [[Oxn[[Pp-[[Dxn
6Dx[[- 1/pllDxllPp(1- (1- )P). So if we divide this with 6 and let
n - ecwehave that is equalwith liDxnl[Ppp. Finally, there exists wn E OO(x),
where (x) frj(Z, (x)(z)) da such that /(Xn; Xn) fr w(Z)Xn(Z) da.
Note that w,,(z) E Oj(z, ’(xn)(z)) a.e. on Z. So, it follows that

Xn(Z))Xn(Z dz- I[Dx.[[pp fr W,,(Z)T(X,,)(Z)da <_

Suppose that {x,,} c_ WI’p(z) was unbounded. Then (at least for a
subsequence), we may assume that IIxll . Let y x,,/llx,,ll, n >_ 1. By
passing to a subsequence if necessary, we may assume that

w
Yn Y in ’P Z), Yn Y in Lp Z),

yn(z) y(z) a.e. on Z as n --,

and ly,(z)l < k(z) a.e. on Z with k LP(Z).
Recall that from the choice ofthe sequence {x,} we have [R(x,)l < M1

for some Ml > 0 and all n > 1,

=-IlDx.[lPp + j(z,’r(Xn)(z))da- F(z, xn(z))dz <_ M
P

-IIxll f(,x()) d <_ M (since j >_ 0).
P

Divide by Ilx.llp. We obtain

1
ilOy.llpp [ F(z, xn(z)) dz < Ml

p Jz [Ix.llp -IIx.IIp" (10)

We have

iix.iip If(z, r)[ dr dz

c<- lix.il" (ll lloollx.II + ) o

asn.
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So by passing to the limit as n c in (10), we obtain

lim
I
IlOyll 0

P

IlOyll 0 (recall that Byn

y=R

Note that Yn sc in Wo’P(Z) and since Ilyll- 1, n > we infer that
# 0. We deduce that Ix(z)l / a.e. on Z as n .
From the choice of the sequence {xn} c_ W,P(Z), we have

z
f(z’xn(z))xn(z)dz .Iz wn(z)’r(xn)(z)dz >_

(11)

and

(12)

Adding (11) and (12), we obtain

r(pj(z,
"r(xn)(z)) wn(z)’r(xn)(z) dr

+ fz(f(z, xn(z))x,,(z) -pF(z, Xn(Z)))dz >_ -pM ,,llx.ll.

Divide this inequality by IIx,,ll. We have

iix.ll0_
y,,(z)dz- Jz IIx.[I

dz

+ fpj(z, -(x.)(Z)llx.ii-w.(z)7-(x.)(z) d

n> oPM (13)
IIx.II IIx.II-,
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Note that

iiXnllO_
yn(Z) dz

fz f(z,x.(z)) lyn(z)lOdz__, llo fzf+(z)dz as n o.
ix.(z)lO-Zx.(z)

Also by virtue of Hypothesis H(f)2(ii), given z E Z\N, IN[ =0 ([C]
denotes the Lebesgue measure of a measurable set C C_ Z) and e > 0, we
can find M > 0 such that for all ]r] >_ M we have ]f+ (z) -f(z, r)/
Ir[-2r[ <_ e. Then, if x.(z) +oz, we have

ix.(z)lO F(z’
m) dz

fx.(z) r]0-2(f+(z)lr[-2r el r) dr/
ix,,(z)lO,

IXn(z)lO_ 0

-ix.(z)l-----7(z) / lx"(z)loM (f+(z) e

for some r/E L (Z)

= lim inf
F(z’ Xn(Z))

n- Ixn(z)lo
>- -(f+(z) e). (14)

iXn(z)lOF(Z,X.(Z)) dz >_

Similarly we obtain that

lim sup
F(z, xn(z))

.- ix.(z)lO
<_ -(f+(z) + e). (15)

From (14) and (15) and since e > 0 and z Z\Nwere arbitrary, we infer
that

F(z, Xn(Z))
ix.(z)lO -f+(z) a.e. on Z as n

= fz F(z’xn(z)) dz fz F(z’x"(z))
oIIx,,ll Ix.(z) IIx,,ll

dz

fz F(z, xn(z))
ix.(z)lO

lYn(Z)dz (16)

o -f+(z) as n o.



320 N. HALIDIAS

Note that since for almost all z Zj(z, .) is locally Lipschitz. So by
Lebourg’s mean value theorem, for almost all z E Z and all x E R, we can
find w E/3(z, rtx) 0 < r/< such that

[j(z,x) -j(z, 0)1 wx
=,. Ij(z, x)l < [j(z, ")1 + Iwllxl Z + Iwllxl (since j(., .) L(Z)).

But by H(fl)2 we have

Iwl a (z) + c Ixl
[j(z, x)[ a2 + c2[x[u+ for some a2, c2 ) 0.

So it is easy to see that

pj(z, "r(x,,)(z)) w,(z)v(x,,)(z) da 0

as n oc (recall # + < 0).

Thus by passing to the limit in (13), we obtain

a contradiction to Hypothesis H(f)z(ii) (recall p > 0). If x,,(z) -c,
with similar arguments as above we show that

F(z’xn(z)) dz --+ fzIIx"ll 0 -f+(z) as n cx

(note that fx.(z) rtz r) dr fx.(z) wo f(z, r) dr). Therefore it follows that
{x,,} c_ W,P(Z) is bounded. Hence we may assume that x,- x in
W’P(Z), x,x in LP(Z), x,(z)x(z) a.e. on Z as nc and
[x,(z)[ <_ k(z) a.e. on Z with k LP(Z).
From the properties ofthe subdifferential of Clarke [2, p. 83], we have

OR(x.) C_ O(xn) + O(Xn)

+ +
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So we have

(Wn, y) (Axn, y) + (rn, y) f(z, Xn(Z))y(z) dz

with r,,(z) Oj(z,x.(z)) and w. the element with minimal norm of
the subdifferential of R and A: W’P(Z) W’P(Z) such that
(Ax, y> fz(llOx(z)ll"-Z(Ox(z),(z))), dz. But . - in W’P(Z),
so x. --. x in LP(Z) and x.(z) x(z) a.e. on Z by virtue of the compact
embedding W’P(Z) LP(Z). Thus, r. is bounded in Lq(z) (see Chang

w
[1, p. 104, Proposition 2]), i.e r. r in Lq(Z). In addition we have that
Lf(z,x,(z))y(z) dz fzf(Z,X(z))y(z) dz. Choose y= x, x. Then in
the limit we have that lim sup(Ax., x. x) 0. By virtue ofthe inequality
(4) we have that Dx. Dx in LP(Z). So we have x. x in WI’p(z). The
claim is proved.
Now let W’P(Z)= X1 @ X2 with X R and X2 {y W’p(Z):

fzy(z) dz 0}. For every X we have

R() () + () j(z, ) da r(z, ) dz

(see hypothesis H()2)
c f

R() il.< IIll Irl + Irl Jz F(z, ) dz.

By virtue of Hypothesis H(f)(ii) we conclude that R()- as

I1 , On the other hand for y Xz, we have

N() 1111 f(,())d (sincej 0)- I111- cllll, -cllll for some c, c3 > 0
P
(since 0 < p, see H(f)(i)).

From the Poincare-Wirtinger inequality we know that 111 is an
equivalent norm on x. So we have

R(.) is coercive on X (recall 0 < p), hence bounded below on X.
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So by Theorem we have that there exists x E W’P(Z) such that
0 OR(x). That is 0 E O,(x) + Ob(x). Let b(x) IlOxllP/p and
b2(x) frj(z, r(x)(z))dr. Then let . LP(Z) R the extension of
b in LP(Z). Then 0b (x) c_ 0l (x) (see Chang [1]). Then as before we
prove that the nonlinear operator ] D(A) C_ LP(Z) Lq(z) such that

(Ax, y) fz IIDx(Z)[IP-Z(Dx(z)’DY(z)) dz for all y WI’P(Z)

with D(A) {x e WI’p(z) AX Lq(z)}, satisfies A 0@1.
So, we can say that

z
f(z’x(z))y(z) fz IlDx(z)llP-(Dx(z)’DY(z)) dz + fr v(z)y(z) dr

with v(z)E Oj(z,’(x(z))), for every y W’P(Z). Let y q5 C’(Z).
Then we have

(Z, x(z) )dp(z) dz =/z IlOx(z)11 (Ox(z), O(z) dz.

But div(llDx(z)[lP-ZDx(z)) w-l’q(z) then we have that
div([lOx(z)llP-Ox(z)) Lq(z) becausef(z, x(z)) Lq(z). Then we have
that -div([lOx(z)llP-ZOx(z))--f(z, x(z)) a.e. on Z. Going back to (17)
and letting y= C(Z) and finally using the Green formula 1.6 of
Kenmochi [8], we have that -Ox/Onp Oj(z, 7(x)(z)). So x W’P(Z)
solves (9).
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