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In this paper, we deal with two point boundary value problem (BVP) for the functional-
differential equation of second order

x"(t) + kx’(t) +f(t,x(hl(t)),x(h2(t))) O,
ax(-l) bx’(-l) :0,

cx(l) + dx’(1) =0,

where the function f takes values in a cone K of a Banach space E. For hi(t)---t and
h2(t)=-t we obtain the BVP with reflection of the argument. Applying fixed point
theorem on strict set-contraction from G. Li, Proc. Amer. Math. Soc. 97 (1986), 277-280,
we prove the existence of positive solution in the space C([-I, 1], E). Some inequalities
involvingfand the respective Green’s function are used. We also give the application of
our existence results to the infinite system of functional-differential equations in the
case E
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1 INTRODUCTION

Let Kbe a cone in a real Banach space E. We will assume that the norm
I[" I[ in E is monotonic with respect to K, that is, if 0-< x-< y then
I[x[[g_< ][y[[, where -< denotes the partial ordering defined by K and
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0 stands for the zero element of E. Further, denote by C(I, E) the space
of all continuous functions defined on the interval [-1, 1] and taking
values in E, equipped with the norm

Ilxll mt x IIx(t)ll .

Obviously, C(L E) is a Banach space. Let

Q {x C(I,E): 0 -< x(t) for I}.

It is easy to prove that Q is a cone in C(L E).
In this paper we will study the following boundary value problem

(BVP for short) for functional-differential equation of second order

x"(t) + kx’(t) +f(t,x(hl(t)),x(h2(t))) O,

ax(-1)-bx’(-1) =0,

cx(1) + dx’(1) =0,

where E L k E JR, a, b, c, d> 0 and ad+ bc + ac > 0. Throughout the
paper we will assume that

(1 o) f: I x K x K K is a continuous function,
(2) hi, ha" 14 1 are continuous functions mapping the interval I onto

itself.

Notice that for hi(t)= and ha(t)=-t we obtain the BVP involving
reflection of the argument

x"(t) + kx’(t) +f(t,x(t),x(-t)) O,

ax(-1)- bx’(-1) =0,

cx(1) + dx’(1) =0.

Such problems (that is BVPs with reflection of the argument) have
been considered for example in the papers [8,15] for k=0 and
f: I x ]R x llt IR and in [9,10] forftaking values in a real Hilbert space.
For more details concerning the differential equations with reflection of
the argument we refer the reader to the papers mentioned above and the
references therein.
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Our purpose is to discuss the existence of positive solutions of (1).
We will use the following fixed point theorem from [12] which is a
modification of well-known Krasnoselskii theorem on operators com-
pressing and expanding a cone (see [7,11]).

PROPOSITION 12] Let P be a cone ofa real Banach space X, and let the
norm II II in X be monotonic with respect to P. Let Br {x E X: I[xll < r},
BR {x X: Ilxll < g}, 0 < r < g. Suppose that F P fR -+ P is a strict
set-contraction which satisfies one ofthefollowing conditions:

(i) x P OBr IIFxll _< Ilxll andx P OBR =: Ilrxll _> Ilxll or
(ii) x e P OB= IIFxll _< Ilxll and x e Pf30B IIFx[I _> Ilxll.

Then Fhas afixedpoint in P N (BR\Br).

Recall that F:D -+ X, D c X, is said to be a strict set-contraction if
F is continuous and bounded and there exists 0 < L < such that
a(F(S)) <_ La(S) for all bounded subsets S of D, where a denotes the
Kuratowski measure of noncompactness (see for instance [2]).

2 PRELIMINARY RESULTS

First we will study some properties of the functions

e-kt[ek(s-l)] q- ][ek(t+l)l2 a] -1 < < s <
G(t, s) - e-kt[ek(s+l)[2 a][ek(t-1)ll + c] -1 < s < < 1,

(2)

where

kO, # bk + a and p [ae-:# + cek/2],

and

G*(t,s) { -(c + d- cs)(a + b + at),
(a + b + as)(c + d- ct),

-1 <t<s< 1,

-1 <s<t< 1,
(3)

where p* 2ac + bc + ad. It is easy to show that the function (2) fulfils
the following inequalities:

A a(t, s) > 0 (4)
t,s.l
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and

A G(t,s) < G(s,s). (5)
t,sEI

Moreover, for any -1 < 7 < 6 < and [7, 6] we have

G(t, s) > mG(s, s), (6)

where s E I and

minJ"ek#2 ae-k’ e-klzl + ce-k* Im
e*#2-ae-’ e-#l+ce J" (7)

It is easily seen that rn < 1.
The function G* also satisfies the inequalities (4), (5) and (6) with rn

replaced by

m*=min{a + b + a7 c + d- c6I
2a + b "i --(- "d j" (8)

Clearly, m* < 1.
Next, consider the integral-functional operator

(Fx)(t) G(t,s)f(s,x(hl(s)),x(h2(s)))ds, (9)

where E L x Q, the function G is defined by (2) and f, h and h2
satisfy and 2. Let

M max G(t, s),
t,sEl

L {x E: IIXlIE r},

and

r-- {x c(I, E). Ilxll < r}.

The following lemma is a slight modification of that given in [6].
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LEMMA Assume thatfor any r > 0:

(3) thefunctionfis uniformly continuous on I x (KN r) (K fq ’r),
(4) there exists a non-negative constant Lr, such that 4MLr < and

a(f(t, 2, f)) < Lrc(2)

for all E I and f c K fq Tr.
Then,for any r > 0 the operator (9) is a strict set-contraction on Q fq B.

Proof From 3 it follows thatfis bounded on I x (K f ’) (K f3 ’).
By the uniform continuity off(see [3])

a(f(I x f x f)) max a(f(t, f,f)),
tel

hence, in view of 4

a(f(I x f x f)) <_ Lra(Vt) (lO)

for every f c K Tr. The uniform continuity and boundedness off
on I x (K ’) x (Kf3 ) implies also continuity and boundedness
of operator F on Q fq B. Let S c Q fq B. Since the functions Fx are
equicontinuous and uniformly bounded for x E S, we obtain (see [4])

a(F(S)) supa(F(S)(t)),
tel

where F(S)(t) denotes the cross-section ofF(S) at the point t, that is

F(S)(t) {(Fx)(t)" x S, is fixed}.

Furthermore, for every I we get (see [14])

! (Fx)(t)2

!f1 G(t,s)f(s,x(h(s)) x(h2(s)))ds
Conv{G(t,s)f(s,x(hl(s)),x(h2(s))): s I, x S}

c conv{{Mf(s,x(hl(s)),x(h2(s)))" s I, x S} t.J {0}}.
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Thus, in view of the properties of the Kuratowski measure of non-
compactness we obtain for I

a(1/2f(S)(t))
<_ Ma({f(s,x(h(s)),x(h2(s)))" s I, x S})
<_ Ma(f(I x S(I) x S(I))),

where S(I) {x(s)’ s /, x S}. Hence, by (10) we have

a(F(S)(t)) <_ 2Ma(f(I x S(I) S(I))) <_ 2MLra(S(I)).

Finally, proceeding as in the proof of Lemma 2 [6], we can show that

a(S(I)) < 2a(S).

Hence for any S c Q f3 B
a(r(s)) supa(F(S)(t)) <_ 4MLra(S),

tI

which means that F is a strict set-contraction on Q o Br.

Remark Obviously, the above lemma remains valid for the operator (9)
with the function G* given by (3) and the constant

M* max G*(t,s).
t,sl

3 EXISTENCE THEOREMS FOR PROBLEM (1)

Now we state and prove our results on positive solutions of (1). First,
consider the case k 0.

THEOREM Let G be given by (2) and let -l <_’y < 6 < be such
that hi" [’y, ] [’y, ], 1,2. Suppose that the assumptions 1-4 are

satisfied and

(5) there exists A E K, A O, such that

f t, x, y) -< [f G(s, s) ds]
-l

for all I and x, y Ksuch that Ilxll, IlYiI [0, IIXll],
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(6) there exist E K, rl : O, I111 IIAII and to I such that

G(to, s) n

for all I and x, y Ksuch that llxlle, [lYlle [mll01le, llnll], where
m is given by (7).

Then theproblem (1) has at least one positive solution.

Proof Notice that each positive solution ofthe problem (1) (with k 0)
is a fixed point of the integral-functional operator (9), that is

(Fx)(t) a(t,s)f(s,x(h(s)),x(h(s)))ds

where L x C(L E) and the function G is given by (2). On the other
hand, if x belonging to Q is a fixed point of F, then x is a solution of (1)
(see [6]). Thus, to prove our theorem it is enough to show that F has a
fixed point in Q. In the space C(L E) consider the set

P= {xC(I,E): Ox(’)on land A
te[7,] seI

Clearly, P is a cone in C(L E) and the norm I1" II in C(L E) is monotonic
with respect to P. Consider the operator (9) for I and x P. We will
show that F satisfies the assumptions of Proposition 1. First, we will
prove that F(P) C P. To this end observe that by and (4)

o (ex)(t) ( l)

for every x P and L Moreover, it follows from (6) that for any
[7, 6] and s I

m(fx)(s) m a(s,s)f(s,x((s)),x(h(s)))ds

a(t,s)f(s,x(h(s)),x(h(s)))ds

Combining it with (11) we conclude that F(P)C P. Without. loss of
generality we may assume that IIlle< IIlle. Fix r= lllle and R
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By Lemma 1, F is a strict set-contraction on P q Bn. Moreover, for
x E PfqOBr we have 0 -X(hl(t)) on land Ilxll II,lle, hence

A Ilx(ht(t))ll IIll.
tel

Analogously

A IIx(hz(t))ll IIll.
tel

Thus, by 5, for any E Iwe obtain

(Fx)(t) -4 G(s,s)f(s,x(hl(s)),x(hz(s)))ds

-1

Ads= ).

Hence, in view of monotonicity of [1. lie we get

[l(Fx)(t)ll IIAII,
tel

and in consequence IIFxllllxll on P fqOBr. Furthermore, for
x P f30BI we have

A A 0 -’< rex(hi (s)) < x(h, (t)).
tel’),,6 sEl

Since the norm II" lie is monotonic we obtain

A A Ilmx(h @)lie -< IIx(h(t))lle,
tE[7,6 sEI

which gives

A m max IIx(h @)lie < IIx(h (t))lle.
t[-,]
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But hi maps I onto itself, hence for Ilxll Ilwlle

/ mllll IIx(h(t))ll I111.
t[,]

In the same manner we get

/ mllll IIx(h2(t))ll I111.
t[,]

Thus in view of 6

fj, G(t0, s) G(t0, r) dr r/ds- G(t.,s)f(s,x(h(s)),x(h(s)))ds- a(to, s)f(s,x(h(s)),x(h(s)))ds

(Fx)(to),

so

II(Fx)(to)ll II[le,

which implies IlFxl[ [[xll on P fqCgBR. By Proposition the operator
F has a fixed point in the set P f(BR\Br). This means that the
problem (1) has at least one positive solution x E P such that

This ends the proof of Theorem 1.

Next, consider the problem (1) with k 0. Using the properties of
the function G* given by (3) we can prove the following theorem in the
same way as Theorem 1.

THEOREM 2 Let G* be given by (3) and let -1 < "7 < < be such that
hi’[’)/, 6] [’7, iS], 1,2. Suppose that -4 are satisfied and
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(7) there exists A E K, A O, such that

f(t,x,y) G*(s,s)ds

for I and x, y Ksuch that
(8) there exist, K, O, , [, and to I such that

[6 G* to, s) ds]
-1

rl f(t,x,y)

for I and x, y K such that llxil, llyll [m* ilwll, llwll], where
m* is given by (8).

Then the problem (1) has at least one positive solution.

Remark For similar theorems on positive solutions of BVPs in the
casef: I x [0, o) --. [0, o) we refer the reader to [5,13].

Finally, we will give an example of application of Theorem 2 to the
infinite system of functional-differential equations.

Example Let Ebe the space of all bounded sequences x {xn} with
the supremum norm

Ilxlle suplx, I. (12)
nEN

Then

is a cone in E and the norm (12) is monotonic with respect to K.
Consider the following BVP of an infinite system of functional-
differential equations:

Xnr(t) q- A(t)xn(hl (t)) q- B(t)xn(h2(t)) q- C(t)

+ wnV/xn(h|(t)) + xn(hz(t)) O,

Xn(-1) Xn(-1 O, xn(1) +Xn(1 O, (13)
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where n 1,2, 3,..., E/, x {xn} E Q c C(I, E), the functions A, B, C"
[- 1, 1] [0, c) are continuous, w {w,} K and lim,,_wn 0. In
our case

M* =max"""o*it,sl..=
t,sEl

and

Assume that

G*(s,s) ds
ll

mtx(A(t + B(t)) < and mintE1 C(t) > O.

Moreover, suppose that the functions h satisfy 2 and
hi(I-1/2, 1/2]) c [-1/2, 1/2], i= 1,2. Then for 7=-1/2, 6=1/2 we have m* -2-!
and for to 1,

-1

Consider the function

f(t,x,y) A(t)x + B(t)y + C(t) +wv/X + y,

where /, f= {f}, x, y K, x {x,}, y {y}. Obviously, f is uni-
formly continuous on I x (Kfq Tr) x (Kf3 Tr) for any r > 0. We will
show thatfsatisfies 4. Notice thatfadmits a splitting

f=f+f,

where

and

f(t, x, y) A(t)x + B(t)y + C(t)

f(t, x, y) Wv/X + y.

Evidently, the functionfis lipschitzian, hence

a(f(t, f, f)) < mtx(A(t + B(t))a(f) (14)
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for all E I and c K f)Tr. To find c(f(t, Q, Q)) we will apply the
following compactness criterion in the space (see [1 ])’

If D c is bounded and lim supn [sup, olx,,I] 0, then D is
relatively compact in l.
Denote

X(t) =f(t,f,) {ff(t,x,y)" x,y Q, is fixed}.

For n N and x, y 9t c KN Tr we have

IL(t,x,y)l Iw.x/x. + yn <_

Since lim w,, O, we obtain

lim sup ] sup
n--,c [ f(t,x,y)EX (t)

and in consequence X(t) is relatively compact. Therefore

a(f(t,Q, ft)) =0. (15)

By (14) and (15) and the property of the Kuratowski measure of non-
compactness we have

c(f(t, 9t, f)) < c(](t, f, 9t) +f(t, 2, f))

_< m,x((t) + (t))()

which means that 4 is fulfilled. Finally, we can show by simple
calculation that 7 and 8 are also satisfied with A {A,}, r/= {r/,} 6 K,
such that

An i /a), + :2w2 +fmaxtet C(t)

and

minC(t) n= 2,...
tel
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By Theorem 2, the problem (13) has a positive solution x E P such that
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