
J. oflnequal. & Appl., 2001, Vol. 6, pp. 325-338
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 2001 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishers imprint.

ExistenceTheory for Nonlinear Volterra
Integral and Differential Equations

ANETA SIKORSKA*

Faculty of Mathematics and Computer Science, A. Mickiewicz University,
Mate/ki48/49, 60-769 Pozna, Poland

(Received 28 July 1999; Revised 6 January 2000)

In this paper we prove the existence theorems for the integrodifferential equation

(y’(t)=f t,y(t), k(t,s,y(s))ds,

y(O) Yo,

tt= [0,r],

where in first partf, k, y are functions with values in a Banach space E and the integral
is taken in the sense of Bochner. In second part f, k are weakly-weakly sequentially
continuous functions and the integral is the Pettis integral. Additionaly, the functions
fand k satisfy some boundary conditions and conditions expressed in terms of measure
of noncompactness or measure ofweak noncompactness.
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1 INTRODUCTION

In this paper we establish some existence principles for integrodiffer-
ential operator equations and present existence result for integro-
differential and integral equations.
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The paper is divided into two main sections.
In Section we prove some existence theorems for the problem

y’(t) f(t, y(t), fO0
y(O) Y0,

k( t, s, y(s) ds) (1)

where I= [0,T], E is a Banach space with the norm II" II, f, k, y are
functions with values in a Banach space Eand the integral is the Bochner
integral.

In Section 2 we prove some existence theorem for the problem (1),
where f, k, y are functions with values in a Banach space E, f, k are
functions weakly-weakly sequentially continuous and the integral is the
Pettis integral [1]. The results of this paper extends existence theorems
from Krzyka [12], Cichofi [6], Meehan and O’Regan [13], O’Regan
[16,17], Cramer et at. [7].

In this paper we use the measure of noncompactness developed by
Kuratowski [11], and the measure ofweak noncompactnes developed by
de Blasi [4].

Let A be a bounded nonvoid subset of E. The Kuratowski measure of
noncompactness a(A) is defined by

a(A) inf{e > 0: there exists C E such that A C C + B0},

where/E is the set ofcompact subsets of E and B0 is the norm unit ball.
The de Blasi measure ofweak noncompactness fl(A) is defined by

/3(A) inf{t > 0: there exists C E/Ew such that A c C + tBo},

where/Cw is the set of weakly compact subsets of E and B0 is the norm
unit ball.
The properties of measure of noncompactness a(A) are:

(1 o) if A C B then a(A) < a(B);
(2) a(A) a(2), where denotes the closure of A;
(3) a(A) 0 if and only if A is relatively compact;
(4) a(A tA B) max{a(A), a(B)};
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(5) I la(A)
(6) c(A + B) _< c(A) + c(B);
(7) c(conv A) c(A).

The properties ofweak measure of noncompactness/3 are analogous
to the properties ofmeasure ofnoncompactness, see [2-5,14]. Moreover,
we can construct many other measures with the above properties, by
using a scheme from [5]. Wenowgather somewell-known definitions and
results from the literature, which we will use throughout this paper.

DEFINITION A function f: I x E x E-- E is L1-Carathdodory, if the
following conditions hold:

(i) the map --f(t, x, y) is measurablefor all (x, y) E2;
(ii) the map (x, y) --f(t, x, y) is continuousfor almost all L

DEFINITION 2 A function k: I x I x B E is L1-Carathodory, if the
following conditions hold:

(i) the map (t, s) f(t, s, y) is measurablefor all y B;
(ii) the map y f(t, s, y) is continuousfor almost all (t, s) 12.

In the proof of the main theorem in Section we will apply the
following fixed point theorem.

THEOREM [1 5] Let D be a closed convex subset of E, and let F be a
continuous mapfrom 79 into itself Iffor some x E 79 the implication

I7"= conv({x} LI F(V)) == V is relatively compact,

holdsfor every countable subset V of 79, then F has afixedpoint.
In Section 2 we will apply the following theorem"

THEOREM 2 [1 0] Let E be a metrizable locally convex topological vector
space and let 7) be a closed convex subset of E, and let F be a weakly
sequentially continuous map of 79 into itself. If for some x 79 the
implication

’= conv({x} t_J F(V)) == V is relatively weakly compact,

holdsfor every subset V of79, then Fhas afixedpoint.
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AN EXISTENCE RESULT FOR INTEGRODIFFERENTIAL
EQUATIONS

Observe that the problem (1) is equivalent to the integral equation

/0 )y(t) Yo + f z, y(z), k(z, s, y(s)) ds dz, for

Assume that

(1) a function a L[0,T],
(2) B {x: IIxll < b, b Ily011 / f a(t)dt},
(3) k is a L-Carath6odory function from 12 B into E,
(4) fis a L-Carath6odory function from I B x B into E,
(5) [[f(t,y(t),fk(t,s,y(s))ds)] <_ a(t) almost everywhere on I for

y /), where/ {y C[0, T]" [[y[[ _< b, b I[Y01[+ for a(t)dt}.

THEOREM 3 Assume, that conditions (1)-(5) holds and & addition, that

(6) there exists a constant c such that t(f(t, ,4, C)) <_
c max{a(A), a(C)},for any subsets A, C orB,

(7) there exists an integrablefunction c2 12 --* R+ such thatfor every I,
e > 0 andfor every bounded subset X orb there exists a closed subset
I ofI such that mes(I\I) < e and

a(k(t, T x X)) _< sup c2(t,s)a(X) for any compact subset T of ls.
sET

(8) the zerofunction is the unique continuous solution ofthe inequality:

p(t) <_ C T SUpzEi fo
T

c2(z,s)p(s) ds on I.

Then there exists at least one solution ofproblem (1).

Proof We define the operator N" C[0, T] C[0, T] by

fot(foz )Ny(t) =Y0 + f z,y(z), k(z,s,y(s))ds dz.
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We require that N’//is continuous. Because

(i)

[INy(t)ll [yo / footf(z,Y(Z), fooZk(z,s, y(s)) ds) dz]
<_ ,,yol, + [I footf(z, y(z), fooZk(z,s, y(s)) ds) dzl[

footl[( fo
g

)<_ Ilyoll/ f z,y(z), k(z,s,y(s))ds dz

-< Ilyoll / a(t) dt- b

so Ny(t) E B, for E L
Now we will show continuity of N.

(ii) Let y,, y in C[0, T]. Then

Io( /o
ztf z, s,Ilgy gYll sup y(z), k(z, y(s)) ds dz

t[0,T]l

footf(z,Y(Z), fooZk(z,s, y(s)) ds) dztl
< sup z,y,(z), k(z,s,y,(s))ds

te[0,T]

f(z, y(z), fooZk(z,s,y(s)) ds)] dz

_< sup f z, yn(Z), k(z, s, yn(S)) ds
te[0,T]

( /o
z

f z, y(z), k(z,s, y(s)) ds dz

o11 ( /o
z

< sup f Z, yn(Z), k(z,s, yn(s))ds
te[0,T]

f(z,Y(z), foZk(z,s, yn(s)) ds) ll dz
+ sup f z,y(z), k(z,s, yn(s))ds

t[o,r]

f(z,Y(Z), foZk(z,s, y(s)) ds) ll dz.
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Becausefand k are L-Carath6odory functions and Ily.- yll 0 so

IINY Nyll --, 0,

From (i) and (ii) follows that N’/) /) is continuous.
Now we will show that the set N(B) is equicontinuous subset. This

follows from inequality:

/0
z )[INy(t) gy()ll sup f z, y(z), k(z,s, y(s)) ds dz

t[0,r]

< sup ftt[0,r] ( /0
z )f z, y(z), k(z, s, y(s)) ds dz

< a(z) dz for every y E B.

Observe that the fixed point of the operator N is the solution of the
problems (1) and (1’). Now we prove that fixed point of the operator N
exists using fixed point Theorem 1.

Let V c B be a countable set and V conv(N(V) U {x}). Because V
is an equicontinuous then t v(t) c(V(t)) is continuous on I. Let E I
and e > 0. Using the Lusin’s theorem, there exists a compact subset I
of I such that mes(I\I)< e and a function s c2(t,s) is continuous
on I. We divide on interval I [0, T]: 0 to < t <... < tn T, like this

IIc2(t,s)v(r)-c(t,u)v(z)ll < e for s,r,u,z Ti 79in1,

where Di [ti-l, ti], i= 1,2,..., n. Let Vi {u(s)" u V, s Di}.
We notice

where el -- 0 if e 0
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and

fl k(z, s, V(s))ds C JTi k(z,s, V(s))ds
i=l

n

C ’mes Ti conv k(z, Ti Vi).
i=1

Using the properties ofmeasure of noncompactness c we have

< mes Tisupc2(z,s)a(Vi)
i=1 sETi

mes Tic2(z, qi)v(si),
i=1

where qi E Ti, si 19i.
Moreover, because Ilc2(t, s)v(s) c2(t, q3v(s31[ < e for s Ti we have

mes Tic_(t, qi)v(si)
i=1

_< mes Til[c2(t, qi)v(si) c2(t, si)v(si)[I at- mesTic2(t, si)v(si)
i=l i=l__
E2 -I- Z mes Tic2(t, si)v(si),

i=1

where e2 --+ 0 if e --, O. So

a(fl k(Z,s,y(s))ds) <- flC2(Z,S)V(S) dS W e2

then, because e2 0 if e -, 0 so

a(ft k(z,s,y(s)) ds) <- fl C2(Z,S)v(s) ds.
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Because " c0nV(N(V) t_J {x}), then by the property of measure of
noncompactness we have

a(V(t)) a(cOnV(N(V(t)) tA {x})) < a(N(V(t)))

(/o /o
z

<_ a f(z, V(z)), k(z,s, V(s))ds dz

<_ a f(z, V(z)), k(z,s, V(s))ds dz

/o (/oz

< c" max(a(V(z))), a k(z,s, V(s)) ds dz

(/oz )_< c. T. supa k(z,s, V(s))ds
zl

_< Cl" T. sup/ c2(z,s) v(s) ds.
zl

So
T

v(t) < cl T sup C2(Z,S)V(S) ds.
zEl

By (8) we have that v(t)= a(V(t)) 0. Using Arzel-Ascoli’s theorem
we obtain that Vis relatively compact. By Theorem the operator Nhas
a fixed point. This means that there exists a solution ofproblem (1).

Remark Theorem extends the existence theorem from Meehan and
O’Regan 13] and O’Regan [17].

AN EXISTENCE RESULT FOR INTEGRODIFFERENTIAL
EQUATIONS IN WEAK SENSE

In this part we prove a theorem for the existence of pseudo-solutions to
the Cauchy problem

( f0 )y’(t)=f t,y(t), k(t,s,y(s))ds
(2)

y(0) =Y0
in Banach spaces. Functionsf and k will be assumed Pettis integrable
but this assumption is not sufficient for the existence of solutions. We
impose a weak compactness type condition expressed in terms of
measures of weak noncompactness. Throughout this part (E, I1" II) will
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denote a real Banach space, E* the dual space. Unless otherwise stated,
we assume that "f" denotes the Pettis integral.
A function g:EE is said to be weakly-weakly sequentially

continuous if for each weakly convergent sequence (x,,) c E, a sequence
(g(xn)) is weakly convergent in E.

Fix x* E E*, and consider the equation

(9)

( /0 )(x*x)’(t) x*f t,x(t), k(t,s,x(s))ds L

Now, we can introduce the following definition:

DEFINITION 3 [6,8] A function x:I E is said to be a pseudo-solution
ofthe Cauchyproblem (2)/fit satisfies thefollowing conditions:

(i) x(. ) is absolutely continuous,
(ii) x(0) Xo,

(iii) for each x* E* there exists anegligible set A(x*) (i.e. mes A(x*) 0),
such thatfor each A(x*):

(x*x)’(t) x* (f(t,x(t), fotk(t,s, y(s)) ds) ).
In other words by a pseudo-solution of (2) we will understand an
absolutely continuousfunction such that x(O)= Xo, and x(. ) satisfies
(2) a.e.,for each x* E*.

In this part we use a weak measure ofnoncompactness ofde Blasi’s ft.
It is necessary to remark that the following lemma is true:

LEMMA [9,14] Let 7-l C Cw(I, E) be a family ofstrongly equicontin-
uous functions. Then the function v(t) fl(7-[(t)) is continuous and
fl(7-[(I)) sup{/3(7-/(t)): C I}.
Assume that in addition to (1), (2), (5) and (6),

(10) k is a Carath6odory’s weakly-weakly sequentially continuous
function 12 B into E;

(11) fis Carath6odory’s weakly-weakly sequentially continuous func-
tion from I x B x B into E;

(12) any continuous function y:I--, E, functions k(.,., y(. )) and
()-,Y(’), fo" k(.,s, y(s)) ds) are Pettis integrable.
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THEOREM 4 Assume, in addition to (1), (2), (5) and(lO-12) that

(13) there exists a constant Ca such that for every interval Jc I andfor
any subsets A, C ofB

/(f(J,A, C) <_ c3max{(A),(C)},

(14) there exists an integrablefunction c4: I R+ such thatfor every E L
e > 0 andfor every boundedsubsetXofB there exists a closedsubset It
ofI such that mes (I\I) < e and

/(k(J, J x X)) <_ sup c4(s)(X), for any J c L
sEJ

Then there exists at least one pseudo-solution ofthe problem (2).

Proof We define the operator G: C[0, T] C[0, T] by

Gy(t) Yo + f(z, y(z), k(z, s, y(s) ds) dz.

We require that G /} -/) is weakly sequentially continuous, where

/} y E C[0, r]. Ilyll <- b, b Ilyoll + a(t) dt

Because

(i) For any y* E* such that IIY* l] -< and for any y B,

Y* [.f(z,Y(Z), fooZk(z,s, y(s)) ds)]
-< Ily*ll IIf(z, y(z), fooZk(z,s, y(s)) ds) II
I1( /o

z )< f z,y(z), k(z, s,y(s)) ds < a(z)

so

ly*Gy(t)l N lY*Y0I + Y* z, y(z), k(z,s, y(s)) ds

_< Ilyoll / a(t) at < Ilyoll / a(t) at b.

d2
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From here

sup{ly*Gy(t)l: y* E*, Ily*ll-< 1} < b and IlGy(t)ll <_ b

so Gy(t) B.
(ii) Now we will show that set G(/)) is strongly equicontinuous subset.

This follows from the inequality

ly*[Gy(t) Gy(-)]]

]y* [ftf(z,y(z), foZk(z,s,y(s)) ds) dz]
ftl( fooZ<_ y*f z, y(z), k(z, s,y(s)) ds dz < a(z) dz.

(iii) Now we will show weakly sequentially continuity of G.
Let y, y in (C[O,T], w).
Then

ly*[Gy.(t) Gy(t)]l y* f Z, yn(Z), k(z,s, yn(s))ds dz

footf(z,Y(z), foZk(z,s, y(s)) ds) dz]
fotl ( /oo

z

<_ y* z, yn(z), k(z,s, yn(s) ds)

f(z,y(z), fooZk(z,s, yn(s))ds)] dz

+ fotlY* [.f(z,Y(z), fok(z,s, yn(s)) ds)
( /0

z )]f z, y(z), k(z,s, y(s) ds dz

<- foor]Y* (z,Y,’,(z), fooZk(z,s, yn(s)) ds)
f(z, y(z), f.oZk(z,s, yn(s)) ds) ] dz

+ for[Y* [.f(z,Y(Z), fooZk(z,s,Y,,(s)) ds)
f(z, y(z), foZ k(z, s, y(s) ds) ] dz.
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Because f and k are L-Carath6odory functions and Yn Y in
(C[O, T], ) so

ly*[ay (t) a (t)]l --, 0.

From here

sup{y*[Gyn(t)- Gy(t)]" y* E*, IIY*]] -< 1} 0.

From (i) and (iii), follows that G" /) is weakly-weakly sequen-
tially continuous.

Observe that the fixed point of the operator G is the pseudo-solution
of the problem

/0’(y(t) Yo + f z, y(z), k(z, s, y(s) ds dz. (2’)

Now we prove that fixed point of the operator G exists using fixed point
Theorem 2.

Let V C B be a countable set and V eom/(G(V) t_J {0}). Because
V is equicontinuous then t--. v(t)=/3(V(t)) is continuous on I (by
Lemma 1).

Let E I and e > 0. Using the Luzin’s theorem, there exists a compact
subset I of I such that mes(I\I)< e and a function s-. c4(s) is
continuous. We divide an interval I= [0, T]’ 0 to < tl <’’" < tn-- T,
like this [[c4(s)v(r)--c4(u)v(z)l <e for s,r,u,z T= )iCl-Ie, where
Di [ti-l, ti].
We notice
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Using the properties ofweak measure of noncompactness/3 we have

/3(flf(z, V(z), fok(t,s, V(s))ds) dz)
_</3 mes Ti Convf Ti, V( Ti), Zmes Tic0nv k( ti, Ti, Vi)

i=l i=l

< ’ mes Ti T, V(T), mes T cony k(T, T, V)
i=

N rues Tic. max(V(T)), mesTconvk(Ti, T, V)
i= i=

mes Tc3 mes T(k(T, T, V))
=1 =1

Tc rues T sup c4(s)(V)
i=1 sT

r ms

Tc [=, mes Tc4(t)(V(t))

+ =, mes T[c4(s)(V(t)) c4(t)(V(t))]]
From here

/3 (ff(z, V(z),o’Zk(z,s,V(s))ds)dz)
_< r 4()(V(s)) ds +

Because e2 -- 0 if e - 0 we have

/3(V(t)) < (G(V(t)))

(lot( fo0
z ))<_/3 f z, y(z), k(z, s, y(s)) ds dz

<_ T3 c4(s)v(s) ds.
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So

v(t) <_ Tc3 c4(s)/(V(s)) ds.

By Gronwall’s inequality we have that v(t)= (V(t))= O.
Using Arzelfi-Ascoli’s theorem we obtain that V is weakly relatively

compact.
By Theorem 2 the operator G has a fixed point. This means that there

exists a pseudo-solution ofproblem (2).

Remark Theorem 4 extends the existence theorems from Krzygka [1 2],
Cichofi [6], O’Regan [1 6] and others.
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