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1 INTRODUCTION

Recently, existence of solutions for boundary value problems ofsecond
order ordinary differential equations involving a phi-Laplacian operator
have been studied extensively (cf. e.g. [1-4]). On the other hand,
maximum or minimum principles and uniqueness have received less
attention. In this paper we generalize some results of [4,8] and derive
several others in a more general setting.
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First we derive maximum principles for a differential operator com-
bined by a generalized phi-Laplacian operator and a part containing
lower order terms, both of which may involve discontinuities. These
maximum principles are then applied to prove uniqueness and com-
parison results for second order boundary value problems with sepa-
rated, periodic, Neumann or Dirichlet boundary conditions. Some
special cases includingp-Laplacian problems are also considered. Exam-
ples and counter-examples are given to illustrate the obtained results.

2 MAXIMUM PRINCIPLES

Given intervals I0 and J=[to, h] and functions o:Jx I0IR and
q.Jx 2_, we derive maximum principles for the differential
operator A, defined by

d
Au(t) "= --o(t,u’(t)) q(t,u(t),u’(t)), J,

(2.1)
u Y := {u C(J)lu’[J] C_ Io and o(., u’(.)) AC(J)}.

We assume that the functions o and q satisfy either the hypotheses

(ol) to each choice of Sl,S2Io, So<S, there corresponds such an
M> 0 that o(t, y) o(t, z) _> M(y z) whenever J and So <_
z < y<s;

(ql) q(t,x,z)<q(t,y,z)fora.a, tJandforallx,y,z]R,x> y;
(q2) Iq(t, x, y) q(t, x, z)l < p(Ock(ly zl) for a.a. 6 J and for all

x, y, z 6 , 0 < lY zl _< r, where r > O, p L+ (J), the function

b" (0, r] (0, )is increasing and f+(dz/ck(z)) o;

or the hypotheses (ql) and

(qoO) qo(t, z) < o(t, y) whenever J, y, z Io and z < y.
(qO) Iq(t, x, y) q(t, x, z)l < p(t)ck(lo(t, y) (t, z)]) for a.a. 6 J and

for all x E 1R, y, z E Io, 0 < Io(t, y) qo(t, z)l < r, where r > O,
p 5 L+(J), q’(O, r] (0, o) is increasing and satisfies

fo+ (dz/6(z)) oo.

Remark 2.1 A special feature of the above hypotheses is thatthe only
continuity assumption for the functions and q is imposed on q(t, x,. ) in
condition (q2).
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LEMMA 2.1 Assume that functions q" J ]2 ._.4 and go" J x Io
satisfy conditions (go 1), (q1) and (q2), or conditions (goO) (qO) and (q1). If
u, w E Y satisfy Au(t) < Aw(t) a.e. in J, and if u w attains a positive
maximum c in the open interval (to, tl), then u(t) w(t) c on J.

Proof Assume first that conditions (go 1), (ql) and (q2) hold, and that
u- w attains a positive maximum c at t2 E (to, tl). Let r > 0, p L+ (J)
and b (0, r] (0, ) be as in condition (q2). The proof is divided into
two steps.

(i) Let t3 be the greatest number on (t, t] such that u(t) > w(t) for each
c [t2, t3]. To prove that w’(t) < u’(t) for each it2, t3], assume on the

contrary: there is a subinterval [a, b] of[t2, t3] such that

0 < w’(t) u’(t), (a,b], w’(a) u’(a) O.

By condition (qo 1) there exists a K> 0 such that

w’(t) u’(t) <_ K(go(t, w’(t)) go(t,u’(t))) (2.2)

for all E [a, b]. Denote x(t) K(go(t, w’(t)) go(t, u’(t))), G J. Since
u, w Y, then x AC(J). Moreover, x(a)=0, whence we may choose
b above so that m max{x(t) [a, b]} < r. Using the assumption
Au(t) < Aw(t) a.e. in J, we then have by (2.1), (2.2), (ql) and (q2),

x’(t) K d-- K
d

dt
g(t’ w’(t)) dt

go(t’ u’(t))

<_ K(q(t, u(t), u’(t)) q(t, w(t), w’(t)))
< Klq(t, w(t), u’(t)) q(t, w(t), w’(t))[
< Kp(t)4(lu’(t) w’(t)l) Kp(t)c(w’(t) u’(t))
< Kp(t)c/(K(go(t, w’(t)) go(t, u’(t)))) Kp(t)qb(x(t))

for a.a. E (a, b]. Thus we have

x’(t) < Kp(t)c(x(t)) a.e. in (a,b],

so that, by change of variables (cf. [6, 38.1 ]),

x(a) O,

f fs
t x’(t) dtx(b) dx

lim
,!0+ (X) s---a+ (x(t))

b

<_ Kp(t) dt < cxz.
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This contradicts with the hypotheses given for b in condition (q2).
Consequently, w’(t) < u’(t) on [t2, t3], whence

u(t) w(t) u(t2) w(t2) + (u’(s) w’(s)) as

_> u(t2)- W(t2), [t2, t3].

Because t2 was the maximum point of u(t)- w(t), then u(t)- w(t)--c
on [t2, t3]. This and the choice of t3 imply that t3 tl. Thus u(t) w(t) c

in [t2, t].
(ii) Choose next t4 to be the least number on [to, t2) such that u(t) >_ w(t)

for each It4, t2]. To prove that u’(t) <_ w’(t) for each It4, t2], assume
on the contrary: there is a subinterval [a, b] of It4, tEl such that

0 < u’(t)- w’(t), t [a,b), u’(b) w’(b).

Choose K> 0 and b above so that

u’(t) w’(t) < K(p(t, u’(t)) qo(t, w’(t))) (2.3)

holds for all E[a,b], and that the function x(t)=K(o(t,u’(t))-
p(t, w’(t))), J, satisfies m max{x(t) [a, b]} < r. Noticing that
Au(t) < Aw(t) a.e. in Jwe obtain, by applying (2.1), (2.3), (ql) and (q2),

dt
go(t, w’(t)) dt

qo(t, u’(t))

< K(q(t,u(t),u’(t)) q(t, w(t), w’(t)))
< KIq(t, w(t), u’(t)) q(t, w(t), w’(t))
< Kp(t)ep(lu’(t) w’(t)l) Kp(t)ep(u’(t)- w’(t))
< Kp(t)d?(K(qo(t,u’(t)) qo(t, w’(t)))) Kp(t)qS(x(t))

for a.a. [a, b). Because x(b) 0, we obtain

-x’(t) < Kp(t)(x(t)) a.e. in [a,b),

which implies a contradiction

f() dx fbba X’(t) dt
(x) (x(t))

<_ Kp(t) dt < oe.

x(b) O,

fb- --X’(t) dt
Ja (x(t))
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Thus u’(t) < w’(t) on It4, t2], whence

u(t2) w(t2) u(t) w(t) + (u’(s) w’(s)) ds

<_ u(t)- w(t), [t4, t:].

Because t2 was the maximum point of u(t)- w(t), then u(t)- w(t)= c

on [t4, t2]. This and the choice of t4 imply that t4 to. Thus u(t) w(t) =_ c
on [to, t2].
The results of (i) and (ii) imply that u(t) w(t) c on J.
In the case when conditions (0), (q0) and (ql) hold we do not

need inequalities (2.2) and (2.3), and the proof is almost the same as
above with K 1.

Given aj, bjE ]R+,j= 0, l, and u C(J), denote

Bou(to) aou(to) bou’(to), Blu(tl) ai U(tl) + b u’(t). (2.4)

As an application of Lemma 2.1 we obtain the following result.

LEMMA 2.2 Let the hypotheses of Lemma 2.1 hold, and assume that

functions u, w Ysatisfy inequalities

Au(t) < Aw(t) a.e. in J, Bju(tj) < Bjw(tj), j= 0, 1, (2.5)

where A, Bo and B are defined by (2.1) and (2.4) with a, b ]+ and

a+ b > O, j O, 1. If c max{u(t) w(t) J} is positive, then
u(t) w(t) c on J and ao a O.

Proof Let u(t)- w(t) attain its positive maximum c at a point t2 C J.
Assume first that to<tE<t. It follows from Lemma 2.1 that
u(t) w(t) c on J, so that

u(to) w(to) + c, and u’(to) w’(to),
u(t) w(h) + c and u’(ti) w’(t).

Thus Byu(ty)= Byw(ty)+ ayc, j=0,1, which imply by (2.5) that ayc <_ O,
j=0,1, i.e. ao=a =0.

Assume next that the positive maximum c of u(t)- w(t) is attained at

to. Then u’(to) < w’(to), so that

Bou(to) aou(to) bou’(to) > ao(w(to) + c) bow’(to)
Bow(to) + aoc.
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In view of this result and (2.5) we have a0 =0 and bou’(to)= bow’(to).
Because ao + b0 > 0, then b0 - 0, whence u’(to) w’(to). Thus we can
choose t2 to in part (i) of the proof of Lemma 2.1, which yields
u(t) w(t) c on j, and hence Bu(t) Bw(t) + ac. This and (2.5)
imply that al 0.

In the case when u(t)- w(t) is assumed to obtain its positive maxi-
mum at tl we have u’(q) > w’(t). This and (2.5) imply that a 0 and
w’(q)=u’(q). Thus the choice t2=q in part (ii) of the proof of
Lemma 2.1 yields u(t) w(t) c on J. Hence Bou(to) Bow(to) + aoc, so
that ao 0 by (2.5).

The proof of Lemma 2.2 contains also the proof of the following
result.

LEMMA 2.3 Let the hypotheses of Lemma 2.1 hold, and let u, w E Y
satisfy inequalities

Au(t) <_ Aw(t) a.e. in J, u’(to) > w’(to), u’(tl) < w’(tl), (2.6)

where ,4 is defined by (2.1). Ifc= max{u(t) w(t) J} ispositive, then
u(t) w(t) c on J.

3 COMPARISON AND UNIQUENESS RESULTS

The maximum principles derived in Section 2 will now be applied to
prove comparison and uniqueness results for second order boundary
value problems. The following consequence of Lemma 2.2 is used in
the proofs.

PROPOSITION 3.1 Assume that functions q J x ]x2 ]I and qo J x
Io 1 satisfy conditions (qol), (q l) and (q2) or conditions (qaO), (qO) and
(ql), and thatfunctions u, w Ysatisfy inequalities (2.5). Then u(t) < w(t)
for each J in thefollowing cases:

(a) aj, bj+,j=O, andaoai +aob +abo> 0.
(b) aj, bj +, j O, 1, bobl > O, and there is a nonnegligible subset ) of

J such that q(t, x, z) < q(t, y, z)for all ) and x, y, z ], x > y.
(c) a,b]R+, j=0,1, bob >0, and there is a linear functional

Q: C(J) JR, satisfying Qv > 0 if v(t) c > O, such that Qu < Qw.
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Proof Assume on the contrary that c max{u(t) w(t) E J} is
positive. In all the cases (a)-(c) the hypotheses of Lemma 2.2 are
satisfied, whence u(t)-w(t)=c>O and a0=a=0. But then
aoa +aob +ab0=0 which contradicts with the hypotheses of (a).
Because u(t) w(t) + c, J, it follows from (2.1) that

Au(t) Aw(t) q(t, w(t), w’(t))
q(t, w(t) + c, w’(t)), a.e. in J.

Since c > 0, then Au(t) > Aw(t) a.e. in J by the hypotheses given in (b),
which contradicts with (2.5). If Q is as in (c), then Q(u- w)= Qc > o,
contradicting with Qu < Qw. Thus the given hypotheses do not allow
that u(t) w(t) + c, c > 0 for all J, which concludes the proof.

Remark 3.1 Linear functionals Q: C(J) I, defined by

Qv f v(s) ds and Qv v() (? J is fixed)

satisfy condition Qv > 0 if v(t) c > 0, assumed in Proposition 3.1 (c).

The results of Proposition 3.1 will now be applied to the differential
equation

d u’ (t)) a.e. in J, (3 1)
dt

q(t’ (t)) q(t, u(t), u’

associated with separated boundary conditions

aou(to) bou’(to) co, alu(tt) + blu’(t) ct. (3.2)

We say that a function u Y is a lower solution of (3.1), (3.2) if

d
dt

p(t, u’(t)) < q(t, u(t), u’(t)) a.e. in J,

aou(to) bou’(to) <_ co, alu(tl) + blu’(tl) <_ cl,

(3.3)

and an upper solution if the reversed inequalities hold. If equalities hold
in (3.3), we say that u is a solution of (3.1), (3.2). As a consequence of
Proposition 3.1(a) we get the following comparison and uniqueness
results.
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THEOREM 3.1 Assume thatfunctions q:J 2 and qo :J I0
have properties (qo 1), (q 1) and (q2), or properties (qoO), (qO) and (q1) and
that constants cj E , aj, b > O, j O, 1, satisfy condition aoal + aob +
abo > O. If u Y is a lower solution and w Y an upper solution of
(3.1), (3.2). Then u(t) < w(t) on J. In particular, the separated problem
(3.1), (3.2) can have at most one solution.

Proof If u and w are lower and upper solutions of (3.1), (3.2), then
the inequalities (2.5) hold for the operators A, B0 and Bt, defined by
(2.1) and (2.4). Thus u(t)< w(t) on J by Proposition 3.1(a). The last
conclusion follows from the first one.

A special case ofproblem (3.1), (3.2) where a0 a 0 and bob > 0 is
not covered by Theorem 3.1. In this case boundary conditions (3.2) are
reduced to the Neumann conditions

u’(to) co, u’(t) c. (3.4)

Condition (q 1) will now be replaced by the following stronger condition:

(ql ) There is a nonnegligible subset ) of J such that q(t,x,z)<
q(t, y, z) for all a and x, y, z ]R, x > y.

The proof of the following result is the same as that of Theorem 3.1
when we apply part (b) of Proposition 3.1, instead of part (a).

THEOREM 3.2 Assume that functions q J IR2 ]R with and qo J
Io ]R have properties (qol), (ql’) and (q2), or properties (qO), (qO) and
(q 1) ’. Ifu Yis a lower solution andw Yan upper solution of(3.1 ), (3.4),
then u(t) < w(t) on J. In particular, the Neumann problem (3.1), (3.4) can
have at most one solution.

Consider next Eq. (3.1), equipped with the periodic boundary
conditions

u(to) U(tl), u’(to) u’(tl).

We say that a function u Y is a lower solution of (3.1), (3.5) if

d
-d--tqo(t,u’(t)) < q(t,u(t),u’(t)) a.e. in J,

u(to) U(tl), u’(to) >_ u’(tl),
(3.6)
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an upper solution if the reversed inequalities hold in (3.6), and a solution
of (3.1),(3.5) if equalities hold in (3.6). The following comparison
and uniqueness results are consequences of Lemmas 2.1 and 2.3.

THEOREM 3.3 Let q J 12 ] and p J x Io I have properties
(pl), (ql’) and (q2), or properties (q0), (q0) and (ql’). If u E Y is a

lower solution and w Yan upper solution of(3.1), (3.5), then u(t) < w(t)
for each J. In particular, the periodic problem (3.1), (3.5) can have
at most one solution.

Proof Assume on the contrary that c=max{u(t)-w(t)ltJ } is
positive. If u(t2) w(t2) c for some t2 (to, tl), then u(t) w(t) c by
Lemma 2.1. Assume next that U(to)- W(to)= c. This and the definition
of upper and lower solution, of (3.1), (3.5) imply that u(t)-W(tl)=C.
Thus u-w attains its positive maximum at to and tl, whence
u’(to) < w’(to) and u’(t)> w’(tl). These inequalities and the definition
of upper and lower solutions of (3.1), (3.5) imply that

u’(tl) _< u’(to) <_ w’(to) <_ w’(tl),
u’(to) >_ u’(t) >_ w’(t) >_ w’(to).

and

But then u(t) w(t) c by Lemma 2.3.
The above proof shows that u(t) w(t) c > O, which leads to

contradiction with (ql’) (cf. the proof of Proposition 3.1(b). This
concludes the proof.

In the case of Dirichlet boundary conditions

u(to) co, u(t) cl, (3.7)

instead of the two-sided Osgood condition (q0) we will require only the
following one-sided condition:

(qa) q(t, x, z) q(t, x, y) < h(t, (t, y) (t, z)) for a.a. J and for all
xElR, y,zIo, y>z, O<qo(t,y)-q(t,z)<r, where r>0,
h J x [0, r] +, and x(t) 0 is the only function in AC(J) which
satisfies

x’(t) < h(t,x(t)) a.e. in J, x(to) O.
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THEOREM 3.4 Givenfunctions q" J ]2 _.+ and qo" J Io --* I having
properties (qo0), (q l) and (qa), assume that u, w E Ysatisfy

Au(t) < Aw(t) a.e. in J, u(to) < w(to), u(tl) < W(tl). (3.8)

Then u(t) < w(t) for each J. In particular, with the conditions given

for q and, the Dirichletproblem (3.1), (3.7) can have at most one solution.

Proof If the first claim is wrong, then there exists a subinterval [a, b]
of J such that w’(a) u’(a)= O, w(t) u(t) < O, w’(t) u’(t) > 0 for all
E (a, b] (cf. [4]), and that the function

0, to < <a,
x(t) (t, w’(t)) q(t, u’(t)), a < < b,

x(b), b <_ <_ tl,

satisfies 0 _< x(t) <_ r. Since Au(t) <_ Aw(t) a.e. in J, we obtain (2.1),
(qa) and (q1),

d dX’ -t P t, w’ -t P t, u’

< q(t, u(t), u’(t)) q(t, w(t), w’(t))
< q(t, w(t), u’(t)) q(t, w(t), w’(t))
< h(t,q(t, w’(t)) q(t,u’(t))) h(t,x(t))

for a.a. [a, b]. Thus we have proved that

x’(t) < h(t,x(t)) a.e. in [a,b].

This inequality holds also when J\[a,b]. Because x(t0)=0, then
x(t)=O on J, which contradicts with the fact that x(t)=
(t, w’(t)) (t, u’(t)) > 0 on (a, t]. This concludes the proofof the first
assertion, and hence also the second one.

By assuming mixed monotonicity ofq in its last two arguments we can
relax the strict monotonicity of (t,. ), assumed in (0).
THEOREM 3.5 The results of Theorem 3.4 are valid ifqo J x ] --, Io and
q" J x ]2 _.+ ] satisfy thefollowing hypotheses:

(qo) qo(t, y) <_ o(t, z) whenever J, y, z Io andy <_ z;
(q) q(t, x, z) < q(t, y, s) for a.a. J and for all x, y, z IR, x > y

and z < s;



MAXIMUM PRINCIPLES 349

Proof Let u, w E Ysatisfy (3.8), and assume on the contrary that u(t) >
w(t) for some E J. As in the proof of Theorem 3.4 we can choose
a subinterval [a, b] ofJsuch that w’(a) ut(a) O, w(t) u(t) < O, w’(t)
u’(t) > 0 for all 6 (a, b], and that x(t) o(t, w’(t)) p(t, u’(t)) < r,
a _< < b. It then follows from (3.8), and (q) that

d d
x’(t) w’(O) Tt

<_ q(t,u(t),u’(t))-q(t,w(t),w’(t)) < 0

for a.a. 6 [a, b]. Because x(a) 0, then x(t) < 0 on (a, b], which con-
tradicts with the fact that x(t) p(t, w’(t)) p(t, u’(t)) > 0 on (a, b] by ()
This concludes the proof.

Remarks 3.2 Theorem 3.4 generalizes Proposition 9 of [4] as follows:

The function qo depends also on t, and need not be measurable;
One-sided Lipschitz condition is replaced by a more general one-sided
condition;
q need not be a Caratheodory function since conditions (qa) and (q1)
allow q to be discontinuous in all variables;
Monotonicity of q in its second variable is not necessarily strict.

The following one-sided Osgood condition

(qO’) q(t, x, z) q(t, x, y) <p(t)(p(t, y) p(t, z)) for a.a. E J and
for all x JR, y, z I0, y > z, 0 < o(t, y) (t, z) _< r, where r >
0, p L+(J), b’(0, r] (0, ) is increasing and satisfies

f+(d/(z)) o

is a special case of condition (qa), as shown in [5]. The considerations
of [5] imply also that (qa) can be replaced by the following condition.

(qb) q(t, x, z) q(t, x, y) <_ p(t)/P(t)(qo(t, y) (t, z)) for a.a. J and
for all x 6 IR, y, z 6 Io, y > z, O < o(t, y)p(t, z) < r, where r>0,
p L(J,IR+) with P(t) fttoP(S)ds > 0 for 6 (to, td, and
sup{[q(t, x, y) q(t, x, z)] + 0 _< y z _< r, x JR} o(p(t)) as
to+, where [a]+ max{a, 0}.

When q is constant with respect to its last argument, the comparison
results of Theorems 3.4 and 3.5 can be restated in the form which is
similar to a comparison principle derived in [8, Section 3].
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PROPOSITION 3.2 Given q" J ]- ] and q" J x -- , assume that
p(t, ) is increasing andq(t, ) is decreasing, one ofthem being strict,for all
E J. Ifu, w Ysatisfy

d d
d- q(t, u(t) q( t, u(t) <_ -t o(t, w(t) q(t, w(t)

a.e. in J, u(to) <_ w(to), U(tl) <_ W(tl),

then u(t) <_ w(t) on J.

Example 3.1 Denote by [x] the greatest integer<x, and by Xv
the characteristic function of a subset U of J= [0,1]. The periodic
boundary value problem

d
----(u’(t) + [Xv(t)u’(t)]) [1 + 2t](u’(t) + [Xv(t)u’(t)])dt

u(t) + a.e. in J,

u(o)

(3.9)

is a special case of problem (3.1), (3.5) with

qo(t,x) x + [Xv(t)x], q(t,x,y)
[1 + 2t](y +[Xv(t)y]) x+ 1,

J, x, y . It is easy to see that the functions and q satisfy the
hypotheses of Theorem 3.3. Thus problem (3.9) can have only one
solution. Obviously, u(t)= is the solution of (3.9). Notice that the
functions o and q are discontinuous in all their variables, and even
nonmeasurable in if U is a nonmeasurable subset of J.

Example 3.2 The BVP

d
(u’(t)+ [Xt(t)u’ u’d- (t)]) (t)+ [Xt(t)u’(t)]- [Xv(t)u(t)]

a.e. in J= [0, 11, (3.10)

u(O) O, u(1) ,
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where U, Vc J, is a special case ofproblem (3.1), (3.5) with

qo(t, x) x + [Xu(t)x],
q(t,x,y) y + [Xu(t)y] [Xv(t)x] -1/2,

E J, x,y ]R. It is easy to see that the hypotheses of Theorem 3.4
hold. Thus u(t)= t/2, J, is the only solution of (3.10). Also in this
example the functions and q are discontinuous in all their variables
and may be nonmeasurable in t.

4 SPECIAL CASES

For each n 1, 2,... the function

b,(z) z In In,, 0 < z < rn (expn 1)-,
satisfies the hypotheses given for b in (q0), (q2) and (q0)’. This is also
true when b(z) z, z R+, in which case we get the following result.

COROLLARY 4.1 The results ofLemmas 2.1 and 2.2, Proposition 3.1 and
Theorems 3.1-3.3 also hold when condition (q2) is replaced by condition

(q3) there is p L+ (J) such that [q(t, x, y) q(t, x, z)[ < p(t)[y z[ for
a.a. J andfor all x, y, z ,

or when condition (qO) is replaced by

(q4) there is p L+ (J) such that for a.a. J and for all x and
y, z io, [q(t, x, y) q(t, x, z)[ < p(t)[(t, y) (t, z)[.

The result of Theorem 3.4 holds ifcondition (qa) is replaced by

(q5) there is p L+(J) such that q(t,x,z)-q(t,x,y)<p(t)(q(t,y)-
(t, z))for a.a. J andfor all x ]R andy, z Io, y < z.

Consider next the special case when does not depend on t, i.e. the
phi-Laplacian case the differential equation (3.1) is reduced to

d
dt

p(u’(t)) q(t, u(t), u’(t)), (4.1)
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and the conditions (o0) and (o 1) are reduced to conditions

(oO’) o: Io -* R is strictly increasing.
(o1’) If sl, s2 E Io and Sl < $2, there exists M> 0 such that qo(y) qo(z) >_

M(y- z) whenever s _< z < y _< s2.

Existence results for (4.1) under various boundary conditions includ-
ing periodic, Dirichlet and Neuman conditions, are derived e.g, in
[1,3,4], whereas in [2] existence results are derived for a more general
looking differential equation

d
d---tqo(u’(t)) b(u’(t))q(t,u(t), u’(t)), (4.2)

under quite general boundary conditions. We are now looking for
uniqueness and comparison results for Eq. (4.2), associated with one of
the boundary conditions (3.2), (3.4), (3.5) and (3.7). By assuming that
b:]R (0,) satisfies the following condition:

(b) b, E Lloe (JR) and b o qo-1. I0 ]R is measurable;

we prove the following result.

PROPOSITION 4.1 The comparison and uniqueness results of Theorems
3.1-3.4 hold, respectively,for the

(a) separated problem (4.2), (3.2)/f conditions (qol’), (b), (ql) and (q2)
or conditions (qo0’), (b), (ql) and (qO) hold,"

(b) Neumann problem (4.2), (3.4) and periodic problem (4.2), (3.5) /f
condition (q l) is replaced in (a) by condition (ql’);

(c) Dirichletproblem (4.2), (3.7) ifconditions (o0’), (), (qO’) and(q 1) are
valid.

Proof Define 3 I0 by (cf. [3])
’(x) dz

(x) ,g,(qo_(z)),
x e Io.

If u Y, then u’[J] c_ Io and qao u’ AC(J). Condition (b) ensures that
1/(Ooqo-) is measurable and locally essentially bounded. Thus an
application of[6, 38.3] yields

fqo(u’(t)) dz fOt d/ds( o(u’(s)))ds
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This implies that o u’ E AC(J ), and that

d d fot d/dsqa(u’ (s))ds
d- 3(u’(t)) - (u’(s))

d/dtqa(u’(t))
a.e. in J.

Hence, if u E Yis a lower solution, an upper solution or solution of (4.2)
with boundary conditions (3.2), (3.4), (3.5) or (3.7), then u is a lower
solution, an upper solution or solution of corresponding problems
where the differential equation (4.2) is replaced by

d
dt

(3(u’(t))) q(t, u(t), u’(t)) a.e. in J. (4.3)

It is easy to show that all the hypotheses given in Proposition 4.1 hold
also when is replaced by q3. Thus the results ofTheorems 3.1-3.4 hold
for Eq. (4.3) with corresponding boundary conditions, which implies
the assertions.

Remark 4.1 The conditions (b) imposed on the function b allow the
right-hand side ofEq. (4.2) to have discontinuous dependence also on u’.

When qa(t, x) #(t)lxlp-Ex, the differential equation (3.1) is reduced to
equation containing a p-Laplacian operator, i.e.

d
(#(t) lu’(t)]P-2u,(t)) q(t, u(t), u’(t)) a.e. in J. (4.4)

dt

If #" J-- [a, b], 0 < a < b <, condition (qo0) holds for all p > 1,
and condition (ol) holds when <p _< 2. Thus we get the following
corollary.

COgOLLARY 4.2 If #" J-- [a, b], 0 < a < b < c, then the comparison
and uniqueness results of Theorems 3.1-3.4 hold, respectively,for the

(a) separated problem (4.4), (3.2) /f p (1,2] and conditions (ql) and
(q2) hold, or ifp > and conditions (qO) and (q l) hold;

(b) Neumann problem (4.4), (3.4) and periodic problem (4.4), (3.5) /f
conditions (qO) and (q1’) are satisfied andp > 1;

(c) Dirichlet problem (4.4), (3.7) /f conditions (qa) and (ql) hold and
p>l.
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When o(t, x) (#(t)x)/ x/1 + X2, the differential equation (3.1) can
be restated as

d #(t)u’(t)
dt V/1 + u,(t)2

q(t, u(t), u’(t)) a.e. in J. (4.5)

Condition (l) holds, whence we get the following result.

COROLLARY 4.3 /f# J- [a, b], 0 < a < b < o, then the comparison and
uniqueness results of Theorems 3.1-3.4 hold, respectively,for the

(a) separated problem (4.5), (3.2) /f conditions (ql), and (q2) or (qO)
hold;

(b) Neumann problem (4.5), (3.4) and periodic problem (4.5), (3.5) /f
conditions (qO) and (ql’) hold;

(c) Dirichletproblem (4.5), (3.7) ifconditions (qa) and (ql) are valid.

In the case when qo(t, x)= #(t)x we get the following consequence of
Proposition 3.1 and Corollary 4.1.

COROLLARY 4.4 Givenp, q,h L(J) and# AC(J,(O,o)), assume that
q(t) < 0 a.e. in J, and denote

d
Lu(t) -- (#(t)u’(t)) p(t)u’(t) q(t)u(t) h(t),

E J, u E AC(J);

(a) If Lu(t) <_ 0 a.e. in J, and if u attains a positive maximum c at an
interior point ofJ, then u(t) c.

(b) IfLu(t) < 0 a.e. #t J, ifBju(tj) < O,j= O, 1,/fc= max {u(t)[t J} > O,
and ifaj, b + anda+ bj > O,j-- O, 1, then u(t) c and ao a O.

(c) If Lu(t) < 0 a.e. in J, and ifBu(t) <_ O,j= O, 1, then u(t) <_ 0 for each
J in thefollowing cases."

(1) aj, bjE+,j=O, 1, andaoa +aob +abo>O;
(2) aj, b E IR+, j O, 1, bob > O, and q is not equivalent to zero-function;
(3) aj, bElR+, j=O, 1, bob >0, and there is a linear functional

Q C(J) I, satisfying Qv > 0 if v(t) c > o, such that Qu < O.
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5 REMARKS, EXAMPLES AND COUNTER-EXAMPLES

In Lemma 2.1 and in Corollary 4.4(a) it suffices to assume thatp is locally
Lebesgue integrable in (to, t). For instance, if a solution u of

3 ut-u"(t): (t), E(0,1)

has a positive maximum c, then u(t)--c. Moreover, all the results of
Corollary 4.4 hold if

t#0, and a> 1.p(t)=
0, t=0,

Thus p needs not to be bounded, as assumed, e.g., in [7]. On the other
hand, the Dirichlet problem

u"(t) p(t)u’(t), J [- 1, 1], u(- 1) u(1) 0,

p(t)= -7, t#0,
0, 0,

has solutions u(t)--0 and u(t)= 4. Thus the results of Lemmas 2.1
and 2.2, Proposition 3.1, Theorems 3.1 and 3.4 and Corollary 4.4(a) do
not hold in general if p L(J). This is true also in the case when

fr+ (dx/dp(x)) < in conditions (q2) and (qO)’, because the BVP

u"(t) 3(2u’(t))2/3, tEJ=[-1,1], u(-1)=u(1)=0

has also solutions u(t) =_ 0 and u(t) 4. However, ifwe are interested
in such solutions of (5.1) whose derivatives are nonzero, we can rewrite
(5.1) in the following forms:

dt
u (t) 1/3 22/3, J= [-1,11, u(-1) u(1) 0,

d 14/3 22/3dt(lu’(t -2u’(t))= C J= [-1,1],

u(-) =u(1)=0
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The first one is in phi-Laplacian form with qo(x)= x1/3, whereas the
second one is in p-Laplacian form with p 4/3. In the former case the
hypotheses ofProposition 4.1 hold, and in the latter case the hypotheses
ofCorollary 4.2 hold, whence these problems can have only one solution,
which is u(t)= 4.
The periodic boundary value problem

d
d--- (u’(t)+ [tu’(t)]) [1 + 2t](u’(t)+ [tu’(t)])- [sin(t)u(t)]

a.e. in J= [0, 1], u(0) u(1), u’(O) u’(1)

has a continuum ofsolutions ofthe form x(t) c, c E [0,1/sin (1)]. In this
example hypotheses ofTheorem 3.3 are not valid. On the other hand, the
hypotheses ofTheorem 3.4 hold for the BVP

d
d--t(u’(t) + [tu’(t)]) [1 + 2t](u’(t) + [tu’(t)]) [sin(t)u(t)]

a.e. in J [0, 1], u(0) co, u(1) ci,

whence this problem can have only one solution. In fact u(t)= c is the
solution when Co=C =c [0, 1/sin (1)].
The Dirichlet problem

-u"(t) u(t), tJ- O, u(0)=u =0

has for each # > 0 solutions u(t) 0 and u(t) sin(v/-t). Thus the results
of Proposition 3.1 and Theorems 3.1 and 3.4 do not hold in general if
condition (ql) is not satisfied.

If q, h L(J), and if q(t) 0 a.e. in J, then the Neumann problem

u" (t) q(t)u(t) h(t) a.e. in J,

’(t0) , ’(t)=-

has solutions f and only f f h(t) dt 0 In ths case the solutions are
of the form u(t) fo h(r)dr ds + + C. Ths example shows
that the result ofTheorem 3.2 does not hold in general if condition (ql’)
is replaced by (q1), and that the results of Proposition 3.1(b) and (c)
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and Corollary 4.4. (c)-(2) and-(3) do not hold in general if we only
assume that aj, bjE ]R+,j= 0,1, and bob > O.
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