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1. INTRODUCTION

In 1909, in order to prove Sturmian comparison theorems for ordinary
differential equations of the second order, Picone [9] established an
identity which now bears his name. Since the pioneering work of
Picone [9, 10], the Picone identity has been extended in various direc-
tions, and the extended identities of Picone type have played a sig-
nificant role in the qualitative study of linear ordinary and partial
differential equations. The reader is referred to Kreith [6, 7], Swanson
[11, 12] and Yoshida [13] for Sturmian comparison results for even
order linear elliptic partial differential equations.

* Corresponding author.

387



388 J. JARO et al.

Very recently, an attempt has begun to generalize the Picone identity
to the case of nonlinear differential operators for the purpose of
developing the analogue of Sturmian theory for the associated non-
linear differential equations; see e.g., the papers [2-4]. Particular
mention is made of our previous paper [4] in which a Picone-type
identity is derived for a class of quasilinear elliptic operators including
the p-Laplacian and is effectively applied to demonstrate Sturm-type
comparison and oscillation theorems for half-linear perturbations of
the p-Laplace equation.
The objective of this paper is to establish Picone-type inequalities

which connect the linear elliptic operator

+ c(x)u (1)

with nonlinear elliptic operators of the types

and

i,j=l
+ C(x)lvla- v (2)

/ c(x)lvla-*v / D(x)lvl=-’ (3)

where/ and 7 are positive constants with/ > and 0 < 7 < 1, and to
utilize the inequalities thus obtained to deduce Sturmian comparison
and oscillation theorems for the forced superlinear elliptic equation

L[v] =f(x) (4)

as well as the unforced superlinear-sublinear elliptic equation

L[v] o. (s)

Sections 2 and 3 concern the Eqs. (4) and (5), respectively; in each
of them Sturmian comparison theorems are proved on the basis of
the Picone-type inequalities derived for a pair of operators {e,L} or
{e,L}. Oscillation theorems for the Eqs. (4) and (5) are presented in
Section 4.
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2. PICONE-TYPE INEQUALITY WITH APPLICATION
TO EQUATION (4)

In this section we will derive a Picone-type inequality relating the
nonlinear elliptic operator (2) to the linear elliptic operator (1) and
apply it to establish Sturmian comparison theorems for forced super-
linear elliptic equations of the type (4).

All the operators and equations are defined in a bounded domain G
in , n > 2, with piecewise smooth boundary OG and are assumed to
satisfy the following conditions:

(A) aii(x) C(t; ), aij(x) C(; I) (i,j= 1, 2,..., n), and the ma-
trices (ai(x)), (Aiy(x)) are symmetric and positive definite in G;
(A2) c(x) e C(,; ), C(x) e C(,; [0, o));
(A3) f(x) e C(t;
(A) and 7 are constants such that > 1 and 0 < 7 < 1.

The domain :DL(G) of L is defined to be the set of all functions v
of class C (; ) with the property that Aij(x)(Ov/Oxj)
C(G; ), and the domain :De(G) of/ is defined to be the set of all
functions u of class C(; ) with the property that aij(x)(Ou/Oxj)

a).
Basic to the derivation of the desired Picone-type inequality

(Theorem 2) is the differential inequality given in the following
theorem.

TOREM If V e t(G), v O i G and v.f(x) < 0 in G, then the
following inequality holds for any u C(G; ):

n 0 u 0 u

+ -’i --’Aq(x)-’xi
i,j=l

If(x)lf(a-)/a)u2 +--u (L[v] f(x)). (6)
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Proof A simple computation yields

(7)

which, combined with

0 IA Ov)=-C(x)lvl#-,,:, ,(x) v+

gives

Since v .f(x) < O, we have

If(x)lC(x)lvla_ f(x) C(x)lvla_

Applying Young’s inequality

ab<_ + a>O,b>O,p> 1, -+-=1
P q P q

(9)

to the case where

,= #(> ),

q=#-l’
a C(x)(Va)lvl

b f(x) ((#-)/#)
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we see that

(C(x)lvla_+( 1)(o-a)/,) C(x)O/,)lf(x)l((,-z)/:) < -01"

C(x)lvla-/ If(x)llvl >/3(/3 1)fo-a)/a)C(x)O/a)lf(x)lffa-)/a). (10)

The desired inequality (4) then follows from (8) and (10).

THEOREM 2 (Picone-type inequality) Assume that u De(G),
v D.(G), v 0 in G and v .f(x)_ 0 in G. Then we have the following
Picone-type inequality

n

O( OU U2 Or)i,j.= ua,j(,)Oj
" Ou Ou>_ ,<x) A,x)) Ox Oxyi,j=l

+ (fl(fl- 1)((1-)/)C(x)(’/)lf(x)l((-’)/)
" 0 u 0 u

u
+ (vg[u] u(L[v] f(x))).

c(x))u

(11)

Proof To prove this theorem it suffices to combine the inequality (6)
with the identity

0 (uao(x) OU ) n Ou Ou
ug[u] j E ai(x)-x-j + c(x)u2"

i,]=l
(12)

We now formulate Sturmian comparison theorems for the nonlin-
ear elliptic equation (4). Such a theorem provides a principle which
guarantees the existence of zeros of the solutions of (4) in a nodal
domain of a solution of the comparison equation

[u] 0. (13)
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THEOREM 3 Ifthere is a nontrivialfunction u C (; R) such that u 0
on OG and

M[.] =_

i,j=l

(- 1)((-)/)C(x)(/)lf(x)((-)/)] dx O, (14)

then every solution v L(G) of (4) satisfying v .f (x) 0 in G vanishes
at some point of . Furthermore, OGC1, then every solution
VL(G) of (4) satisfying v.f(x) 0 in G has one of the following
properties:

(1) v has a zero in G, or

(2) v is a constant multiple of u.

Proof (The first statement) Suppose to the contra that there exists
a solution v L(G) of (4) which satisfies v .f(x) 0 in G and v 0 on
G. Then, the inequality (6) of Theorem 1 holds. Integrating (6) over G
and then using the divergence theorem, wc obtain

Since u 0 on OG and v 0 on G, we obscc that u is not a constant
multiple of v, and hence V(u/v) O. Therefore, we see that

n O u

which, together th (15), implies that u] > 0. This contradicts the
hypothesis u] 0. The proof of the first statement is complete.

(The second statement) Next wc consider the case where OG e C.
Let v L(G) be a solution of (4) satisfying v .f(x) 0 in G and v 0
in G. Since OGe C, uC() and u=0 on OG, wc find that u
belongs to the Sobolcv space H (G) wch is the closure in the norm

Ilull Ilullt IDu[2dx (16)
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of the class C (G) of infinitely differentiable functions with compact
support in G (see, e.g., Agmon [1, p.131]). Let {u} be a sequence
of functions in C(G) converging to u in the norm (16). Then we
easily see that the inequality (6) with u= u holds. Since (15) holds
for U=Uk, we find that M[u] E 0. Since A(x) (i,j= 1,2,... ,n) and
(3-1)-)/)C(x)/lf(x)l-)/) are uniformly bounded in G,
there is a constant K> 0 such that

,= Ox--S Ox + Ox - ,ix

+ tc fo lUk(Uk U) + (U u)ulax.

Applying the Schwarz inequality, we obtain

IM[uk] M[u][ < g(n9 + 1)(llukll / Ilull)lluk ull. (7)

Since limkoo Iluk--ull---0, we observe that limk-.oo M[uk] M[u] > O,
and therefore M[u] 0 in view of (14). Let B denote an arbitrary ball
with B C G and define

u 0 u

for u CI(G; ). It is easy to see that

0 <_ HB[Uk] <_ M[Uk],

and the estimate

holds, where Wk=Uk/ W--.U/I, K is a positive constant and the
subscript B indicates the integrals involved in the norm (16) are to
be taken over B only. Since v 0 on B, we find that IIw-wll, 0
as Ilu-ull0, and hence Hn[Uk]---}Hn[u] (k---}oo). Since

limkoo M[uk] M[u] 0, it follows that Hn[u] 0, and consequently
V(u/v) 0 in B. Since B is arbitrary, we conclude that u/v Ko in G,
and hence on G by continuity, for some nonzero constant K0. This
completes the proof of the second statement.
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COROLLARY 1 Assume that f(x) >_ 0 [or f(x) <_ O] in G. If there is a
nontrivial function uC(; ) such that u=O on OG and M[u] <_ O,
then (4) has no negative [or positive] solution on G.

Proof Let v EI)L(G) be a solution of (4) which is negative [or
positive] on . Then, it is clear that v .f(x)< 0 in G, and therefore it
follows from Theorem 3 that v must vanish at some point of G. This is
a contradiction, and the proof is complete.

THEOREM 4 If there is a nontrivial solution u De(G) of (13) such that
u 0 on OG and

n Ou Ou
V[u] E Caij(x) ACx))-i-j + (( 1)(O-#)la)cCx)Ol#)

i,j=l

If(x)l<<a-)/a) c(x))u2]dx >_ O, (18)

then every solution v 7)L(G) of (4) satisfying v .f(x) <_ 0 in G vanishes
at some point of (. Furthermore, if OGC1, then every solution
vD.(G) of (4) satisfying v.f(x) <_ 0 in G has one of the following
properties:

(1) v has a zero in G, or
(2) v is a constant multiple of u.

Proof It suffices to start from the inequality (11) and apply the same
argument as that used in the proofofTheorem 3. The details are left to
the reader.
An alternative proof will be presented here. By the definitions of

V[u] and M[u] we have

fo[ n Ou OU_c(x)uZ]dx"M[u] -V[u] + au(x) Ox, Oxsi,j=l

Since the last integral over G vanishes for any solution u of (13) such
that u=0 on OG (cf. (12)), it follows that M[u]= V[u], which, in view
of (18), implies that M[u] < 0. The conclusion of the theorem then
follows from Theorem 3.
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COROLLARY 2 Assume that f(x) >_ 0 [or f(x) <_ 0] in G. If there is a
nontrivial solution u E De(G) of (13) such that u=O on OG and V[u] >_ O,
then (4) has no negative [or positive] solution on G.

The following variants of Theorems 3 and 4 will be useful in the
study of the oscillatory behavior of the Eq. (4) in unbounded domains.

THEOREM 5 Suppose that G is divided into two subdomains G1 and

G2 by an (n-1)-dimensional piecewise smooth hypersurface in such a
way that

f(x) >_O in G1 and f(x) <_O in G2. (19)

If there are nontrivial functions UkCr. cl(k;) such that uk=O on
tgGk and

f [ n Ou OuMk[Uk] E Aij(x)
Oxi Ox]i,j=l

dx _< 0 (k 1,2), (20)

then every solution v DL(G) of (4) has a zero on .
THEOREM 6 Suppose that G is divided into two adjacent subdomains G
and G2 as mentioned in Theorem 5. If there are two nontrivial solutions

Uk ge(Gk) of (13) such that uk=O on OGk and

fk [ n OUk OUkVk[Uk] E (aij(x) Aij(x))
Oxi Oxji,j=l

/ (( 1)((l-a)/a)C(x)(/a)lf(x)l((a-)/a)

c(x))/dx > 0, (k 1, 2), (21)

then every solution v 79L(G) of (4) has a zero on G.

ProofofTheorem 5 Suppose that (4) has a solution v DL(G) with no
zero on t. Then, either v < 0 on or v > 0 on . If v < 0 on t then
v < 0 on, so that v .f(x) <_ 0 in GI. Applying Corollary 1, we see that



396 J. JARO et al.

no solution of (4) can be negative on G1. This contradiction shows
that it is impossible that v < 0 on G. Likewise it cannot occur that v > 0
on G, and the conclusion follows.

Theorem 6 can be proved similarly.

3. PICONE-TYPE INEQUALITY WITH APPLICATION
TO EQUATION (5)

Our aim in this section is to establish a Picone-type inequality for
the superlinear-sublinear elliptic operator (3) in relation to the linear
elliptic operator (1) and use it to prove Sturmian comparison theorems
for the Eq. (5) adopting the linear Eq. (13) as a comparison equation.
We suppose as before that G is a bounded domain in IIn with

pieeewise smooth boundary and retain the hypotheses (A0, (Az) and
(A4) made at the beginning of Section 2. With regard to the function
D(x) in (3) we assume that:

(A5) O(x) C(O; [0, oo)).

THEOREM 7 If v 9L(G) and v 0 in G, then the following inequality
holds for any u C(G; IR):

(22)

Proof We start with the identity (7). Combining (7) with (3) written
as

n (9 (A Or) vIB_ D(x)lvlT_lv+L[v
t,j=l
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yields
n u no

vati(x)
n Ou Ou u2E A,j(x) Ox--ff- (C(x)lvla-’ + D(x)lvl’-l)u2 +

i,j=l
(23)

In Young’s inequality (9), letting

p=-7(>l),
1- 7
-7

q=fl-l’
a C(x)-/-lvl--o/-,

b=( D(x) ) (-,)/(-7)

(((fl 1)/(1 7))(/(-))Ivl)-
we have

, 1 ) (-#)/(#-’)C(x)(_7)/(O_.)D(x)(a_)/(a_.)
1 "7

(C(x)lvl_ / O(x)lvl_),

or equivalently

C(x)’v[- +D(x)lv[’r->- 1-7(1- 1)(’-)/(-7)-7
x C(x)(l-’l’)l(n-7)D(x) (24)

Using (24) in (23), we obtain the desired inequality (22).

THEOREM 8 (Picone-type inequality) Assume that u De(G), v
7)L(G and v 0 in G. Then we have the following inequality

n 0 (uaiy(x) Ou u? Or)
i,]=1

n Ou Ou> E(ai(x) Ai(x)) Ox, Ox]i,j=l
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Proof As in the proof of Theorem 2 the conclusion follows from (22)
combined with (12).

Sturmian comparison theorems for the superlinear-sublinear elliptic
Eq. (5) will be given below.

THEOREM 9 /f there is a nontrivial function uC((; ) such that
u 0 on OG and

/17/[u] E A(x)
Ou Ou

i,j=l OXi OXj /3"-7(/3""t)(-t)/(a-’r)l-7 1 -7

2] dx <_ o, (26)

then every solution v E1)L(G of (5) vanishes at some point of G.
Furthermore, ifOG E C1, then every solution v L(G of (5) has one of
the following properties:

(j) v has a zero in G, or

(ii) v is a constant multiple of u.

Proof Suppose that there exists a solution v :DL(G of (5) such that
v 0 on . Then, the inequality (22) of Theorem 7 holds with L[v] O.
Integrating (22) over G and arguing as in the proof of Theorem 3, we
observe that [u] > 0, which contradicts the hypothesis/17/[u] <_ 0. This
completes the proof of the first statement. In the ease where OG C,
let vDL(G be a solution of (5) such that v-0 in G. By the same
arguments as were used in Theorem 3, we conclude that [u] 0,
which implies that v is a constant multiple of u. The proof of the
second statement is complete.
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THEOREM 10 Ifthere is a nontrivial solution u E De(G) of (13) such that
u 0 on OG and

[u]._---- E (aiy(x) Aij(x) - + ’i "y ’i "yi,j=l

C(x)(I-7)/(B-7)D(x)(-I)/(-7)x

(27)

then every solution v EL(G) of (5) vanishes at some point of G.
Furthermore, ifOG Cl, then every solution v .(G) of (5) has one of
the following properties:

(i) v has a zero in G, or

(ii) v is a constant multiple of u.

Proof Using the fact that [u] =0 in G and u=O on OG, we have
[u] -/[u], so that t/[u] _< 0 by (27). The conclusion of the theorem
is an immediate consequence of Theorem 9.

Our proof of Theorem 9 can be stated as a result on Wirtinger-type
inequalities as follows.

THEOREM 11 (Wirtinger-type inequality)
a solution v E)L(G of (5) such that v 0 in G, then the inequality

E aiy(x)
Ou Ou / "y fl.., 1 (I-)/(B-7)

i,j=l OXi Oxj 1 q 1 7

x 0

Let OG C. If there exists

(28)

holds for any nontrivial function u E Cl(; ) such that u=O on OG,
where u is a constant multiple of v if equality holds.

4. OSCILLATION CRITERIA FOR EQUATIONS (4) AND (5)

The purpose of this section is to show that Sturmian comParison
theorems of Sections 2 and 3 can be applied to establish oscillation
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criteria for the nonlinear elliptic Eqs. (4) and (5) defined in an un-
bounded domain fl in .
4.1. Oscillation Criterion for the Equation (4)

Let f be an unbounded domain in and assume that:

(B1) Ao(x)EC(f;) (i,j= 1,2,...,n), and the matrix (A#(x)) is
symmetric and positive definite in f;

(B2) C(x) C(f; [0, oo)), f(x) C(12; );
(B3) / is a constant with/ > 1.

The domain/)z(f) of L is defined to be the set of all functions
v C(f; ) with the property that Ax)(Ov/Oxy) C(f; ) for
i,j 1,2,..., n.

DEFINITION A function v fl is said to be oscillatory in 12 if
v has a zero in fir for any r > 0, where

fl, n {x "; Ixl >

THEOREM 12 Assume thatfor any r > 0 there exists a bounded domain
G in r with piecewise smooth boundary, which can be divided into two

subdomains G and G2 by an (n- 1)-dimensional hypersurface in such a
way that f(x) >_ 0 in G andf(x) <_ 0 in G2. Assume furthermore that
C(x) >_ 0 in G and that there are nontrivialfunctions Uk C (kk; ) such
that Uk 0 on OGk andMk[Uk] <_ 0 (k 1,2), whereMk are definedby (20).
(20). Then every solution v Z)z() of (4) is oscillatory in

Proof We need only to apply Theorem 5 to make sure that v
has a zero in any domain G as mentioned in the hypotheses of
Theorem 12.

Example Consider the forced superlinear elliptic equation

Av + r(sin(x r)sinx2)lvl-v cosxl sinx2, (x,x2) fl, (29)

where A is the two-dimensional Laplacian, K> 0 is a constant and
fl is an unbounded domain in 2 containing a horizontal strip
such that

oo) c
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We will prove that every solution v of (29) is oscillatory in f provided
K> 0 is sufficiently large. For any fixed m E N consider the square
G ((2m-1)Tr, 2mTr) x (0, 70, which is divided into two subdomains

and

G ((2m- 1)Tr, (2m-(1/2))70 x (0, zr)

G2 ((2m- (1/2))7r, 2mTr) x (0, 70

by the vertical line x (2m- (1/2))zr. We see thatf(x) cosx sin x2 <
0 in G and f(x)> 0 in G2. Let us put u, sin 2x sin x (k 1,2).
Then, u, 0 on OG,, and an elementary calculation yields

where B(s, t) is the beta function (k 1,2). This implies that Mk[Uk] <_ 0
(k 1,2) if K> 0 is chosen so that

[15 ( )((l_t)/a)B (3 1 1 ))-1] a
K>_ --. fl(fl- +-, 2---

From Theorem 12 it follows that every solution v E C2(f; R) of (29) is
oscillatory in fl for all sufficiently large K > 0.

Remark Theorem 12 is a generalization of a result of Nasr
[8, Corollary].

4.2. Oscillation Criteria for the Equation (5)

Our task here is to obtain oscillation criteria for the superlinear-
sublinear elliptic Eq. (5) in an unbounded domain fl by comparing it
with a suitable linear elliptic Eq. (13) whose oscillatory behavior is
already known.
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The conditions we assume for (5) and (13) are as follows:

(B1) Ag(x)EC(fl;) (i,j=l,2,...,n), and the matrix (Ao(x)) is
symmetric and positive definite in fl; and the same is true of
ag(x) (i,j= 1,2,...,n);
C(x) [0, n(x) [0,

(B3) / and 7 are constants such that/ > and 0 < 7 < 1.

The domain DL(fl) of L is defined to be the same as that of L, that
is, DL(fl) =/.(fl). The domain De(f) of is defined similarly.

DEFINITION 2 A bounded domain G with G c f is said to be a nodal
domain for the Eq. (13) if there exists a nontdvial function u E gt(G)
such that g[u] 0 in G and u 0 on OG. The Eq. (13) is called nodally
oscillatory in fl if (13) has a nodal domain contained in 1), for any
r>0.

THEOREM 13 Assume that:

(aij(x)-Aij(x)) is positive semidefinite in 12, (30)

-’7 (- l ) (’-a)/Ca-’)C(x)(’-’O/(t-’)D(x)Ca-’)/(a-’) in .c(x) <
l "- 7’ ’i 7’

(31)

/f(13) is nodally oscillatory in f, then every solution v EDL(f of (5) is
oscillatory in ft.

Proof Since (13) is nodally oscillatory in fl, there is a nodal domain
G c fl for any r > 0, and hen there exists a nontrifial function
u D(G) such that [u] 0 in G and u 0 on OG. The conditions (30)
and (31) ensures that [u] 0 is satisfied. From Theorem 10 it follows
that eve solution vL(fl) of (5) vanishes at some point of G,
that is, v must have a zero in fl for any r > 0. This implies that v is
oscillatory in .
CooLV 3 ff the linear elliptic equation

/3-"Y (/3- 1) (1-)/(-7)
/Xu + C(x)O-’r)/(-’r)D(x)(#-O/(#-’r)u 0

(32)



PICONE-TYPE INEQUALITIES 403

is nodally oscillatory in f, then every solution v E C2(fl; I) of the
superlinear-sublinear equation

ZXv + C(x)lvl-v + D(x)lvl- v 0 (33)

is oscillatory in [2.

This is an immediate consequence of Theorem 13.
Various criteria for nodal oscillation of linear elliptic equations of

the form

Au + c(x)u 0, x E an, (34)

c(x) being a continuous function in n, have been given by Kreith
and Travis [7]. They have shown in particular that (34) is nodally
oscillatory if

c(x)dx oo ,(n 2),

oo

S[c(x)l()d oo (n> 3),

where S[c(x)](r) denotes the spherical mean of c(x) over the sphere
{x"; Ixl=r}. Applying this result to the Eq. (32) we obtain
from Corollary 3 the following concrete oscillation criterion for the
Eq. (33).

COROLLARY 4 Let f In. If

f, C x)(1-7)lC#-7)D x (/- l(#-7)dx o (n 2), (35)

oo

S[C(x)(l-7)/(-7)D(x)(-l)/(-7)](r)dr C3 (n > 3), (36)

then every C2-solution v of (33) is oscillatory in Rn.
Note that (35) and (36) trivially hold if C(x) and D(x) are bounded

below by positive constants in .
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