J. of Inequal. & Appl., 2001, Vol. 6, pp. 435-449 Reprints available directly from the publisher Photocopying permitted by license only

Whitney Covers and Quasi-isometry of $L^{s}(\mu)$ -averaging Domains

SHUSEN DING a, * and BING LIU b, †

^aDepartment of Mathematics, Seattle University, WA 98122, USA; ^bDepartment of Mathematics, Saginaw Valley State University, 7400 Bay Road, University Center, MI 48710, USA

(Received 4 November 1999; In final form 9 February 2000)

This is a part of our series studies about the $L^{s}(\mu)$ -averaging domains. In this paper, we first characterize $L^{s}(\mu)$ -averaging domains using the Whitney covers. Then we prove the invariance of $L^{s}(\mu)$ -averaging domains under some mappings, such as K-quasi-isometric mappings, φ -quasi-isometric mappings.

Keywords and Phrases: $L^{s}(\mu)$ -averaging domain; Whitney covers; φ -quasi-isometry

AMS Mathematics Subject Classifications 1991: Primary: 30C65; Secondary: 26B25, 28A25, 42B20, 46E35

1. INTRODUCTION

Domains and mappings are studied and applied in many different fields in mathematics and engineering, such as ordinary and partial differential equations, potential theory and nonlinear elasticity, see [3, 5, 7, 8, 11, 13]. Gehring and Osgood study the uniform domains and the quasihyperbolic metric in [5]. As we know, uniform domains are John domains, while John domains are L^s -averaging domains and L^s (μ)-averaging domains are extensions of L^s -averaging domains. There has been remarkable progress made in studying these domains and

^{*}Corresponding author. e-mail: sding@seattleu.edu

[†]e-mail: bliu@svsu.edu

their relationships, particularly, their properties and applications, see the references listed above. Recently, some results about A-harmonic tensors in John domains and $L^{s}(\mu)$ -averaging domains are obtained in [1, 2 and 9]. In this paper we first characterize $L^{s}(\mu)$ -averaging domains using the Whitney covers. Then we study the properties of $L^{s}(\mu)$ averaging domains under some mappings. We introduce the following definitions and theorems which we need later. We will always denote Ω as an open connected subset of \mathbb{R}^{n} and we do not distinguish the balls from the cubes throughout this paper. The following Definition 1.1 appears in [3].

DEFINITION 1.1 We call a proper subdomain $\Omega \subset \mathbb{R}^n$ an $L^s(\mu)$ -averaging domain, if for $s \ge 1$ and $\mu(\Omega) < \infty$ there is a constant C such that

$$\left(\frac{1}{\mu(\Omega)}\int_{\Omega}|u-u_{B_{0,\mu}}|^{s}d\mu\right)^{(1/s)} \leq C \sup_{2B\subset\Omega}\left(\frac{1}{\mu(B)}\int_{B}|u-u_{B,\mu}|^{s}d\mu\right)^{(1/s)}$$
(1.2)

for some ball $B_0 \subset \Omega$ and all $u \in L^s_{loc}(\Omega, \mu)$, where the measure μ is defined by $d\mu = w(x)dx$, w(x) is a weight and the supremum is over all balls B with $2B \subset \Omega$.

DEFINITION 1.3 Let $\sigma > 1$. We say that w satisfies a weak reverse Hölder inequality and write $w \in WRH(\Omega)$ when there exist constants $\beta > 1$ and C > 0 such that

$$\left(\frac{1}{|B|}\int_{B}w^{\beta}dx\right)^{(1/\beta)} \leq C\frac{1}{|B|}\int_{\sigma B}wdx \qquad (1.4)$$

for all balls $B \subset \Omega$ with $\sigma B \subset \Omega$. We say that w satisfies a reverse Hölder inequality when (1.4) holds with $\sigma = 1$ and we write $w \in RH(\Omega)$.

DEFINITION 1.5 We call w a doubling weight and write $w \in D(\Omega)$ if there exists a constant C such that $\mu(2B) \leq C\mu(B)$ for all balls B with $2B \subset \Omega$. If this condition holds only for all balls B with $4B \subset \Omega$, then w is weak doubling and denote $w \in WD(\Omega)$. The factor 4 here is for convenience and in fact these domains are independent of this expansion factor, see [3]. DEFINITION 1.6 The quasi-hyperbolic distance between x and y in a domain Ω is given by

$$k(x,y) = k(x,y;\Omega) = \inf_{\gamma} \int_{\gamma} \frac{1}{d(z,\partial\Omega)} ds,$$

where γ is any rectifiable curve in Ω joining x to y, $d(z, \partial \Omega)$ is the Euclidean distance between z and the boundary of Ω . Gehring and Osgood prove that for any two points x and y in Ω there is a quasi-hyperbolic geodesic arc joining them, see [5]. The quasi-hyperbolic metric provides a useful substitute for the hyperbolic metric. Applications can be found, for example, in [4-6, 10, 12]. We will show that it also plays an important role in describing the $L^{s}(\mu)$ -averaging domains. The following Theorems 1.7 and 1.9 are given by Ding and Nolder [3].

THEOREM 1.7 If w satisfies the reverse Hölder inequality and Ω is an $L^{s}(\mu)$ -averaging domain, then there exists a constant A such that

$$\left(\frac{1}{\mu(\Omega)}\int_{\Omega}k(x,x_0)^s d\mu\right)^{(1/s)} \le A, \tag{1.8}$$

where A only depends on n, s, $\mu(\Omega)$, $\mu(B(x_0, d(x_0, \partial\Omega)/2))$ and the constant C in (1.2).

THEOREM 1.9 Let w be weak doubling over Ω , see [3]. If

$$\left(\frac{1}{\mu(\Omega)}\int_{\Omega}k(x,x_0)^s d\mu\right)^{(1/s)} \le A \tag{1.10}$$

for some fixed point x_0 in Ω and a constant A, then Ω is an $L^s(\mu)$ -averaging domain and inequality (1.2) holds with constant C depending on n, s and A.

DEFINITION 1.11 We say that a weight w satisfies the A_r -condition, where r > 1, and write $w \in A_r(\Omega)$ when

$$\sup_{B}\left(\frac{1}{B}\int_{B}wdx\right)\left(\frac{1}{B}\int_{B}w^{1/(1-r)}dx\right)^{r-1}<\infty.$$
 (1.12)

The following Lemma 1.13 was proved in [3] without using Theorem 1.7 and the fact that a ball B is an $L^{s}(\mu)$ -averaging domain.

LEMMA 1.13 Let B be any ball in Ω with center x_1 and radius r, and the measure μ is defined by $d\mu = w(x)dx$ with $w \in WRH(\Omega)$. Then

$$\left(\frac{1}{\mu(B)}\int_B k(x,x_1)^s d\mu\right)^{(1/s)} \leq \alpha,$$

where α is a constant independent of B, $s \ge 1$ and the supremum is over all balls $B \subset \Omega$.

2. WHITNEY COVERS OF $L^{S}(\mu)$ -AVERAGING DOMAINS

We will need the following lemma appeared in [9].

LEMMA 2.1 Each Ω has a modified Whitney cover of cubes $W = \{Q_i\}$ which satisfy

$$\bigcup_{i} Q_{i} = \Omega,$$
$$\sum_{Q \in W} \chi_{\sqrt{\frac{2}{4}Q}} \leq N_{\chi n}$$

for all $x \in \mathbb{R}^n$ and some N > 1 and if $Q_i \cap Q_j \neq \phi$, then there exists a cube $R(\notin W)$ in $Q_i \cap Q_j$ such that $Q_i \cup Q_j \subset NR$. Moreover if Ω is δ -John, then there is a distinguished cube $Q_0 \in W$ which can be connected with every cube $Q \in W$ by a chain of cubes $Q_0, Q_1, \ldots, Q_k = Q$ from W and such that $Q \subset \rho Q_i$, $i = 0, 1, 2, \ldots, k$, for some $\rho = \rho(n, \delta)$.

Now we show that the $L^{s}(\mu)$ -averaging domains can be characterized in terms of the Whitney covers.

THEOREM 2.2 Let Ω be an $L^{s}(\mu)$ -averaging domain with measure μ such that $d\mu = w(x)dx$, where the weight function w satisfies the weak reverse Hölder inequality in Ω (i.e., $w \in WRH(\Omega)$). If the Whitney cover \mathcal{F} of Ω consists of cubes Q_{j} with centers x_{j} , then the following two conditions are equivalent:

$$\left(\frac{1}{\mu(\Omega)}\int_{\Omega}k(x,x_0)^s d\mu\right)^{(1/s)} < \infty, \qquad (2.3)$$

$$\left(\frac{1}{\mu(\Omega)}\sum_{\mathcal{Q}_j\in\mathcal{F}}k(x_j,x_0)^s\mu(\mathcal{Q}_j)\right)^{(1/s)}<\infty,$$
(2.4)

where x_0 is a fixed point of Ω .

Proof Assume (2.4) holds. By Definition 1.5, for any $x, x_0, x_1 \in \Omega$, $k(x, x_0) \leq k(x, x_1) + k(x_1, x_0)$. Let \mathcal{F} be a Whitney cover of Ω consisting of cubes Q_j with centers x_j . Then for any x_j , due to Minkowski's inequality and an elementary inequality, $|\sum t_{\alpha}|^r \leq \sum |t_{\alpha}|^r$, where $0 \leq r \leq 1$, and Lemma 1.13, we have

$$\begin{split} \left(\int_{\Omega} k(x,x_0)^s d\mu\right)^{(1/s)} &\leq \left(\int_{\cup_{Q_i \in \mathcal{F}} \mathcal{Q}_j} (k(x,x_0))^s d\mu\right)^{(1/s)} \\ &\leq \left(\int_{\cup_{Q_i \in \mathcal{F}} \mathcal{Q}_j} (k(x,x_j) + k(x_j,x_0))^s d\mu\right)^{(1/s)} \\ &\leq \left(\int_{\cup_{Q_i \in \mathcal{F}} \mathcal{Q}_j} k(x,x_j)^s d\mu\right)^{(1/s)} \\ &+ \left(\int_{\cup_{Q_i \in \mathcal{F}} \mathcal{Q}_j} k(x_j,x_0)^s d\mu\right)^{(1/s)} \\ &\leq \left[\sum_{Q_j \in \mathcal{F}} \int_{\mathcal{Q}_j} k(x_j,x_0)^s d\mu\right]^{(1/s)} \\ &+ \left[\sum_{Q_j \in \mathcal{F}} \int_{\mathcal{Q}_j} k(x_j,x_0)^s d\mu\right]^{(1/s)} \\ &\leq \sum_{Q_j \in \mathcal{F}} \left[\int_{\mathcal{Q}_j} (k(x,x_j))^s d\mu\right]^{(1/s)} \\ &+ \left[\sum_{Q_j \in \mathcal{F}} \int_{\mathcal{Q}_j} k(x_j,x_0)^s d\mu\right]^{(1/s)} \\ &\leq \sum_{Q_j \in \mathcal{F}} \left[\int_{\mathcal{Q}_j} (k(x,x_j))^s d\mu\right]^{(1/s)} \\ &\leq \sum_{Q_j \in \mathcal{F}} \left[\int_{\mathcal{Q}_j} (k(x,x_j))^s d\mu\right]^{(1/s)} \\ &\leq \sum_{Q_j \in \mathcal{F}} \left[\int_{\mathcal{Q}_j} k(x_j,x_0)^s d\mu\right]^{(1$$

439

$$\begin{split} &\leq \sum_{\mathcal{Q}_{j} \in \mathcal{F}} \mu(\mathcal{Q}_{j})^{(1/s)} \left[\frac{1}{\mu(\mathcal{Q}_{j})} \int_{\mathcal{Q}_{j}} (k(x,x_{j}))^{s} d\mu \right]^{(1/s)} \chi_{\sqrt{\frac{5}{4}}\mathcal{Q}_{j}} \\ &\quad + \left[\sum_{\mathcal{Q}_{j} \in \mathcal{F}} k(x_{j},x_{0})^{s} \mu(\mathcal{Q}_{j}) \right]^{(1/s)} \\ &\leq \sum_{\mathcal{Q}_{j} \in \mathcal{F}} \mu(\mathcal{Q}_{j})^{(1/s)} \cdot C \cdot \chi_{\sqrt{\frac{5}{4}}\mathcal{Q}_{j}} \\ &\quad + \mu(\Omega)^{(1/s)} \left[\frac{1}{\mu(\Omega)} \sum_{\mathcal{Q}_{j} \in \mathcal{F}} k(x_{j},x_{0})^{s} \mu(\mathcal{Q}_{j}) \right]^{(1/s)} \\ &\leq C \cdot \mu(\Omega)^{1/s} \sum_{\mathcal{Q}_{j} \in \mathcal{F}} \chi_{\sqrt{\frac{5}{4}}\mathcal{Q}_{j}} \\ &\quad + \mu(\Omega)^{(1/s)} \left[\frac{1}{\mu(\Omega)} \sum_{\mathcal{Q}_{j} \in \mathcal{F}} k(x_{j},x_{0})^{s} \mu(\mathcal{Q}_{j}) \right]^{(1/s)} \\ &\leq C \mu(\Omega)^{(1/s)} \cdot N_{\chi_{\Omega}} \\ &\quad + \mu(\Omega)^{1/s} \left[\frac{1}{\mu(\Omega)} \sum_{\mathcal{Q}_{j} \in \mathcal{F}} k(x_{j},x_{0})^{s} \mu(\mathcal{Q}_{j}) \right]^{(1/s)} < \infty, \end{split}$$

where N > 1 is some constant and the second inequality to the last is due to Lemma 2.1.

On the other hand, assume (2.3) holds. We show that (2.4) is also true. Note that

$$k(x_j, x_0)^s \leq (k(x_j, x) + k(x, x_0))^s \leq 2^s (k(x_j, x)^s + k(x, x_0)^s).$$

Integrating over Q_j gives

$$\begin{split} k(x_j, x_0)^s \mu(\mathcal{Q}_j) &= \int_{\mathcal{Q}_j} (k(x_j, x_0)^s d\mu) \\ &\leq 2^s \int_{\mathcal{Q}_j} (k(x_j, x))^s d\mu + 2^s \int_{\mathcal{Q}_j} k(x, x_0)^s d\mu. \end{split}$$

Summing and using Lemma 1.13 yields

$$\sum_{Q_j \in \mathcal{F}} k(x_j, x_0)^s \mu(Q_j) \le 2^s \sum_{Q_j \in \mathcal{F}} \int_{Q_j} k(x_j, x)^s d\mu + 2^s \sum_{Q_j \in \mathcal{F}} \int_{Q_j} k(x, x_0)^s d\mu$$

$$\leq 2^{s} \sum_{Q_{j} \in \mathcal{F}} \left(\int_{Q_{j}} k(x_{j}, x)^{s} d\mu \right) \chi_{\sqrt{\frac{5}{4}}Q_{j}}$$

$$+ 2^{s} \sum_{Q_{j} \in \mathcal{F}} \int_{\Omega} k(x, x_{0})^{s} d\mu \chi_{\sqrt{\frac{5}{4}}Q_{j}}$$

$$\leq 2^{s} \sum_{Q_{j} \in \mathcal{F}} \mu(Q_{j}) \cdot M \cdot \chi_{\sqrt{\frac{5}{4}}Q_{j}}$$

$$+ 2^{s} \cdot N_{\chi_{\Omega}} \cdot \int_{\Omega} k(x, x_{0})^{s} d\mu$$

$$\leq 2^{s} M \cdot \mu(\Omega) \cdot N_{\chi_{\Omega}}$$

$$+ 2^{s} \cdot N_{\chi_{\Omega}} \cdot \int_{\Omega} k(x, x_{0})^{s} d\mu < \infty$$

which says that (2.4) is true. The proof of Theorem 2.2 is completed.

COROLLARY 2.5 Either (2.3) or (2.4) is a sufficient condition for a domain Ω to be an $L^s(\mu)$ -averaging domain if Ω with a Whitney cover \mathcal{F} and the measure μ is defined as in Theorem 2.2.

Proof As the matter of fact, (2.3) is sufficient by Theorem 1.9. From the first part of the proof of Theorem 2.2, where $((1/\mu(Q_j)) \int_{Q_j} k(x_j, x)^s d\mu)^{(1/s)} < \infty$ is from Lemma 1.13, (2.4) implies (2.3), so that (2.4) is also sufficient for Ω being an $L^s(\mu)$ -averaging domain.

3. SOME MAPPINGS OF $L^{S}(\mu)$ -AVERAGING DOMAINS

We first prove that the $L^{s}(\mu)$ -averaging domains are preserved under *K*-quasi-isometric mappings.

DEFINITION 3.1 A mapping f defined in Ω is said to be a K-quasiisometry, K > 1, if

$$\frac{1}{K} \le \frac{|f(x) - f(y)|}{|x - y|} \le K$$
(3.2)

for all $x, y \in \Omega$.

LEMMA 3.3 Let $f: \Omega \rightarrow \Omega'$ be a K-quasi-isometric mapping. Then

$$\frac{1}{K^n}|B| \le |B'| \le K^n|B|, \tag{3.4}$$

where B' = f(B) and $B \subset \Omega$ is any ball or cube.

Proof If f is a K-quasi-isometric mapping, then

$$\frac{1}{K^n} \le J(f) \le K^n \quad \text{a.e.} \tag{3.5}$$

where J(f) is the Jacobian of f. Therefore,

$$|B'| = \int_{B'} dx = \int_B J(f) dx \le K^n |B|,$$

and

$$\frac{1}{K^n}|B|=\frac{1}{K^n}\int_B dx=\int_B \frac{1}{K^n}dx\leq \int_B J(f)dx=\int_{B'} dx=|B'|.$$

THEOREM 3.6 Let $f: \Omega \to \Omega'$ be a K-quasi-isometric mapping. If $w \in A_r$, then $w(f(x)) \in A_r$.

Proof Due to the Definition 1.11, we will show

$$\left(\frac{1}{|B'|}\int_{B'}w(f(x))dx\right)\left(\frac{1}{|B'|}\int_{B'}\left(\frac{1}{w(f(x))}\right)^{(1/(r-1))}dx\right)^{r-1}<\infty.$$

Let $w \in A_r$, r > 1. Then using (3.4) and the inequality (3.5), we have

$$\begin{split} \left(\frac{1}{|B'|} \int_{B'} w(f(x)) dx\right) \left(\frac{1}{|B'|} \int_{B'} \left(\frac{1}{w(f(x))}\right)^{(1/(r-1))} dx\right)^{r-1} \\ &\leq \left(\frac{K^n}{|B|} \int_{B'} w(f(x)) dx\right) \left(\frac{K^n}{|B|} \int_{B'} \left(\frac{1}{w(f(x))}\right)^{(1/(r-1))} dx\right)^{r-1} \\ &\leq K^n \cdot K^{n(r-1)} \left(\frac{1}{|B|} \int_{B} w(x) J(f) dx\right) \\ &\left(\frac{1}{|B|} \int_{B} \left(\frac{1}{w(x)}\right)^{(1/(r-1))} J(f) dx\right)^{r-1} \\ &\leq K^{2n} \cdot K^{2n(r-1)} \left(\frac{1}{|B|} \int_{B} w(x) dx\right) \\ &\left(\frac{1}{|B|} \int_{B} \left(\frac{1}{w(x)}\right)^{(1/(r-1))} dx\right)^{r-1} \\ &\leq K^{2nr} \cdot M < \infty, \end{split}$$

Therefore, $w(f(x)) \in A_r$.

442

LEMMA 3.7 Let $f: \Omega \to \Omega'$ be a K-quasi-isometric mapping. If μ and ν are measures defined by $d\nu = w(f(x))dx$ and $d\mu = w(x)dx$, respectively, then

$$\frac{1}{K^n}\mu(D) \le \nu(D') \le K^n\mu(D), \tag{3.8}$$

where $D \subset \Omega$ and $D' = f(D) \subset \Omega'$.

Proof The result is immediately from

$$\nu(D') = \int_{D'} d\nu = \int_{D'} w(f(x)) dx$$
$$= \int_{D} w(x) J(f) dx \quad \text{and} \quad \frac{1}{K^n} \le J(f) \le K^n$$

THEOREM 3.9 If $f: \Omega \to \Omega'$ is a K-quasi-isometric mapping and Ω is an $L^{s}(\mu)$ -averaging domain, then Ω' is an $L^{s}(\nu)$ -averaging domain.

Proof Let γ be a quasi-hyperbolic geodesic arc joining x to y in Ω and set $\gamma' = f(\gamma)$. By the virtue of (3.2), (3.4), (3.8) and the inequality (3.5), and note that

$$d(f(x),\partial\Omega') = \inf_{u \in \partial\Omega'} |f(x) - u| = \inf_{t \in \partial\Omega} |f(x) - f(t)|$$

$$\geq \inf_{t \in \partial\Omega} \left(\frac{1}{K}|x - t|\right) = \frac{1}{K} \inf_{t \in \partial\Omega} |x - t| = \frac{1}{K} d(x,\partial\Omega),$$

we have

$$k(f(x),f(y);\Omega') \leq \int_{\gamma'} \frac{ds'}{d(f(z),\partial\Omega')} \leq \int_{\gamma} \frac{K^2 ds}{d(z,\partial\Omega)} = K^2 k(x,y;\Omega).$$

Therefore

$$\begin{split} \left(\frac{1}{\nu(\Omega')} \int_{\Omega'} k(f(x), f(x_0); \Omega')^s d\nu\right)^{(1/s)} \\ &= \left(\frac{1}{\nu(\Omega')} \int_{\Omega'} k(f(x), f(x_0); \Omega')^s w(f(x)) dx\right)^{(1/s)} \\ &\leq \left(\frac{C_1}{\mu(\Omega)} \int_{\Omega} K^{2s} k(x, x_0; \Omega)^s w(x) J(f) dx\right)^{(1/s)} \\ &\leq \left(\frac{C_1}{\mu(\Omega)} \int_{\Omega} K^{2s} k(x, x_0; \Omega)^s w(x) K^n dx\right)^{(1/s)} \end{split}$$

$$\leq (C_1 K^{2s+n})^{(1/s)} \left(\frac{1}{\mu(\Omega)} \int_{\Omega} k(x, x_0; \Omega)^s d\mu \right)^{(1/s)} \\ \leq (C_1 K^{2s+n})^{(1/s)} \cdot A < \infty.$$

Thus, Ω' is an $L^s(\nu)$ -averaging domain with the measure ν defined by $d\nu = w(f(x))dx$ due to Theorem 1.9.

We can also extend Theorem 3.9 to a class of more general mappings so called φ -quasi-isometric mapping, see [13].

DEFINITION 3.10 Let $\varphi: [0, \infty) \to [0, \infty)$ be a homeomorphism with $\varphi(t) \ge t$, X and Y be metrical spaces. An embedding $f: X \to Y$ is said to be a φ -quasi-isometry if

$$\varphi^{-1}(|x-y|) \le |f(x)-f(y)| \le \varphi(|x-y|)$$
 for all $x, y \in X$.

Obviously, Theorem 3.9 is a special case of φ -quasi-isometric mapping as $\varphi(t) = Kt, K \ge 1$. (*f* is also called a *K*-bilipschitz map.) We prove the following result.

THEOREM 3.11 Theorem 3.9 is still true if $f : \Omega \to \Omega'$ is an φ -quasiisometric mapping with $m \le |\varphi'(t)| \le M$ and $\varphi(0) = 0$, where m, M are positive real numbers.

Proof For any $x, y \in \Omega$, $|x-y| < \infty$. By the virtue of Mean Value Theorem, there exists $\xi \in (0, |x-y|)$, such that $\varphi(|x-y|) - \varphi(0) = \varphi'(\xi)(|x-y| - 0)$. Thus,

$$m|x-y| \le \varphi(|x-y|) \le M|x-y| \tag{3.12}$$

because of $m \le |\varphi'(t)| \le M$ for all $t \in [0, \infty)$.

On the other hand, $(1/M) \le |(\varphi^{-1})'(t)| \le (1/m)$ due to homeomorphism property of φ . Thus, we also have

$$\frac{1}{M}|x-y| \le \varphi^{-1}(|x-y|) \le \frac{1}{m}|x-y|.$$
(3.13)

Combining (3.12) and (3.13), we obtain the inequality

$$\frac{1}{M}|x-y| \leq |f(x)-f(y)| \leq M|x-y|,$$

which is just the case of Theorem 3.9.

According to Väisälä [13], a homeomorphism $f: \Omega \subset \mathbb{R}^n \to \Omega'$ is a k-quasi-isometric mapping implies that it is a K-quasi-conformal mapping. Theorems 3.6, 3.9 show that the K-quasi-isometric mappings preserve the A_r weights and $L^s(\mu)$ -averaging domains. Then naturally, one would ask that if K-quasi-conformal mappings also preserve those properties. The answer is No. Staples [11] shows that L^s -averaging domains are not invariant with respect to quasi-conformal self-mappings of \mathbb{R}^n . Therefore neither are $L^s(\mu)$ -averaging domains, since we can choose weight w(x) = 1 for the measure μ defined by $d\mu = w(x)dx$. Ding and Nolder [3] show that if $f: \Omega \subset \mathbb{R}^n \to \Omega'$ is a K-quasi-conformal mapping and Ω' is an $L^s(m)$ -averaging domain, where m is n-dimensional Lebesgue measure, then Ω is an $L^s(\mu)$ -averaging domain with $d\mu = J(f)dm$, and J(f) is the Jacobian determinant of f. Now we proof that the inverse of this result is also true.

THEOREM 3.14 Let f be a K-quasi-conformal mapping of an $L^{s}(\mu)$ averaging domain $\Omega \subset \mathbb{R}^{n}$ onto a proper subdomain $\Omega' \subset \mathbb{R}^{n}$ for $s \ge 1$, where μ is a measure defined by $d\mu = J(f) dx$ and J(f) is the Jacobian of f. Then Ω' is an L^{s} -averaging domain.

Proof Let $x_0, x \in \Omega$ and write y = f(x), $y_0 = f(x_0)$. By Theorem 3 in [5], we have

$$k(f(x), f(x_0); \Omega') \leq C_1 \max(k(x, x_0; \Omega), k(f(x), f(x_0); \Omega')^{\alpha}),$$

where $\alpha = K^{1/(1-n)} \leq 1$. So that we have

$$k(y, y_0; \Omega')^s \leq C_2(k(y, y_0; \Omega')^s + k(y, y_0; \Omega')^{\alpha s}).$$

We may assume that $\alpha < 1$. Then by the generalized Hölder's inequality,

$$\left(\int_{\Omega} k(x, x_0; \Omega)^{\alpha s} d\mu\right)^{(1/\alpha s)} \leq \left(\int_{\Omega} d\mu\right)^{((s-\alpha s)/\alpha s^2)} \left(\int_{\Omega} k(x, x_0; \Omega)^s d\mu\right)^{(1/s)} = (\mu(\Omega))^{((1-\alpha)/\alpha s)} \left(\int_{\Omega} k(x, x_0; \Omega)^s d\mu\right)^{(1/s)}.$$
(3.15)

Thus,

$$\begin{split} \int_{\Omega'} k(y, y_0; \Omega')^s dy &\leq C_2 \bigg(\int_{\Omega} k(x, x_0; \Omega)^s J(f) dx \\ &+ \int_{\Omega} k(x, x_0; \Omega)^{\alpha s} J(f) dx \bigg) \\ &\leq C_2 \bigg(\int_{\Omega} k(x, x_0; \Omega)^s d\mu + \int_{\Omega} k(x, x_0; \Omega)^{\alpha s} d\mu \bigg) \\ &\leq C_2 \bigg(\int_{\Omega} k(x, x_0; \Omega)^s d\mu \\ &+ \mu(\Omega)^{1-\alpha} \bigg(\int_{\Omega} k(x, x_0; \Omega)^s d\mu \bigg)^{\alpha} \bigg) < \infty. \end{split}$$

Therefore, Ω' is an L^s -averaging domain (or $L^s(m)$ -averaging domain where *m* is the Lebesgue measure).

Now we construct an example of $L^{s}(\mu)$ -averaging domain by the similar method used in [11].

Example We consider a domain $\Omega = Q \cup S \subset \mathbb{R}^n$, where Q is the cube $Q = \{(x_1, x_2, \dots, x_n) : |x_1 - 2|, |x_2|, \dots, |x_n| < 1\}$, and S is a spire $S = \{(x_1, x_2, \dots, x_n) : \sum_{i=2}^n (x_i)^2 < g(x_1)^2, 0 \le x_1 < 1\}$, where g(x) satisfies the following properties:

(i) g(0) = 0, $g(1) \le 1$, (ii) $0 < g'(x) \le M$, for $0 < x \le 1$, (iii) $g''(x) \ge 0$, for $0 \le x \le 1$.

Then Ω is an $L^{s}(\mu)$ -averaging domain with $w \in WRH(\Omega)$ if

$$\int_0^1 g(x)^{n-1} \left(\int_x^1 \frac{1}{g(t)} dt \right)^{sp} dx < \infty, \quad p > 1.$$
 (3.16)

Proof Let $z_0 = (1, 0, ..., 0)$ be our fixed point. We will estimate $k(z, z_0)$ for $z = (z_1, z_2, ..., z_n) \in S$ as follows. Let $y = (z_1, 0, ..., 0)$. Then $k(z, z_0) \leq k(z, y) + k(y, z_0)$. For the upper bound of k(z, y), we examine the cross section of S when $x_1 = z_1$, see [11 and 3], and have

$$k(z,y) \le \log \frac{g(z_1)}{g(z_1) - r}$$
, where $r^2 = \sum_{i=2}^n (z_i)^2$. (3.17)

For upper bound of $k(y, z_0)$, we consider the distance of any point $y = (x_1, 0, ..., 0)$ to the boundary of Ω , which satisfies

$$g(x_1) \ge d(y, \partial \Omega) \ge g(x_1) \cos \theta$$
, where $\tan \theta = g'(x_1)$.

Then, by (ii),

$$\frac{1}{g(x_1)} \le \frac{1}{d(y,\partial\Omega)} \le \frac{1}{g(x_1)} (g'(x_1)^2 + 1)^{1/2} \le \frac{c}{g(x_1)}, \quad (3.18)$$

therefore,

$$\left(\int_{z_1}^1 \frac{1}{g(t)} dt\right)^s \le k(z, z_0)^s \le C \left(\int_{z_1}^1 \frac{1}{g(t)} dt\right)^s.$$
 (3.19)

Since $k(z, z_0)^s \le 2^s (k(z, y)^s + k(y, z_0)^s)$, using (3.17) and applying (3.19) to $k(y, z_0)$ yields

$$\left(\int_{z_1}^1 \frac{1}{g(t)} dt\right)^s \le k(z, z_0)^s$$
$$\le 2^s \left[\left(\log \frac{g(z_1)}{g(z_1) - r}\right)^s + \left(C \int_{z_1}^1 \frac{1}{g(t)} dt\right)^s \right]. \quad (3.20)$$

Thus,

$$\int_{S} \left(\int_{z_{1}}^{1} \frac{1}{g(t)} dt \right)^{s} d\mu \leq \int_{S} k(z, z_{0})^{s} d\mu$$
$$\leq C_{1} \int_{S} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{s} d\mu$$
$$+ C_{2} \int_{S} \left(\int_{z_{1}}^{1} \frac{1}{g(t)} dt \right)^{s} d\mu.$$

Note that $d\mu = w(x)dx$ with $w \in WRH(\Omega)$, then w is a weak doubling weight, *i.e.*, there is a constant C such that $\mu(2B) \leq C\mu(B)$ for all balls B with $2B \subset \Omega$. Let B be the unit ball with the center at origin, then $S \subset B$. By the virtue of Hölder inequality and weak reverse Hölder inequality and (1/p)+(1/q)=1 for some p > 1 and q > 1, we yield

$$\begin{split} &\int_{S} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{s} d\mu \\ &\leq \left(\int_{S} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{sp} dx \right)^{1/p} \left(\int_{S} w^{q} dx \right)^{1/q} \\ &\leq C \left(\int_{S} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{sp} dx \right)^{1/p} |B|^{1/q} \left(\frac{1}{|B|} \int_{B} w^{q} dx \right)^{1/q} \\ &\leq C_{1} \left(\int_{S} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{sp} dx \right)^{1/p} |B|^{1/q - 1} \int_{2B} w dx \\ &\leq C_{2} \left(\int_{S} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{sp} dx \right)^{1/p} \mu(B) \\ &\leq C_{3} \left(\int_{S} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{sp} dx \right)^{1/p} . \\ &\leq C_{3} \left(\int_{0}^{1} \int_{0}^{g(x)} \left(\log \frac{g(z_{1})}{g(z_{1}) - r} \right)^{sp} r^{n-2} dr dx \right)^{1/p} < \infty, \\ &\text{ for all } n > 2 \text{ and } s > 1. \end{split}$$

Similarly,

$$\int_{S} \left(\int_{z_{1}}^{1} \frac{1}{g(t)} dt \right)^{s} d\mu \leq C_{4} \left(\int_{0}^{1} \int_{0}^{g(x)} \left(\int_{x}^{1} \frac{1}{g(t)} dt \right)^{sp} r^{n-2} dr dx \right)^{1/p} \\ \leq C_{5} \left(\int_{0}^{1} g(x)^{n-1} \left(\int_{x}^{1} \frac{1}{g(t)} dt \right)^{sp} dx \right)^{1/p}.$$

Thus, the conclusion of Example 3 holds.

Considering a special case of the Example as $g(x_1) = x_1^{\alpha}$ for $\alpha > 1$ and sp+1 > n, the spire S is an $L^s(\mu)$ -averaging domain if $\alpha < ((sp+1)/(sp+1-n))$.

References

- Ding, S. (1997). Weighted Hardy-Littlewood inequality for A-harmonic tensors. Proc. Amer. Math. Soc., 125(6), 1727-1735.
- [2] Ding, S. and Liu, B., Generalized Poincaré inequalities for solutions to the Aharmonic equation in certain domains, J. of Math. Anal. & Appl., to appear.
- [3] Ding, S. and Nolder, C. A., $L^{s}(\mu)$ -averaging domains and their applications, preprint.

- [4] Gehting, F. W. and Martio, O. (1985). Lipschitz classes and quasi-conformal mappings. Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10, 203-219.
- [5] Gehring, F. W. and Osgood, B. G. (1987). Lipschitz classes and quasi-conformal extension domains. *Complex Variables*, 9, 175-188.
- [6] Gehring, F. W. and Palka, B. P. (1976). Quasiconformally homogeneous domains. J. Analyse Math., 30, 172-199.
- [7] Iwaniec, T. and Martin, G. (1993). Quasiregular mappings in even dimensions. Acta Math., 170, 29-81.
- [8] Liu, B. and Ding, S. (1999). The Monotonic property of L^s(µ)-averaging domains and weighted weak reverse Hölder inequality. I. Math. Anal. Appl., 237, 730-739.
- [9] Nolder, C., (1999). Hardy-Littlewood theorems for A-harmonic tensors. Illinois Journal of Mathematics, 43, 613-631.
- [10] Stein, E. M., Singular integrals and differentiability properties of functions. Princton University Press, Princton, 1970.
- [11] Staples, S. G. (1989). L^p-averaging domains and the Poincaré inequality. Ann. Acad. Sci. Fenn, Ser. A.I. Math., 14, 103-127.
- [12] Smith, W. S. and Stegenga, D. A. (1991). Exponential integrability of the quasihyperbolic metric on Hölder domains. Ann. Acad. Sci. Fenn. Ser. A.I. Math., 16, 345-360.
- [13] Väisälä, J. (1992). Domains and maps. Lecture Notes in Mathematics, Springer-Verlag, 1508, 119-131.