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A global bifurcation theorem for the following nonlinear Sturm-Liouville problem is
given

u"(t)=-h(A,t,u(t),u’(t)), a.e. on (0,1)
u(O)cosr/- u’(O)sinr/= 0
u(1)cos( + u’(1)sin 0 with r/, [0, ].

(,)

Moreover we give various versions of existence theorems for boundary value
problems

u"(t)=-g(t,u(t),u’(t)),
u(O)cosr/- u’(O)sinr/= 0
u(1)cos + u’(1)sing" O.

a.e. on (0,1)

The main idea of these proofs is studying properties of an unbounded connected subset
of the set of all nontrivial solutions of the nonlinear spectral problem (.), associated with
the boundary value problem (**), in such a way that h(1,.,., .)= g.

Keywords and Phrases: Nonlinear eigenvalue problems; Bifurcation points; Sturm-
Liouville problems;. Bernstein conditions

AMS Classifications: 34C23, 34B24

In this paper we will study the nonlinear spectral Sturm-Liouville
problem

u"(t) -h(A, t, u(t), u’(t)),
uES

a.e. on (0, 1)
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484 J. GULGOWSKI

where

,.q {u C [0, 1]" u(0)cosr/- u’(0)sinr/
0 A u(1)cos( + u’(1)sin 0}

for r/, [0, (7r/2)]. Let us also denote

S0 {u C [0, 1]" u(0)cosr/- u’(0)sinr/
0 A u(1)cos + u’(1)sin( 0}

where r/, (0, (7r/2)]. In Section we give some sufficient conditions
for the existence of an unbounded connected subset of the set of all
nontrivial, nonnegative solutions of this problem.

In Section 2 we give some conditions for function g" [0, 1] x R x
R R, sufficient for existence of nonnegative solution of the follow-
ing problem

u"(t) -g(t,u(t),u’(t)) for t(0,1)
u ,.q.

All we assume is a behaviour of g(t,., .) R2R in the neigh-
bourhood of the zero point (0, 0) R2 uniformly with respect to
[0, 1] and for the large arguments (s,y) R2, and the Bernstein con-
ditions (cf. [2]) need not be satisfied.
Mawhin and Omana showed in [4] that if a Caratheodory function

’[0, 1] x R --. R satisfies the following conditions

(t,O) O;liminf s-l,(t,s) >#0 and limsups-,(t,s) <#o
s--+oo s...O+

uniformly with respect to [0, 1]

then there exists a nonnegative solution of the problem

u"(t) + (p’(t)/p(t))d(t) -o(t,u(t)) a.e. on (0, 1) (t)u(0) 0, u(1) 0

where #o is the minimal eigenvalue of the linear problem

u"(t) + (p’(t)/p(t))e(t) -Au(t) a.e. on (0, 1)
u(0) =0

and p" [0, 1] R is continuous and such that Pl<0, cl(0, 1], p(0)=0,
p(t) > 0 for (0, 1] and (l/p) Ll(0, 1).
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In this paper we prove a theorem which is a generalization of the
above result for some class of Pieard problems with a Caratheodory
right hand side depending on t, u, u’.

All proofs of the existence theorems are based on ideas differing
from those used in papers [2] or [4]; we can see that a priori bounds and
topological transversality theorems are not necessary here. The main
idea of these proofs is studying properties of an unbounded connected
subset of the set of all nontrivial solutions of a nonlinear spectral
problem (.) associated with the boundary value problem (**), such
that h(1,.,., .)= g. The existence of this subset can be established by
the global bifurcation theorem (eft [6, 3]).

1. GLOBAL BIFURCATION THEOREM
FOR STURM-LIOUVILLE PROBLEM

In this paper we will need the following notations. Let (., .) be a scalar
product in L2(0, 1). Let I1"11o be the supremum norm in C[0, 1] and I1’11 
be the norm in C[O, 1] given by Ilull Ilullo/llu’ll0.

Let F: (0, +oo)x CI[0, 1] C[0, 1] be a completely continuous
map such that F(., 0)= 0 and let f: (0, +oo) x C[O, 1] C[0, 1] be a
map given by f(A, u) u F(A, u). The point (A0, 0) is a bifurcation
point of the map f (0, + o0) x C[0, 1] --, C[0, 1] if for all open
Uc (0, +oo) x C[0, 1] satisfying (Ao, 0) U there exists (A, u) U,
such that u # 0 andf (A, u) 0.

If (A0, 0) is the bifurcation point that is an isolated one in the set of
all bifurcation points of the mapfthen there exists such eo > 0 that for
any 6 (0, e0) there exists positive R > 0, such that

If(A, ,)]-1(0)K(O,R) {0) for

A [A0 0, A0 6] o [A0 + , A0 + 0]
(1.1)

Moreover, by additivity and homotopy properties of topological
degree the number

s[f, o] deg(f(Ao + eo, .), K(0, R), 0)-
deg(f(Ao eo, .), K(0, R), 0)

is well defined.
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On the other hand if AoE(0, +o) satisfies condition (1.1) and
s[f, A0] # 0 then (A0, 0) is the isolated bifurcation point off.
The next theorem is a corollary from the global bifurcation theorem

(eft [6, 3]) and will be the main tool used in this paper.

THEOREM A If (Ao, 0)E (0, +oo) x C[0, 1] is the unique bifurcation
point off and sir, Ao]#0 then there exists a connected component C of
the set

7f {(A, u)R C[0, 1] "f(A, u) 0 A u # 0}

such that C is not compact and (Ao, 0)E C.

Let us remind that h [0, +o) x [0, 1] x R R R is a Caratheod-
ory function, if h(., t,., .) [0, +o) R R R is continuous for

[0, 1], h(A,., s, y)" [0, 1] R is measurable for (A, s, y) [0, +) x
R x R and

R > 0:qmR E L’(0,1)’(A,s,y)E [0,+oo) R2’t E tO, lllAI + Isl + lYl
< R =v Ih(A, t,s,y)l < m(t).

Assume that

h(.,.,0,.) =0 (1.2)

h(0,.,.,.) =0 (1.3)

and

::]m > 0re > 0:]6 > 0ts > 0y E RVA _> 0Vt E to, l Isl +
< 6 = [h(A, t, s, y) mAsl <_

(1.4)

THEOREM 1 Assume h’[0, + oe) x [0, 1] x R x R-. R is the Car-
atheodory function satisfying conditions (1.2)- (1.4). Then there exists
unbounded connected subset C c (0, +o) x C1[0, 1] of the set of all
nontrivial solutions of the problem

u"(t) + #u(t) + h(A, t, u(t), ut(t)) 0

uES

a.e. on (0, 1)
(1.5)
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such that { (0, ((#0 #)/m))} E C andfor every (A, u) C we have u > O,
where # < #o is any nonpositive number and #o is the minimal eigenvalue
of the linear problem

u"(t)+Au(t)=O t(0,1)
u8.

Proof First let us remind some properties of linear problem (A). It
is well known (see [5]) that there exists the minimal eigenvalue #0 > 0
of the problem x, such that the space of its eigenvectors is generated
by a function u0 C2[0, 1] satisfying Uo(t) > 0 for E (0, 1). For every A
which is not the eigenvalue of x there exists a continuous linear map
Tx" L(0, 1) - C[0, 1], such that

Txv u { u"(t)uS.+ Au(t) + v(t) 0 a.e. on (0, 1) (1.6)

and T" L2(0, 1) L2(0, 1) is self-adjoint, and T" C[0, 1] C[0, 1] is
completely continuous (see [1]).
We can see (cf. [5]), that for A < 0 and v > 0 we have Txv > O.
Condition (1.4) implies that

=qfl > Oro >Ors >_oVynVx >_oVt[o,qlsl + lYl <-ro h(A,t,s,y) >_
(1.7)

Let us define the Caratheodory function h [0, +) x [0, 1] x R x
R--, R by

{ h(A, t, s, y) for s >_ 0
h(A, t, s, y) /11 for s < 0

Let us choose #<min{#0,0}. We will consider the map f"
[0, +o) x C1[0, 1] C1[0, 1] given by f(A, u) u- T,G(A, u), where
G’[0, +) x Cl[0, 1] L(0, 1) is Niemytskii operator for function ,
given by G(A, u)(t) h(A, t, u(t), u’(t)).
We can see that for u > 0 we have

f(A, u) 0

un(t) -t- lzu(t) + h(A, t, u(t), ut(t)) 0 a.e. on (0, 1)
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First we are going to show the map f is a completely continuous
vector field. We will prove that T, o G" [0, + oo) x C[0, 1] - C[0, 1] is
completely continuous. Let us then take a sequence {(A,un)}c
[0, +o)x C[O, 1] such that IAI _< (R/2) and Ilull _< (R/2) for some
positive R > 0. Then ]G(A, u)(t)l < rag(t). We will prove that if v
T,G(A,u) then sequences (v,} and (} are uniformly bounded and
{} is equieontinuous.
We know (see [1]) that there exists continuous Green function t"

[0, 1]2 --. R such that (T,u)(t) f (t,s)u(s)ds and (O(a/Ot)(t,s) exists
for (t,s)e{(t,s)E[O,l]2"tys}. We can also see that (Ot/Ot)(t,s) is
uniformly continuous on triangles {(t,s)[O, 112"t < s) and {(t,s)E
[0, 112"s < t}, hence is bounded function.
That is why we have IIvll0 _< sup(t,)e[0,q I(t,)l m(t)dt and

(t)=f(O/Ot)(t,s)u(s). We can see then that

II(O/Ot)ll,ooIo,l f m(t)dt. Now we will show that {v’) are equi-
continuous. Let t, t2 E [0, 1] be such that t < t2; then we have

m(s)ds +

m(s)ds +

We can see that because (O(a/Ot) is uniformly continuous we can
choose 6 > 0 such that for [t t2[ _< the first and second terms of the
right hand side of the above inequality are less then (e/3). The third

can be bounded by It2- t[ll(cg/cgt)ll.oo([o,q2)f mR(t)dt so weterm
can see that for any e > 0 we can find 6 > 0 such that for every n E N
and t, t2 [0, 1] such that It- t21 < 6 there is I(t) v’(t2)l < e.
Hence by Arzela-Ascoli theorem there exists a subsequence of {vn}
convergent in C[0, 1].
The rest of the proof will be divided into 3 Steps.

Step 1 First we will prove that iff(A, u)= 0 then u > 0. Let us observe
that if to(O, 1) is a negative minimum of u then for from the
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neighbourhood (to-6, to+6) there is u(t)<0 and for almost every
e (to 6, to + 6) we have

un(t) + #u(t) + (A,t,u(t),ut(t)) 0

u#(t) + #u(t) A/Ju(t) 0

hence

u"(t) < 0

which is impossible in the neighbourhood of local minimum. So we
can see that the negative minimum of u is achieved on the boundary
of the interval [0, 1], but it is impossible for u ,.q (see [5]). That is why
for every solution (A, u) off(A, u)=0 there is u > 0.

Step 2 Now we are going to show that if (A, 0) is a bifurcation point
of f then A=((#0-#)/m). To prove the above statement we will
observe that for any sequence {(An, un)} such that f(An, un) 0,
Ilu,ll #0, An ,X and Ilulla0 there is A ((#0- #)/m). Let

Un TG(An, Un).

Labeling Vn’--(Un/llullo) we have

vn T(mAnVn) -I- T# ( G(An’ un) mAnun )IlUnll0
we can see then that limn- +oo ((llG(An, U)-mAunllo)/llullo)=O so the
sequence {vn} must have a subsequence convergent in C[0, 1]. Labeling
this subsequence as {vn} and letting n +c we have

vo mTtvo
where limn_ +oo Vn VO. Because llv0llo- and vn > 0 we can see that v0
is nonnegative eigenvector of the problem u= AT,u, and mA is an
eigenvalue associated with it, hence mA #, which is our claim.
The above reasoning allows us to observe that for every compact

interval [a,b] c[O, +oo)\{((#o-#)/m)} there exists r > 0 such that

V(,,u) la,bl x(O,r) f(A, U) 0 = U O.
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Step 3 Now we are going to show that the point (A0, 0) satisfies
condition (1.1) and s[f, Ao] for A0 ((#0- #)/m). Let us choose
any 0 < A1 < ((#0-#)/m). There exists r > 0, such that

V(,X,u) [0,,x,] x tc(0,r) f(A, u) 0 = u 0

Hence the homotopy hi [0, 1] x K(0, r) C [0, 1] given by hi(t, u)
f(Alt, U) is well defined and d-=deg(f(A,0), K(0,r),0)=
deg(f (0, .), K(0, r), 0). Because f(O, u) u- T,G(O, u) u we have
d- deg(/, K(0, r), 0) 1.

Let A2 > ((0 #)/m) be fixed. Just like before we can observe that
for any Aa > A2 there exists r E (0, to), such that f(A2, .) may be joined
by homotopy with f (A3, .) on K(0, r). Let A3 > A2 be such that
(/zo-#)) > 1. Consider the homotopy h2" [0, 1] x K(O,r) C[0, 1]
given by h2(t, u) f (A3, u)- tUo. We will show that h2(t, u) :A 0 for
E (0, 1] and u E K(0, r). On the contrary, assume that h2(t, u) 0. First
we should notice that for u EK(O,r) there is G(A3, u)>_0 and if
u= A3aT,G(Aa, u)+tuo then u > 0. So we have

(1.8)

for T, is self-adjoint and T,uo (1/(#o-#))u0, a contradiction. That is
why d+ deg(f(A2, .), K(0, r), 0) 0.

Because s[f, ((#o #)/m)] and (((#0-#)/m), O) is the unique
bifurcation point of f by Theorem A there exists an unbounded
connected component C of the set of nontrivial solutions off(A, u) 0
such that (((#0 #)/m), 0) g’. Because for all (A, u) C we have u >_ 0
and (A, u) is a solution of the problem (1.5). So C is a connected and
unbounded subset of the set of all nontrivial solutions of the problem
(.5).

We can see that the Niemytskii operator G’[0, +o) C[0, 1]
L(0, 1) for Caratheodory function " [0, +oo) x [0, 1] R R R
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given by G(A, u)(t) h(A, t, u(t), u’(t)) satisfies following conditions

_< 6 IG(A, u)(t) mAu(t)l <_ eAlu(t)l.
(1.9)

and

Vte[O,llVueC,[O,llVA>_ou(t) <0 = G(A,u)(t) > O. (1.10)

We call the map G’[O, +o)x CI[O, 1]LI(O, 1) an integrably
bounded when

tR > 0mR ELI (0,1)(,X,u) E [0,+oo) x C’[0,1l’V’t e [0,1l A]
/ Ilull _< e IG(A, u)(t)l

We can see that the proof of the above theorem remains unchanged
ifwe assume G" [0, +) x C[0, 1] L(0, 1) is an integrably bounded
map satisfying (1.9)-(1.10), not necessarily a Niemytskii operator for
a Caratheodory function. So we have the following lemma.

LEUMA 1.11 Assume G’[0, +) x C[0, 1] L(0, 1) is a continuous
and an integrably bounded map satisfying conditions (1.9)-(1.10) andf:
[0, +) x CI[0, 1] C[0, 1] is given by f(A, u) u- TgG(A, u), where
Tg" L(0, 1)C[0, 1] is given by (1.6)for any nonpositive number
g < go and o is the minimal eigenvalue of the problem (E). Then there
exists unbounded connected subset C c (0, +) x C[0, 1] of the set of
all nontrivial solutions of the equatwn f(A,u)=0 such that (((g0-
)/m), O) s andfor (A, u) s C we have u O.

2. EXISTENCE THEOREMS

THEOREM 2 Let #o be the minimal eigenvalue of the linear problem
(EA) and a, E R be constants such that a < #o < fl, let p, q, q2

LI(0, 1) and let g:[0, 1] x R x R-, R be a Caratheodory function
satisfying the following conditions

3ro>OVs>OVyRs+[y[<_ro=g(t,s,y)<_as, a.e. int[O, 1]; (2.1)

Vy Rg(t, O, y) >_ O, a.e. in [0, 1] (2.2)
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and

n0 >0 _> 0y s + lYl >- R0 /s _< g(t, s, y)
< p(t) + ql (t)s + q2(t)lyl,

a.e. in tel0,1]
(2.3)

Then there exists nonnegative, nonzero solution of the problem

u"(t) + g(t,u(t),u’(t)) 0 a.e. on (0, 1)
uES.

Proof Let us choose any # < min{0, c} and denote t c # > 0
and fl fl- #.

Let us define the Caratheodory function ," [0, 1] x R x R R by

g(t, s, y) Us,(t,s,y) ,lsl +g(t,0,y)
for s>0
for s<0

Let us observe that for s < 0 because of (2.2) we have ,(t,s,y)>
 lsl > 0.

Let U =K(0,ro) and U2 C[0, 1]\K(0, (to/2)). These sets are the
open cover of the space C[0, 1]. Let {b, bz} be a continuous partition
of unity on C[0, 1] such that suppbic Ui for i= 1,2. Let Go’[0, +
oo) x C[0, 1] C[0, 1] be given by Go(A, u) Abl (u)tlul+)b2(u)
t(u), where t" C[0, 1] C[0, 1] is Niemytskii operator for func-
tion ,. Let G [0, +o)x Cl[0, 1] C[0, 1] be given by G(),u)=

Let/z, #2 be positive numbers such that ((#0- #)/t)< # </2.
Consider the continuous partition of unity b, b2 assigned to an open
cover {[0, #2), (/z, +o)} of the interval [0, +o). Let G [0, +o) x
C[0, 1]--o C[0, 1] be given by

o(a, u) (a)o0(a, u) + 2(a)o (a, u). (2.4)

Of course for , > #2 we have G(, u)= G(,, u), and for , < #1 there
is G(,, u)= Go(,k,u). We can also see that for Ilull _< (to/2) and any
> 0 the equality holds G(,k, u)  , lul.
Consider the completely continuous vector field f" [0, +oo)x

C[0, 1] C[0, 1] given byf(),u)=u- T,G(A,u). We can see that G is
an integrably bounded map satisfying (1.9) and (1.10) so by Lemma
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1.11 there exists unbounded connected subset C of the set of nontrivial
solutions of the equation u T,G(A, u) such that ((( -/z)/), 0) ’and for (A,u) C we have u> 0. If we additionaly assume that
Ilull >_ r0 and A E [0, #] then u is a solution of the problem

u"(t) + #u(t) + A(g(t, u(t), ut(t)) #u(t)) 0
u.,S

Because < #o #, there is 1 < ((#o #)/) < #l and for Ilull, _> ro
we have

un(t) + g(t, u(t) ut(t)) 0
u TG(1 u) uE,.q

We have just seen that for (A,u)E C such that A > #2 we have
G(A, u) > Atlul, which means (ef. (1.8)), that 1 (tA/(#o -/z)) > 0,
so A < ((#0 #)/6) < #2. That is why the component C c [0, #2] x
C[0, 1], and there must exist a sequence {(A,u)} c C satisfying
lim_,+oo ]]u]l +oo and An --* A [0, #2]. We are going to show that
A < 1. Let us denote by II(C)c[0, +oo) the projection of the
component C on the first factor of the product [0, +oo)x C[0, 1].
Of course ((#0 #)/t) E II(C) and if A < then there must exist A <
such that A II(C) so we have also II(C). Hence there must exists
such u E C[0, ], that u T,G(1, u).

Let the sequence {(A,u)}c C be such that Ilull /o and
A . We can assume that Ilull _> R0 > r0, Let m EL (0, 1) be an
integrable function such that Ig(t, u(t), u’(t))l _< m0(t) for lu(t)l +
lu’(01 _< R0.
Then we have G(An, Un) > AnflUn- AnmRo AnRo and

[g(t,u,(t),u’(t))l < mso(t) < mlo(t)
IlUnll --IlUnll- Ro

for such that lu(t)l + lU’n(t)l <_ Ro

Ig(t, u(t), U’n(t)) < Iq (t)l + Iq2(t)l + Ip(t)____[I
IlUnll Ro

for such that lu(t)l + Ju’(t)l > Ro.

We can see then that the sequence (G(A.,un)/llu.ll)L(O, 1) is
uniformly bounded by an integrable function, so the sequence
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Tu(G(An, U)/IlUnlI) has a subsequence convergent in cl[0, 1]. Let us
denote Vn (u/llull O. Because Vn AnTz(G(An, u)/llull ) we can
assume that Vn VO in C1[0, 1].

Since Tu is a self-adjoint operator and (#o-#)Tzuo Uo we can
observe that,

(An, Un)

By (2.3) and because Un > 0 we have

(Vn, Uo) >_ An_ (Vn mR R )UO
lz0 IlUnll

Letting n +o we have

(,,o, uo) >_ (fl,,o, uo)

and

(z0 , )(v0, u0) >_ 0

which because Uo, Vo E C [0, 1] are nonzero and nonnegative gives

< #o-# < 1

which is the desired conclusion.
We will show that if (1, u)C then Ilull _> to, To obtain a

contradiction, suppose that Ilull _<to and u= TzG(1,u). Then u>0
and

G(1,u)(t) < pl(U)U(t) + q2(u)6zu(t) 6zu(t)

So we can write

0 (u, uo) (TaG(l, u), uo) (u, uo) (O(1, u), Uo) >
#o -/z

c
(u, uo)

o
(u, uo).(u, uo)
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This means that 1 (c/(#0 #)) _< 0 and t >_ #0 # which contra-
dicts (2.1).
So we proved the existence of u E C[0, 1], such that u _> 0, Ilu]l >_ r0,

and u TuG(l, u) which completes the proof.

As far as problems with (S0) boundary conditions are concerned the
condition (2.3) may be replaced by weaker ones. Let Ro > 0 be a
positive number, such that Caratheodory function g:[0, 1] x R x
R R satisfies (2.1)-(2.2) and

V_>0Vyenlyl>_R0 g(t,s,y) >_0, a.e. in tE[0,1] (2.5)

Vs>OVyens>_Rog(t,s,y)>_fls, a.e. intE[O, 1] (2.6)

THEOREM 3 Suppose g’[0, 1] x R x R R is a Caratheodory function
satisfying conditions (2.1), (2.2), (2.5), (2.6). Then there exists nonzero,
nonnegative solution of the problem

u"(t) + g(t, u(t), u’(t)) O,
u ,.qo.

a.e. on (0, 1)

Proof As in the proof of Theorem 2 we define the compact vector
field f" [0, + oo) x C [0, C1[0, 1] given byf(, u) u- Tu G(A, u),
where G" [0, +oo)x C[0, 1]L(0,1) is given by (2.4), such that
there exists the connected component C of the set of nontrivial
solutions of the equationf(, u) =0 bifurcating from (((#0 #)/t), 0)
and Cc[0,#2] x C[0, 1]. It is sufficient to show that there exists
(, u) C, such that A _< 1.
As before we can observe that there exists a sequence {(A, u)} c C

such that Ilunll - / and An A. Assume that Ilunll >_ Ro. Suppose,
contrary to our claim, that A > > ((#0 #)//3). Then we have

(Un, uo) >_ (Un me Ro, uo)
#o #

hence

Iz23(mto, uo) > (An- (P,o #))(Un, uo)
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We can assume that AB (#0 #) >_ e > 0 for some e > O. Then

0 < (Un, uo) < -(m0, u0).

Now we are going to show that the sequence {(Un, Uo)} is not
bounded which contradicts the previous inequality and ends the
proof.
We know that IlUnlll IlUnll0 / IIllo /oo. If there exists a

constant M > 0 such that Ilullo _< M then we must have Ilullo
and because

Un(t) Un(O) + t[n(s)ds

there is also

Vte [o,lUn(0) + M > Un(t) > un(O) M

and so u(0) +oo and inftto,l u(t) +oo. This means that
lim__.+oo(U., Uo) +oo.

Let us assume then Ilu’llo +o. For r/, (0, (7r/2)] there we have
inequalities

un(O un(O) ctg r/> 0. (2.7)

un’(1) Un(1) ctg " _< 0. (2.8)

Assume IIl[o > Ro. First suppose there exists to(0, 1) such that
Ilu,llo =u(to). Then there exists 6>0, such that U’n(t >Ro for

[to-6, to+6] and because of (2.5) and A > there is

u(t) -#u(t)(1 An) Ang(t, u(t), tC’(t)) _< 0

for a.e. [to- , to+ 6]. Hence Un (to) < tn (to 6). We can see then
that there must be un(O > (to). Similarly we show, that if-I111o
U’n(tO then there is gn(1)<U’n(tO). That is why if Ilu’nllo>_Ro then

IIllo max{u’n(0),--U’n(1)}"
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We should consider four cases"

(A) If un(O u’n(1 0 then there must be Ilu’ llo Ro which, as we
have shown before, implies (Un, uo) +c.

(B) Assume u’. (1) 0 and u’. (0) Ilu’. [Io E Ro. Because r/ @/2) then,
and u’. (t) E Ro we have

Un(t) > Un(O) Ro t/n(0 tg r/- Ro Ilu’,llo tg r/- Ro ---} c

for ’[0, 1]. Of course, then we have (u, Uo)
< Ro then as in (B) we can see(C) If u.(0) 0 and u.(1) -Ilu’ llo

that u. (t) < Ro and

Un(t) > Un(1) Ro -U’n(1 tg ( Ro Ilu’ llo tg ( Ro --} x3

(D) Suppose (1) < 0 and u’n (0) > 0. Then of course r/, ( E (0, @/2)).
We need only consider the case of u’.(0) > Ro and u’.(1) < -Ro.
Then we have u’. (0) > u’. (t) > u. (1). Because

un(1) un(O) + fo _< +

there is also

Un(1)un(O)

_
+ctg 1

Similarly we can get

u.(0)u.(1) >_
+ ctg ("

We conclude from the above inequalities, (2.7) and (2.8) that

u/n(O +oo --Un(1 +cx un(O) -", +cx3 :} Un(1) "-"} +cx3.

Since max(u’.(0),-u’.(1)} + each part of the above equiva-
lence must be true.

Let 6, 6 6 (0, 1) be the numbers such that u’.(t) >_ Ro for 6 [0, 6]
and u’.(t)< -Ro for t616, 1]. Then u.(t)> u.(O) for t6[0, 6] and
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un(t) > un(1) for t [62, 1]. Then we have

_> Ro > u.(O) RoUn(t) Un(tl) Un (s)ds

for [6,
Hence u.(t)>_ min{u.(O), Un(1), un(O)-Ro}--* +o which ends the

proof.

Now we are going to deal with the situation symmetrical to that
considered in Theorems 2 and 3.

THEOREM 4 Let #o be the minimal eigenvalue of the linear problem
(.). Suppose g [0, 1] x R x R -- R is a Caratheodory function such
that there exist integrable functions b, p, ql, q2ELI(0, 1) and real
constants a, R such that < #o </ and following conditions are

satisfied

0 > 0V, _> 0Vy es + lYl <- ro g(t, s, y) > s, a.e. in [0, 1] (2.9)

Vy tg(t, 0, y) > 0, a.e. in [0, 1] (2.10)

o > 0V,_> 0Vrs + lYl > Ro = p(t) + ql(t)s + q2(t)ly
<_ g(t, s, y) <_ b(t) +

a.e. in t[0, 1]

Then there exists nonzero, nonnegative solution of the problem

(2.11)

tg’(t) + g(t,u(t),u’(t)) 0, a.e. on (0, 1) (2.12)uS.

Proof Let us choose # < min{0, a} and denote/3 3- #. Of course

# < #o and/3 > p #. Define " [0, 1] x R x R R by

f g_(t,s,y) US,(t,s,y) / lsl / g(t, o, y)
for s>0
for s<0

by (2.10) we have (t, s, y) >  lsl > 0 for s < 0.
Let {b, b2} be the continuous partition of unity associated with the

open coverage U K(0, to), U2 C[0, 1]\K(0, (r0/2)) of C[0,1]
defined as in the proof of the Theorem 2. Let G" [0, +o) x C1[0, 1]
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C[0,1I be given by G(A,u)= ,(u)lul+A.(u)(u), where t.
C[0, 1] L(0, 1) is the Niemytskii operator for g, and f(A, u)=
u-T,G(A, u). We can see that G is an integrably bounded map
satisfying (1.9)- (1.10) so by Lemma 1.11 there exists an unbounded
component C of the set of nontrivial solutions off(A, u)= 0 such that
(((#0 #)//5), 0) ’ and for (A, u) C we have u >_ 0.
We conclude from the definition of G that if Ilull _< r0 and u _> 0 then

G(1, u)(t) >_ qb (u)flu(t) + dp.(u)flu(t) flu(t).

Hence, as in the proof of Theorem 2 we can see that for u satisfying
u= T,G(1, u) we have Ilull >- ro.
That is why

u) = u"(t) + g(t, u(t), u’(t)) 0
u G( . ue,S

Because the component C is unbounded the set C M ((0, +c) x
(C[0, 1]\K(0,r0))) is unbounded, too. We will show that there exists
u E CI[0, 1] such that (1,u)E C. By II(C) we denote the projection of
C to the first factor of the product (0, +o) x C[0, 1].
There are two possible situations:

(A) E II(C). Then there exists such u E CI[0, 1], that is nonnegative
solution of problem (2.12).

(B) II(C) C (0, 1).

If (B) is satisfied then because the component C is unbounded there
must exist the sequence {(An, u)} C C such that Ilu=ll- /o and
/n ,’ C [0, 1]. As in the proof of Theorem 2 we can assume that (Un/
Ilull) v= vo in C[0, 1].
Then we have

(G(Un) I n (G(Un) I(Vn, no) n T,ilunlll, u0
0 Ilunll u0

Letting n +o we have

(#0 + #- ,)(0, u0) _< 0

by (2.9) and because u > 0. That is why (#o-a) < 0, a contradiction.
That proves that (B) is impossible, which completes the proof.
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Assume p" [0, 1] R is an absolutely continuous function such that
p(t) > 0 for E (0, 1] and (l/p)E L(0, 1). Let g’ [0, 1] x R R be
a Caratheodory function, and go R--. R be continuous. We follow
Mawhin and Omana [4] in studying the problem

un(t) + (ff(t)/p(t))d(t) + g(t,u(t))go(d(t)) O,
u(0) u(1) 0.

a.e. on (0, 1)

(2.13)

Let #0 > 0 be the minimal eigenvalue of the linear problem (ef. [1,4])

d’(t) + (p’(t)/p(t))d(t) + Au(t) 0,
u(0) u(1) 0.

a.e. on (0, 1)

Assume, as before, that there exist constants c, 3E R such that
0 < c < #o < . Additionally let a, 32 > 0. Suppose go satisfies

Vyenal <_ go(Y) <_ a2 (2.14)

Let g satisfies following conditions

3ro > oVs > os < ro == g(t, s)a2 < cs, a.e. in [0, 1] (2.15)

g(t, O) O, a.e. in E [0, 1] (2.16)

to > o/ >_ os >_ Ro ::V g(t, s)al >_ s, a.e. in t [0, 1] (2.17)

or

qro>OVO<_ss<ro = g(t,s)al < s, a.e. in tE[0,1]

=lso > o:1, > o’s >_ o[s sol < 6 = g(t,s) < 0, a.e. in E [0, 1]

(2.18)

(2.19)

THEOREM 5
tion (2.14).

Suppose a continuous function go" R R satisfies condi-

(i) fig: [0, 1] x R x R --, R is a Caratheodoryfunction satisfying condi-
tions (2.15)-(2.17) then there exists nonzero, nonnegative solution

of (2.13).
(ii) Ifg [0, 1] x R x R R is a Caratheodoryfunction satisfying condi-

tions (2.18), (2.19) then there exists nonzero, nonegative solution of
(2.13) such that Ilullo <so.
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Proof It is well known (cf. [1,4]) that there exists a linear continuous
operator T" L(0, 1) C[0, 1] such that

f u"(t) + (p’(t)/p(t))u’(t) +f(t) 0,
rf u

uES.

a.e. on (0, 1)

given by

(Tf)(t) foo
where t" [0, 1] x [0, 1] R is the Green function. We can see (cf. [4])
that t is continuous on [0, 1] x [0, 1], t(t, s) > 0 and t(t, s) t(s, t) for
(s, t) E [0, 1] [0, 1].
We begin by proving (i). Let G’[0, +oo)x C1[0, 114 LI(0, 1) be

defined as in the proof of Theorem 2 by (2.4) where t. C[0, 1]
L(0, 1)is given by (3(u)(t)=g(t,u(t))go(u’(t)), and f’[0, +o)x
C[0,1] C[0,1] be a completely continuous vector field given
byf (A, u) u- TG(A, u). As in the Step of the proof of Theorem
we can show that iff (A, u)=0 then u > 0. The reasoning similar to
that in the Step 2 of the proof of Theorem gives that for
every compact interval [a,b] c [0, +o)\{#0/a} there exists r > 0 such
that

V(,x,u) la,b] K(O,r) f(A, U) 0 = U O.

As in the Step 3 of Theorem we can observe that the point
((#0/c),0) satisfies condition (1.1) and d-= 1. Now we are going to
show that d+ 0 and sLf, (#0/c)] -1.
Our analysis will be similar to that in Step 3 of the proof of Theorem

1. Let A2 > ((#0-#)/m) be fixed. Just like before we can observe that
for any 3 > . there exists r (0, (r0/2)), such that f (A., .) may be
joined by homotopy withf (A3, .) on K(0, r). Let A3 > 9. be such that
(aA3/#0) > 1. Consider the homotopy hi [0, 1] x K(O,r) C[0, 1]
given by h(t, u) f (A3, u)- tUo. We will show that h(t, u) y 0 for

(0, 1] and u K(0, r). First we should observe that for Ilull _< (r0/2)
we have f (A3, u) u- AaaTlu[.



502 J. GULGOWSKI

On the contrary, assume that h(t,u)=O for tE(O, 1] and [lul[ _<r.
Wc can see that if u AaT]u] + tUo then u >_ O. Now we have

0 hi (t, u)()uo()p()d

foo u(,)uo(,)p(,)d,-A3a f01(/1 (,, w)lu(rl)(rl)drl)
uo()p()d- ug()p()d

u()uo()p()d

-A31’(I (,,)u0(,)p(,)d,)lu(o)(o)do-
I u(()p(()d(

o

-t ug()p(ld

Uo
u()uo()p()d- u()p()d < O,

a contradiction. That is why d+ deg(f (A2, .), K(0, r), 0)= 0.
So by Theorem A there exists connected component C of the set of

nontrivial solutions of the equation f(A, u)=0 bifurcating from the
point ((#o/a), 0), and C c (0, #2] x C[0, 1]. We can also observe that
all solutions belonging to C are nonnegative. Now it suffices to show
that there exists (A, u) C, such that A < 1.
Of course there exists the sequence {(An, un)}cC such that

Ilull - /. If we assume that Ilullo _< K then

lu(t)l _< mK(t)p(t)a2#2.

and for u > 0 and u(0)= u(1)= 0 we have u’n(0 > 0 and

uPn(O) + a2#2 mK(t)p(t)dt >_ lu’(t)l

>_ UPn (0) a2/z2 mK(t)p(t)dt.
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If Ilu]10 + then U’n(O --} +o and this means that for E (0, 1)
there is u’(t) > 0 which is impossible since u(O)= u(1)= O.
Hence we can assume that Ilullo- / and Ilullo > So. of course

we can assume that A A. Now we are going to show that A < 1. We
can see that there exists such an integrable function 7 L(O, 1) that

7 > 0 and G(A, u) >_ A/u-7. For every u. such that u TG(A, u)
we have

Un(t)uo(t)p(t)dt

)(t,s)G(An, un)(s)p(s)ds uo(t)p(t)dt=

/o (/o )G(An, un)(s)p(s) O(s, t)uo(t)p(t)dt ds

If., G(An, Un)(s)p(s)uo(s)p(s)ds
#o

Now suppose, contrary to our claim, that A. > 1. So we can write

Un(t)uo(t)p(t)dt G(An, un)(t)uo(t)p(t)dt >

>_ An u(t)uo(t)p(t)dt-

p(t)7(t)uo (t)dt >_

> fl Un(t)uo(t)p(t)dt-

fo p(t)/(t)u(t)dt

and

un(t)uo(t)p(t)dt <
l foo- Po

p(t)’y(t)uo(t)dt

which implies

G(An, un)(t)uo(t)p(t)dt < #fol- #o
p(t)/(t)uo(t)dt.
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Let us define F" (0, 1) (0, 1) ---} R by F(s, t) ((t,s)/uo(s)). We can
see that F is bounded function (see Lemma in [4]).
Hence we have

0 <_ un(t) <_ O(t,s)G(An, Un)(S)p(s)ds

r(t,s)G(.,u.)(s)uo(s)p(s)ds <_

fol_< sup Ir(,t)l/L #o
p(t)7(t)uo(t)dt

(,t) (o,)

which means that the sequence ]lull0 is bounded, a contradiction.
So there must be A < and there must exist A < such that (A, u) C.
Now we are going to prove (ii). Let f" [0, + oc) x cl[0, 1] C1[0, 1]

be a compact vector field given as in the proof of Theorem 4. We can
apply reasoning from (i) to the map f to get the existence of a
connected component Cc (0, +c) x C[0, 1] of the set on nontrivial
zeros of f such that ((//3), 0) C and CIq((0, +o) x K(0, r0)) c
((0, (tt0/)) x K(O, ro)).

Let us observe that the projection of the component C on the first
factor of the product must be unbounded. Suppose, contrary to our
claim, it is not. Then we can observe that for any r > 0 there exists
(, u) C such that IlUllo r. Of course the above is true also for So
given in (2.19). Because there exists t0E(0, 1) such that I]ullo=u(to)
then almost everywhere in the neighbourhood of to we have u"(t)> 0
which is impossible in the neighbourhood of the local maximum. This
contradiction ends the proof.

3. EXAMPLES

Example 3.1 Let us consider the problem

u"(t) -F" (p’(t)/p(t))u’(t) + u(t)) 0
u(O) O, 0

where p [0, 1] R is a continuous function such that P[(0,1] E C1(0,1],
p(0)=0 and p(t) > 0 for E(0, 1] and (1/p)Ll(O, 1).
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In [4] Mawhin and Omana proved that there exists a solution of the
above problem if

(t, 0) 0; liminfs-,(t,s) > #0 and limsups-(t,s)
,f--*+oo $._.0+

< #0 uniformly with respect to t E [0, 1].

Let g . Let us observe that if go R R is given by go(Y) 1 and
we choose a az then for satisfying the above conditions func-
tions g and go satisfy conditions (2.14)-(2.17). Hence by Theorem 5(i)
there exists solution of problem (2.13). Of course it is also the solution
of (M). So Theorem 5(i) is a generalization of the above result given
in [4].

Example 3.2 Let #o be the minimal eigenvalue of the linear problem

(tu’(t)) + Atu(t) 0 for E (0, 1)
u(0) =0

where 0 < a < 1. Let us consider the problem

tau’(t)) + ata(eu(’) 1)P(u(t)) 0 for (0, 1)
u(0) u(1) 0

where P" R R is the polynominal such that P(0)= 1, there exists

So > 0 such that P(so)< 0 and lim+oo P(s)=
If a < #0 then by Theorem 2 in [4] there exists a nonnegative solution

of the above problem. In the case of a > #0 we conclude the existence
of a nonnegative solution of the above problem by means of the
Theorem 5(ii).

Example 3.3 In [2] authors studied the problem

u" -km__o ak t, U’)Uk (3.uSo

They .proved that if m is odd, a,,,(t, 0)> 0 and ak are continuous
functions satisfying

la(t,s,y)l <pk(t,s) + qk(t,s)y2

where Pk, qk" [0, 1] X R [0, +o) are bounded on compact subsets of
[0, 1] x R then there exists the solution of (3.1).
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Here we consider the case of rn > 2, not necessarily odd, and ak
continuous. Assume that there exist such r0, R0, a, > 0, that

ao(t, y) 0

’V’t [0,1]’V’ly <_ foal (t, y) > t

’t [0,1l’y e Ram(t, y) <
Vte[o,1]Vlyl>_Roak(t,y <0, k 2,3,...,m

Because -a < 0 there is of course -a < #0, and we can choose R0,
such that RoB > #0. Then the conditions (2.1), (2.2), (2.5), (2.6) are
satisfied. By Theorem 3 there exists nonnegative solution of (3.1).
We can see that none of the Bernstein conditions (cf. [2]) need not be
satisfied.
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