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The exact bounds of Bernstein basic functions and Meyer-Kfnig and Zeller basis func-
tions have been determined in [J. Math. Anal. Appl., 219 (1998), 364- 376]. In this note the
exact bounds of some other basis functions of approximation operators and correspond-
ing probability distributions are determined.
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1. INTRODUCTION

In approximation theory the so-called Bernstein basis functions
are

(Okn, x[O, 1]), (1)

the Meyer-K6nig and Zeller basis functions are

Mnk(X) (n + k- 1

k )x(1 -x)n (k N, x [0, 1]), (2)
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and the Szisz basis functions are

Snk(X) k!
(nx)k e-X (k N, x [0, o)). (3)

Throughout this note, the sign N denotes the set of nonnegative
integer. It is well-known that the basis functions Pk(X), Mk(X) and
Snk(X) correspond with the binomial distribution, Pascal distribution
and Poisson distribution, respectively in probability theory. If we
replace parameter n in Pascal distribution by continuous parameter
a > 0, we get the so-called negative binomial distribution:

a+k- 1)xkk (1 x) M,k(X) P(X,x k) (4)

where X,t denotes a random variable, x E (0, 1] is a parameter, k E N,
and [a+k- + k)/k!

In approximation theory it is important to estimate the above-
mentioned basis functions and some other basis functions of ap-
proximation operators. Specially, these estimations play key roles in
studying rates of convergence of approximation operators for func-
tions of bounded variation and bounded functions (cf. [1-9]). Re-
cently, the exact bounds of basis functions P,,(x) and M,,k(X) (discrete
parameter) have been determined in [1]. In this note further research is
made for the cases of continuous parameter, for other univariate basis
functions of approximation operators and for the corresponding mul-
tivariate basis functions of approximation operators.

2. BOUNDS FOR UNIVARIATE BASIS FUNCTIONS

We first consider the case of continuous parameter a > 0, i.e., negative
binomial distribution (4) and prove the following:

THEOREM Let j be fixed nonnegative integer and Cy ((]+
1/2)Y+/2/j !)e-(y+/2). Then for all k, x such that k >_j, x [0, 1], there
holds

X1/2Ma,k(X) ( Cja-1/2
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Moreover, the coefficients Cj and the asymptotically order
a--, +oo) are the best possible.

1/2 ffor

Because the technique of the Lemma of[l] is not valid for the case
of continuous parameter a > 0, for proving Theorem l, we need new
technique, which mainly is an identical relation concerning Gamma
function and its derivative.

LEMMA 1 Let F(t) be Gamma function. Then for a > O, and k 1, 2,
3,..., we have

F’(c -b k) F’(c0 k-1

r( + k) r(.) c + (6)

Proof We have

r(h) r(h)r(a)
r(h+)

r(h + a) r() hr(h)
h r(h + a)

r(h + ) r() r(h + 1)
h r(h+)

Hence

r() r(h) r(h + a) (7)

Since F(h) fo uh_le_du (r(h)r(a)/r(h + a)) s(a, h)
f(uh-/(1 + u)h+)du, where B(a,h)is the so-called Beta function,
from (7) it follows that

So

r(ot) i uh-1 e-U-
(1+ u)h+

du

foo(e-u )- u(1 ; u)a
du

Ft(a) f0 (F(a) u(1 + u)a
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Replacing by (1/(1 + u)) in the above integral we find that

F’(a+k) F’(a)j(ol(ta-l--ta+k-1 ) dt (8)F(a + k) F(c) 1

Since ((t- t+-)/(1 t)) _,i__o(ti+-I t++k-), integrating
term by term on the right hand side of (8), we get identical relation (6).

Proofof Theorem I By computing derivative we find for all x E [0, 1]
that

a+k+ 1/2 Mak a+k+ 1/2
(k + 1/2)k+l/2 F(o + k)a

k r()( + k + 1/2)+k+1/2 x/-d

(9)

Set

G(a,k) I"(0 + k)a+l/2

r(a)(a + k + 1/2)a+k+/2
> 0

Then, by calculation and using Lemma 1, it follows that

d(logG(o,k)) rt(a + k) U(a) t + 1/2+ loga +d r( + k) r()

log(a + k + 1/2) a+k+l/2
a+k+l/2

k-1
C

Ea+i+f+lg
i=o a+k+ 1/2

[2o+1> -dx + 1
dx + log

a

a x a2 x a +’k + 1/2
(2c + 1)(a + k)log
2t(a + k + 1/2) >

0

Therefore G(a, k) is monotone increasing for a by the fact that

d(G(c,k)) G(a,k)
d(logG(c,k))

> 0
da da
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On the other hand, using Stirling’s formula: lim_.+oo((F(a+ 1))/
((c/e)’2x/-))= (cf. [11, or 12, Chapter 21), we get by direct
calculation

lim G(a k) lim
F(a + k)a’+/2

a-+oo a-.+oo F(a)(a + k + 1/2)a+k+l/2
e-(k+l/2) (10)

Hence from (9)

xl/2Ma,k(X < (k + 1/2)k+l/2 (k + 1/2)k+l/2 e_(k+l/2 1
k! G(c,k)- <

k!

Inequality (5) now follows from the monotonicity of Ck=((k+
1/2)k+ 1/2/k !)e-(k+ /2), again, from Theorem 2 of[l], we know that the
estimate order a-/2 in (5) is the asymptotically optimal. The proof of
Theorem is complete.

Let

(1 + x)-n(xE[O, oc),kEN)

be the so-called Baskatov basis functions. As a key auxiliary result of
[2], Wang and Guo gave the upper bounds for the basis functions
b,,k(X) as follows:

([2, Lemma 3]) For every x E (0, o), k E N, we have

33 (l+x) 3/2
bnk(X) <_ -- X

(11)

Now in Theorem by taking a n and replacing variable x with
(x/(1 +x)) in M,,k(X), we get the exact upper bound for b,,k(X)
immediately

COROLLARY For every x (0, o), k N, we have

1 1V/.1 + x
(12)bnk X <_

x/ x

Corollary can be used to improve the main result of [2], we omit the
details.
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Below we discuss the Szisz basis functions Sk(X). In the Lemma
3 of [7] it is proved that Sn(x)<_ (1/v)(1/v-). The following
Proposition gives a better estimate.

PROPOSITION Let H(j) ((j+ 1/2)j+ 1/2/fl.) e-(j+ 1/2). Then for all
k >j and x E [0, o), there hold

x/Snk(X) <_ H(j) -, (13)

where the coefficient H(j)= ((j+l/2)J+l/2/j!) e
estimate order n-1/2 are the best possible.

(j/ 1/2) and the

Proof By calculation we find that

v/Snk(X) v/k -[" 1/2Snk ( k +nl/2 )
(k + 1//21k+l/2 e_(k+l/2 for all x E [0,)k!

and (H(j+ 1)/H(j))< 1, Hence H(j) is monotone decreasing with j.
So the inequality (13) holds.

For proving the estimate order n- / in (13) is the best. We take
k=[nx], then writing nx=[nx]+e (0 <e < 1), and using formula
n! (n/e)n 2x/-, we have

(nx) [nx]
e_,X ([nx] + e) ["xl

e_l,xl_S’tl(X)--[nx]t [nx]!

That is

e )
I,,x] 1

Sn,[nx](X) + (14)

From (14) we deduce that the estimate order n
(13) is the best possible.

-1/2 (for n---, +c) in
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From [4-8] it is known that in some actual applications on con-
vergence of approximation operators for functions of bounded
variation we only need to estimate the values of basis functions
P,(x), M(x) and S(x) at those points x (k/n) or x (k/(n+ k)). In
that cases some better bounds can be obtained. We give a result of this
type.

PROPOSITION 2 For x ko/n (ko is afixed positive integer, ko < n) and
k O, 1,2,..., n, there holds

Pnk
ko < (15)
n

The estimate coefficient 1/x/ in (15) is the best possible.

Proof If x k/n, then

V/ n! ( ) k+l/2 ( n k ) n-k+l/2
V/-V/X(1 XlPnk(X) k!(n k)! n

kk+l/2 nl(n k)n-k+l/2
k! (n- k)!nn+l/2

Set A(n, k) (n!(n-k)n-k+ l/2/(n-k)!nn+ /2). Then

A(n+l,k) (n-k+l)n-k+’/2( n )n+/2A(n,k) n-k n+l
>1 (16)

The right hand inequality of (16) is due to the fact that (1 +(l/n))+ /2

is monotone decreasing. Direct calculation gives limn+A(n,k)=
e-k. Hence, it follows for x k/n that

k) kk+1/2 1 1
Pnk - <

k!
e-k

Vv/X(1 x)
< x/x/v/X(1 x)

(17)

Below we prove that

(18)
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In fact

P,k+(O/)
P.(o/.)

(n!/(k + 1)!(n k- 1)!)(ko/n)k+l((n ko)/n)n-k-1

(n!/k!(n k)l)(koln)k((n ko)ln)n-k

(n k)ko nko kko
(k + 1)(n- ko) nk + n ko kko

if k<k0- +ko/n
ifk=k0- +ko/n.
if k > ko + ko/n

Therefore (18) holds for k=0, 1,2,3,...,n and fixed k0 satisfying
0 < k0 < n. Inequality (15) now follows from (17) and (18).

3. BOUNDS FOR MULTIVARIATE BASIS FUNCTIONS

In this section we consider some basis functions of multivariate ap-
proximation operators. First we discuss the basis functions of the
Bernstein operator over a simplex.

Let Ak {(Xl,..., xk): xi > 0; 1,2,..., k; and Xl +... +Xk _< } be
the standard simplex in R. The basis functions of Bernstein operators
over Ak are defined as

j! .j!(n -j j)!

(1 xl Xk)n-jr -jk

where j > 0; 1, 2,..., k; jl +"" +jk _< n.
We will determine the exact upper bound of the basis functions

Pn,j, .i,,(x,..., Xk). For convenience we first prove our result for the
case k 2.

PROPOSITION 3 For all nonnegative integers jl, j2 satisfying jl +j2 _< n
and (xl, x2) E A2, there holds

1
Pnd"h(Xl’X2) <- 87rnxlx2(1 Xl x2)’ (19)
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where the coefficient v//(87r/) and the estimate order n
possible.

-1 are the best

Proof We can write

P,,,:,a,_ (x x2)

n!(n -jl)!
jl 72!(?/--jl)!(n --jl --j2)[

jl !j2!(n -jl -j2)!
(1 Xl x2

( x’/-’1’ (1 x=
(1 x x2)n-’-2

n! x(1 Xl )n-jl
j!(n -j)!

(n -j)!
j2l(n -jl -j2)!

x2 n-.it

-Xl

(20)

Using the Proposition 2 of [1] for (20), we get

-xlPn,j,,j_ (x1, x2)

_
8" X/-x/’n --j xx2(1 Xl x2)" (21)

By symmetry ofjl and j2 in Pn,j,& (x, X2), we get as well

1 x2Pn’J"h(Xl’X2) <- 8-- V/’x/’n-j2 XlX2(1 Xl x2)" (22)

On the other hand, note that

(23)
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Using the Proposition 2 of [1] for (23), we get

1 1 (X1 " X2)2
Pn,Y,,.h (Xl, x2) G V/_(Xl -t- X2)(1 Xl X2)Vx/’jl +y2xlX2

Xl +x2
871" VV/j1 +h XlX2(1 Xl X2) (24)

Again, we find that for any nonnegative integers, j, j2 satisfying
jl +j2 < n, there holds

{ }min
x/’n ji v/n A x/jl +A

<
v/-"

The sign of equality holds in (25) if and only ifj =j2 n/3.
Note that 0 < x +x2 < 1, from (21), (22), (24) and (25), we get (19).

By the Proposition 2 of [1] and (25), we deduce that the coefficient
x//(8rx/) and the estimate order n- in (19) are the best possible.
The proof of Proposition 3 is complete.

From the Proposition 2 of [1] and Proposition 3, we can get the
following Theorem with the recurrence method.

THEOREM 2 For k >_ and all Ji satisfying ji >_ 0; 1, 2,..., k;
j +""+ jk <_ n and (x1,..., Xk) E Ak, there holds

Pn,j, jk(X1, Xk) < V(--d- 1)t (87r)k/2 rtk/2

xl Xk(1 x Xk)

(26)

Moreover, the coefficient (/(k + l)k/(k + l)! ) (1/(8rok/2), and the

estimate order n-k in (26) are the best possible.

It is known that Pn,j, jk(Xl,... ,Xk) corresponds with the multi-
nomial distribution (Dn,x,,... ,Dn,xk) with parameters (n, x,...,xk,

1 x xk) in probability theory, i.e.,

P((Dn,x,,... ,Dn,xk) (jl,... ,jk)) Pn,j, jk(Xl,... ,Xk).

Hence formula (26) also is an exact upper bound for the multinomial
distribution in probability theory.
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Next we discuss the so-called negative multinomial distribution:

mn,j,,j2(x1,x2 (l’l +jl qtj2 1)!x’xk(l’- x, xz)n
jl 2!(n 1)!

j,j 6 N and (x, x) 6 A,

which corresponds with two-dimension Meyer-k6nig and Zeller basis
functions over a simplex (el [13, 14]). The higher dimensional ease
Mn,yl,...,y,, (x,..., xk) can be defined similarly.

It is somewhat difficult to decompose Mn,y,,y2 (Xl, x2) directly like we
have done for Pn,y,d:(x,x2). Hence we first need a replacement in
Mn,y,,y,. (x X2) with

Xl tl/(1 + tl + t2)
x2 t2/(1 + + t2) (27)

Then

Hence from Corollary and (27) it follows for all j2 N that

x/1 + tl x/1 + tl + t2Mn,y,y(x,x2) <_
2e v/n(n +j) x/t2

x/1
2e x/’n(n +jl) x/XlX2

(28)

By symmetry, it follows for all j E N that

1 x/"i x2M"’Y’d(x’x2) <- 2e v/n(n +j2) x/xx2
(29)

Inequalities (28) and (29) derive
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PROPOSITION 4 There holds uniformly for all jl, h E N

Mn,j,j2(Xl, x2) 2enx/Xl.X2, (30)

where the coefficient 1/(2e) and the estimate order n- are the best
possible.

Similar discussion, for the case of higher dimension we get

THEOREM 3 There holds uniformly for allj,... ,A N

M,, (x,...,Xk) < (2en)k/2x/X,...,Xk, (31)

where the coefficient 1/(2e)k/2 and the estimate order n -k/2 are the best
possible.

For the bounds of basis functions of the tensor product operators
formed by the Bernstein, Szisz, Baskakov, Meyer-k6nig and Zeller,
the results can be get easily from the results of correspondent
univariate operators. We omit the discussion. We conclude this note
with an interesting result by combining Theorems 2, 3, and the
Theorem 2, the Proposition 2 of [1].

THEOREM 4 For k > 1, Meyer-kinig and Zeller basis functions over
simplex Ak and Meyer-k6nig and Zeller basis functions of k-dimension
tensor product have the same optimal upper bound. However for
Bernstein basis functions over simplex Ak and Bernstein basis functions
of k-dimension tensor product, the conclusion is quite the contrary.
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