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In the paper, we characterize nonnegative, locally integrable functions k, for which the
nonlinear convolution integral inequality u(s)< k.g(u(s)), with the power type
nonlinearity g has nontrivial solutions.
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1. INTRODUCTION

We study the integral inequality

X

u(x) <_ k(x- s)[u(s)lads (o < x, o < ), (.)

where k>0 is a given locally integrable function. It is clear
that u(x)=0 is a trivial solution of (1.1). Therefore, we are inter-
ested further in nontrivial continuous, nonnegative solutions u of
(1.1).
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This inequality arises in the study of uniqueness problem for a more
general integral equation

y(t) h(t,s,y(s))ds +f(t), t>0

in some Banach space. For example, if one considers two solutions
and Y2, takes x(t) [lye(t) -y(t)[ and assumes that

[[h(t,s, yl(s)) h(t,s, y2(s))[I < k(t- s)lly(s) y2(s)[[,
then one obtains inequality (1.1) for x(t).

First, we note that if </3, then (1.1) has no nontrivial solutions.
This due the fact that the integral operator

X

Tu(x) k(x- )[u()]d

is Lipschitz continuous in the class of nonnegative, continuous
functions. Therefore, throughout the paper, we assume that
0 </3 < 1. It is also important to note that the existence of a nontrivial
solution to (1.1) is equivalent to the existence of such a nontrivial
solution to the corresponding equation

X

u() k(x- )[u()la (0 < x, 0 < < ).

To see this, we consider any nontrivial solution v(x) of (1.1). To deal
with nondecreasing functions, we define

(x) sup v(s), 0 _< s _< x.

Since, the integral operator T has the following monotonicity
properties:

Tw (x) < Tw2(x) for any 0 _< w (x) _< w2(x)

and

Tw(x) is nondecreasing for any nondecreasing function 0 < w(x),
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we easily see that (x) is also a nontrivial solution to (1.1).
Furthermore, it follows from the inequality

X

(x) _< (x )[(s)]aa _< K(x)[,(x)],
where K(x) f k(s)ds that

,(x) <_ r(x)/-

Now, we construct a function sequence

vo(x) K(x)l/(-) Vn+ (x) Tvn(X), n 2,

We verify directly that Tvo(x) < Vo(X) and as a consequence of this, we
obtain.

v,,+ (x) Tv,,(x) < Vn(X) for n 1,2,

Thus {vn(x)} is a nonincreasing sequence of continuous functions.
Since

(x) < vo(x) and (x) < Tg(x) < Tvo(x) < vo(x),

we obtain (x)< Vn(X) for n= 1,2, Now, we consider the limit
function

u(x) lim Vn(X) lim Tvn(X) (X).

Such a u(x) is a nontrivial solution of (1.2).
Equation (1.2) is a very special case of the equation

X

u(x) ,(x )g(u())d, (1.3)

where g is a continuous and nondecreasing function.
There is a wide literature, where the problem of the existence of

nontrivial solutions for (1.3) was studied and some necessary and
sufficient conditions were given, see [1,4, 7]. They were formulated in
the form of so called the generalized Osgood conditions. One of the
most strength results was obtained for the logarithmicly concave
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kernels k. For example, it is known that for such kernels the following
condition

/o’ (K-’

where K- is inverse to K and > 0 is sufficiently small, is necessary
for the existence of nontrivial solutions to (1.3). Moreover, in the case

k(x)=x- or exp(-x-), a > 0 this condition is also sufficient,
see [2, 3, 5]. Unfortunately, if g(u) u, 0 < fl < this condition is satis-
fied for any k. On the other hand, it is known that if k(x)=
exp(-exp(x-)), then Eq. (1.3) has a nontrivial solution if and only
if 0 < a < 1, see [6, 8]. Our aim is to characterize those kernels k, for
which the inequality (1.1) or equivalently Eq. (1.2) has nontrivial
solutions. Our main result is established in the following theorem.

TEOREU The inequality (1.1) has a nontrivial solution if and only if
0 </3 < and

K-1 s
s ln s------- < o5,

where t5 > 0 is a suciently small number.

Remark 1 We directly verify that for the kernels k(x)--
exp(-exp(x-’)) mentioned above the following inequalities
k(0.5x) < K(x)< k(2x) hold at the vicinity of zero. Now, we easily
see that the condition in Theorem is satisfied in this case, if and only
if0<a<l.

Remark 2 A substitution s - (0 < a < 1) into the integral above
changes the condition in Theorem to the following

drK-() 7-(- In ’)
< c.

2. MAIN STEPS OF THE PROOF OF THEOREM

The necessity part of the theorem. Consider the nontrivial solution u
of (1.2) constructed above. We note that Eq. (1.2) has also other
nontrivial solutions. For example, the functions uc(x)= 0 for 0 < x < c
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and u(x)= u(x-c) for x > c (c > 0) are such solutions. Manipulating
with c, if necessary we can choose u such that u(0)= 0 and u(x) > 0 for
x > 0. It follows from the construction described above that u is
nondecreasing. Furthemore, the integration by parts gives

X

u(x) r(x- (2.1)

from which we infer that u is absolutely continuous and increasing.
Finally, the substitution s u(r) into integral (2.1) gives

X

x K(u-1 (x) u-1 (s))d(s),

where u- is inverse to u. Let b(x) x1/3 < x < 1. Splitting the integral
above into two parts we obtain

X K(u-1 (x))q(x)3 -- K(u-1 (x) u-1 (q(x)))x3. (2.2)

Since K(u-l(x))--+ 0 as x-+ 0, it follows from (2.2) that

1-.xl-fl < K(u-l(x) U-1 ((X)))2

or

K-lc(lxl-#)<_u-15 (x) u-

for 0 < x < 6, where 6 > 0 is sufficiently small.
Now, we note that for any 0 < x < 6 the sequence

Xo X, Xn+l q(Xn), n 1,2,...

is decreasing and convergent to zero.
Since

(2.3)

"K_(1
+, sl-e s(- In s)

< (-ln/3)K- x,
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it follows from (2.3) that

fooXK_l ( sl_) ds

s(- lns)

for 0 < x < 6, which gives easily our assertion.
The sufficient part of the theorem. We are going to construct one of

the solutions to (1.1). Let b(x)= x2/(1 +a) < x < 1. We expect that the
function F given by its inverse

x
F- (x) 7 K-I (s(-#)/)

s(- In s)’ "7 / ln(2/(1 +/3))

is such a solution.
First, we note that

oXK(F-’
(x) F-l (s))d(s)

e(x)

>_ K(F-1 (x) F- (s))d(s)
dO

>_ K(F-I (x) F-’ ((x)))b(x)#.

We observe also that

F-1 (x) F-1 ((x)) ’Y’ K-1 (S(1-fl)/2) S(--lns)(x)

>-TK- ((x)(-//a) (xls(-lns)

It follows from two inequalities above that

XX(F-’(x) F-’(s))d(s) >_ (x)(’+)/ x,

for 0 < x < 1. Now the substitution r F(s) into the integral above
shows that

XK(x s)d(F(r)) >_ F(x).
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Finally, the integration by parts shows that F(x) satisfies (1.1), which
ends the proof.
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