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Refinements to the usual Hoélder and Minkowski inequalities in the Lebegue spaces Lf,
are rzn'oved. Both are inequalities for non-negative functions and both reduce to equality
in L.
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1. INTRODUCTION AND MAIN RESULTS

The Holder and Minkowski inequalities are fundamental to the theory
of Lebegue spaces. If 1 <p <oo and 1/p+1/p' =1 the first,

[ravs( | lfl"dV>l/p( / lgw’du)”p',

expresses the fact that functions in Lf give rise to bounded linear
functionals on I2. It is a sharp inequality in the sense that for any
fELP there is a function g€ Lf such that the inequality becomes
equality. For this reason, improvements to Hoélder’s inequality must
necessarily be quite delicate.
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THeoReEM 1.1 Let p > 2 and define p’ by 1/p+1/p' =1. Then for any
two non-negative v-measurable functions f and g

/fngS(/f”du—/lif—g”'“‘ /fgdu//gp’du
( / gp’du)l/p.

In the case 1 <p <2 our refinement takes the form of a lower
bound.

14 1/p
du)

THEOREM 1.2 Let p <2 and define p' by 1/p+1/p' =1. Then for any
two non-negative v-measurable functions f and g

(fro-fly-e ] fofa)”(f )"
< / fedv.

The Minkowski inequality is the triangle inequality in Lf: If
1 <p<ooand l/p+1/p'=1 then

(Jroara) " (fora)”+(fua)”

There can only be improvement in this inequality when fand g are not
multiples of one another.

THeEOREM 1.3 Let p >2 and define p' by 1/p+1/p’ =1. Then for any
two non-negative v-measurable functions [ and g

(/(f+g)”du)l/ps (/fpdl/—-/hpdy)l/p+(/gpdy_/hpdy)l/p

where h=|f[g(f+g) " 'dv—g[f(f+gF ~'av|/[( f+gYdv.

Notice that the function s vanishes when fis a multiple of g. Again
we get a lower bound in the case 1 <p <2.
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THEOREM 1.4 Let 1< p <2 and define p' by 1/p+1/p'=1. Then for
any two non-negative v-measurable functions f and g

([sran— [ eav) " ([ [wa) ""
<([u+era) "

where h=|f[g(f+gF ~'dv—g[f(f+&f~ 'av|/[(f+gfdv.

It is easy to verify directly that the inequalities given above reduce to
equalities when p=2.

The proofs of Theorems 1.1—1.4 will be given in the next section.
They depend on a special case of the key inequality established in
Theorem 2.3. Also in the next section we give examples to show that
the inequalities may fail if the hypothesis of non-negativity is dropped.

We assume throughout that 1 <p<oo and 1/p+1/p'=1. Also,
v will denote an arbitrary o-finite measure while p will denote a
probability measure, that is, a measure with total measure one. The
function sgn(x) is defined to be 1 when x >0, 0 when x=0, and —1
when x < 0.

2. THE KEY INEQUALITY

The power function x +— x%, x > 0, is convex when a > 1 and concave
when 0 < a < 1. We will use this fact in the following form. If a and b
are non-negative real numbers then

(@+b)*>a*+b* when a>1and (a+b)*<a® +b* when0<a<1.
(2.1)

Equality holds only if =1, a=0, or 5=0.
LeEmMMA 2.1 Suppose 1 <p#2andt>0.If x>0, y>t and
xP = tf lsgn(x — £) = yP — |y — (P " sgn(y — 1)

then x=y.
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Proof Let o(x)=x"""—|x—1t]" 'sgn(x—1). Since y>t we have
©(»)=y?"'—(y—1)?~". Inequality (2.1) shows that o(y)> P!
when p>2 and p(y) < t”~! when p < 2.

If x<t then p(x)=x7""+(—x)?"" so (2.1) yields p(x) <!
when p>2 and @(x)>t?~' when p<2. This contradicts the
hypothesis ¢(x)=p(y) so we must have x > ¢t. Notice that for x > ¢,
@'(x)=(p—1)xP~?—(p—1)(x -1y’ ~ 2 does not change sign. Hence ¢ is
monotone and therefore one-to-one on (¢, 00). We conclude that x=y
as required.

We begin by proving a discrete version of our key inequality.

THEOREM 2.2 Suppose p > 2, n is a positive integer, X1,Xa,...,X, are
non-negative, and 0 < t < (1/n) 377, x;. Then

1E 2 1<
;lethp(;;Z]xj - 1) +;1-ZIIXj— tlp.
Jj= Jj= j=

The reverse inequality holds when 1 < p < 2.
Proof Let

n 2 n n
M, = fo—t”(—t—ij—n) —lej—tlp.
Jj=1 Jj=1

=

We will show by induction that M, is non-negative when p > 2. If
n=1, and 0<t<x=x; then My=x"—t’Q2x/t—1)—(x—1)*. Fix ¢
and consider M; as a function of x. At x = ¢, the function vanishes and
for x >t its derivative is px” ' =2t~ 1— p(x— £ ~! which is not less
than px?~'—pt?~'—p(x—1)?~1>0 by (2.1). It follows that M, is
non-negative for x > ¢.

Suppose now that for some n> 1, M,,_; > 0. To show that M, >0
we fix ¢ and show that for all x > ¢, M,, is non-negative on the compact
set

n
K, = {(xl,xz,...,x,,)e[O,oo)” : ij =nx}.
j=1

First we show that M, is non-negative on the boundary of K,
considered as a subset of the hyperplane defined by Z};l x; = nx. That
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is, that M, > 0 when at least one of xy, X, ..., X, is zero. By symmetry
we may assume that x,,=0. We have

ln—l 1 n—1
0<t§x=’—12xj§ n—lej
j=1 Jj=1

and so, by the inductive hypothesis,

n—

n—1 n—1 1
2
M, = E xj”—tl’(;g xj—n)—g Ixj—tl"—t”=Mn_120.
Jj=1 j=1

j=1

To complete the proof we use a Lagrange Multiplier argument to show
that if the minimum value of M, occurs in the interior of K,
(considered as a subset of the hyperplane) then it is non-negative. Note
that since p>1, M, has continuous first partial derivatives with
respect to each of xj,x,...,x, Thus it will suffice to show that the
value of M,, is non-negative at critical points of

n
M,,—A(ij —nx),
Jj=1

considered as a function of x,x,,...,x, A with x and ¢ still fixed.
At critical points we have Y 7_, x; = nx and for each j

px; Pt =207 —plx; — 1 'sgn(x; — 1) — A = 0.

It follows that x;7~' — |x; — t/’'sgn(x; — 1) takes the same value for
each j. Since ¢ is no greater than the average of xy,x,,...,X,, either
X1=X3= -+ =X,=Xx=tor at least one x; is greater than ¢. In the latter
case, Lemma 2.1 applies and we conclude that x;=x,= -+ =x,=x.
In either case we have

M, = n(x? — #(2x/t — 1) — (x — 1)F)

which is non-negative as we have seen in the case n= 1. This completes
the proof in the case p > 2.
The proof that M, <0 in the case 1 < p <2 proceeds similarly.

The key inequality is presented next. It is more general than
Theorem 2.2 and will readily imply Theorems 1.1-1.4,



638 G. SINNAMON

THEOREM 2.3 Suppose p > 2 and i is a probability measure. If f> 0 is
a p-measurable function then

/ f”dn>t"( / fdu—l) [ir=wan @2

whenever 0 < t < [fdu. The reverse inequality holds when 1 < p < 2.

Proof It is a simple matter to show that (2) holds with equality when
p=2. When p > 2 we argue as follows.

If fis not in L, then both sides of (2.2) are infinite so there is nothing
to prove. Fix f€Lf, and ¢ with 0 < ¢ < [fdu. Let f* denote the non-
increasing rearrangement of f with respect to u. We view f* as a
Lebesgue measurable function on [0, 1]. Since f is non-negative, f and
J* are equimeasurable, f” and f*? are equimeasurable, and | f—1|” and
|f*—t|P are equimeasurable. Thus (2.2) becomes

/olf*pztp(%/olf*‘l)+/01If*—tl”- (2.3)

For each positive integer n define the function f;, on [0, 1] by
n
=D U/MXG-1mim)(5)
j=1
and note that since f™* is non-increasing, f* (s+ 1/n) < f,,(s) < f* (s) for
0<s<l. Clearly, the sequence {fn} converges to f* in L7[0,1]. It
follows that fo Ja converges to fo f* so for sufficiently large n we have

0<t< fo fu. By the Lebesgue Dominated Convergence Theorem,
(2.3) will follow provided we establish

/ P>t”( /f,,—l) /lf,,—-t|” (2.4)

for sufficiently large n. If we set x;=f™(j/n) then (2.4) becomes

—Zx”>t1’(%§n:xj— 1) +‘:l‘§n:|x]‘ —tlp
Jj=1 Jj=1

which holds by Theorem 2.2 when r is large enough that ¢ < fol I
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This proves the theorem for p > 2 in the case 0 < ¢ < [fdu. The case
t= [fdu follows by an easy limiting argument.
The same argument yields the reverse inequality when 1 <p < 2.

COROLLARY 2.4 Suppose p > 2, u is a probability measure, and f is a
non-negative, p-measurable function. Then

/ fdu < ( / ffdu— / \f - / fdul"du) .

The reverse inequality holds when 1 <p < 2.

Proof Take t= [fdu in Theorem 2.3, rearrange the result and take
p-th roots.

Proofs of Theorems 1.1-1.4 To prove Theorems 1.1 and 1.2 we fix
non-negative v-measurable functions f and g and apply Corollary 2.4
with fg! 7 in place of fand du = g?dv/ [ g¥ dv.

Theorem 1.3 follows from Theorem 1.1 in the same way that
Minkowski’s inequality follows from Holder’s. Fix non-negative
v-measurable functions f and g and define 4 by

/ [ +era

f/g(f+ gy dv - g/f(f+ gy ldv
Let p > 2 and apply Theorem 1.1 with g replaced by (f+g) ' to get

froearos fro o) (Jusora)”

Interchanging the roles of f and g yields

Jetr+erias( [oan- [ra) ””( [o+era) "

Adding the last two inequalities gives Theorem 1.3.
Theorem 1.4 follows from Theorem 1.2 by a similar argument.

h=

Example 2.5 The hypothesis that f be non-negative cannot be
dropped in Corollary 2.4. That is, it is not necessarily true that

j / fdu‘ < ( [isvau= [1r- [ fdul”du)l/p
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when p > 2. The reverse inequality may also fail when p < 2 if f takes
negative values.

Proof Take p=3 and let f=xjo,7/8y— Xx(7/3,1;- Here p is Lebesgue
measure on [0, 1]. The left hand side is 3/4 while the right hand side
evaluates to (3/4)“/.
To show that the reverse inequality may fail it suffices to let
p=15/8 and f= x(o,1/32) — X(1/32,17- We omit the calculations.
Example 2.5 also shows that Theorems 1.1 and 1.2 may fail if fis
allowed to take negative values. Just take g=1.

Theorems 1.3 and 1.4 may fail for simpler reasons. They may fail to
make sense. When f and g are non-negative the function 4 is always
less than each of them in I2-norm. This may not be true if fand g take
negative values.

Example 2.6 Let v be Lebesgue measure on [0, 1] and suppose p > 2.
Set f=1/2 and g =(1/2)(x[0,1/2)— X(1/2,17)- The function & of Theorems
1.3 and 1.4 satisfies

/ Wdv > / |fPdv and / Wdv > / g dv.

Proof f+g =Xf0,1/2) SO h= X(@1/2,11- Thus fhpdl/= 1/2 while both
J1fPdv and [|g|’dv are (1/2)%.



