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Refinements to the usual Hflder and Minkowski inequalities in the Lebegue spaces
are proved. Both are inequalities for non-negative functions and both reduce to equalit.
in Lz.
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1. INTRODUCTION AND MAIN RESULTS

The H61der and Minkowski inequalities are fundamental to the theory
of Lebegue spaces. If < p < o0 and 1/p+ 1/p’ the first,

/fgd, < ( f IflPd’)1/r ( f iglr,d)1/r’,
expresses the fact that functions in ’ give rise to bounded linear
functionals on . It is a sharp inequality in the sense that for any
f E/J’ there is a function g ELP’ such that the inequality becomes
equality. For this reason, improvements to H61der’s inequality must
necessarily be quite delicate.

* This work was supported in part by an NSERC grant.
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THEOREM 1.1 Let p >_ 2 and define p’ by 1/p+ 1/p’ 1. Then for any
two non-negative v-measurable functions fand g

(:,,,,)’’.
In the case < p < 2 our refinement takes the form of a lower

bound.

THEOREM 1.2 Let p <_ 2 and define p’ by 1/p+ 1/p’ 1. Then for any
two non-negative v-measurable functions f and g

<_ ff av.

The Minkowski inequality is the triangle inequality in LP: If
< p < oo and 1/p+ 1/p’ then

(fir+ g[Pdv)1/p <_ ( f lf[Pdv)
lip

+(fllpg dr,)1/p.
There can only be improvement in this inequality whenfand g are not
multiples of one another.

THEOREM 1.3 Let p >_ 2 and define p’ by lip+ 1/p’ 1. Then for any
two non-negative v-measurable functions f and g

where h Iffg+g)P- dv-gff(f+g)P dvl/f(f+g)Pdv.

Notice that the function h vanishes whenf is a multiple of g. Again
we get a lower bound in the case < p < 2.
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THEOREM 1.4 Let <p < 2 and define p’ by l/p+ l/if= 1. Then for
any two non-negative v-measurable functionsf and g

I/i,

where h Iffg(f+g:- ’d ’-gff(f+g:- ’d"llf(f+gy’d".
It is easy to verify directly that the inequalities given above reduce to

equalities when p 2.
The proofs of Theorems 1.1-1.4 will be given in the next section.

They depend on a special case of the key inequality established in
Theorem 2.3. Also in the next section we give examples to show that
the inequalities may fail if the hypothesis of non-negativity is dropped.
We assume throughout that <p < o and I/p+ lip’= 1. Also,

v will denote an arbitrary g-finite measure while / will denote a
probability measure, that is, a measure with total measure one. The
function sgn(x) is defined to be when x > 0, 0 when x- 0, and -1
when x < 0.

2. THE KEY INEQUALITY

The power function x x, x > 0, is convex when a > 1 and concave
when 0 < c < 1. We will use this fact in the following form. If a and b
are non-negative real numbers then

(a+b)>as+bwhenc>land(a+b)a<a’+bawhen0<a<l.
(2.1)

Equality holds only if a 1, a=O, or b =0.

LEMMA 2.1 Suppose < p y 2 and > O. If x > 0, y > and

xp- -Ix- tlp-lsgn(x t) yp-1 lY- tlp-lsgn(y- t)

then x y.
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Proof Let (x) xp- ix_ tlp- sgn(x- t). Since y > we have
p(y)=yP--(y-t)p-. Inequality (2.1) shows that p(y)>tp-

when p > 2 and (y) < P- when p <. 2.
If x < then (x)= xp- +(t-x)p- so (2.1) yields qo(x) _< p-

when p>2 and qo(x)>_tP- when p<2. This contradicts the
hypothesis (x)- (y) so we must have x > t. Notice that for x > t,
’(x) (p- 1)xp- 2_ (p_ 1)(x-t)p- 2 does not change sign. Hence qo is
monotone and therefore one-to-one on (t, o). We conclude that x y
as required.

We begin by proving a discrete version of our key inequality.

THEOREM 2.2 Suppose p > 2, n is a positive integer, x, x2,..., xn are

non-negative, and 0 < <_ (l/n)= x2. Then

_1 xj >_ p

_
Zxj +

_
xj

p

nj=l j=l j=l

The reverse inequality holds when < p < 2.

Proof Let

Mn 4 tp -Z xj n xj tlp
j=l j=l j=l

We will show by induction that Mn is non-negative when p > 2. If
n 1, and 0 < < x x then M xp- tP(2x/t 1)-(x- t) p. Fix
and consider M as a function of x. At x t, the function vanishes and
for x _> its derivative is pxp- 2tp- -p(x- t)p- which is not less
than pxp- -ptp- -p(x- t)p- >_ 0 by (2.1). It follows that M is
non-negative for x _> t.

Suppose now that for some n > 1, Mn_ _> 0. To show that M,, > 0
we fix and show that for all x >_ t, M,, is non-negative on the compact
set

Kx (Xl,X2, ,Xn) [O, oo)n" xj nx
j=l

First we show that M is non-negative on the boundary of Kx
considered as a subset of the hyperplane defined by ]n__ x nx. That
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is, that M > 0 when at least one of x, X2,... Xn is zero. By symmetry
we may assume that x 0. We have

n-1 n-1

o < <x -Ex <
n
j=

n-

and so, by the inductive hypothesis,

n-1 (2n-1 ) n-1

Mn j__I XJ P tP 7 j__l XJ n -[Xy tl" tP Mn-1 > 0"
j=l

To complete the proofwe use a Lagrange Multiplier argument to show
that if the minimum value of Mn occurs in the interior of Kx
(considered as a subset of the hyperplane) then it is non-negative. Note
that since p > 1, Mn has continuous first partial derivatives with
respect to each of xl, x2,..., x. Thus it will suffice to show that the
value of M is non-negative at critical points of

Mn-A xj-nx,
j=l

considered as a function of Xl,X2,... ,x,, with x and still fixed.
At critical points we have -i1 x1 nx and for each j

Pxj
p-1 2tp-1 --pixy tl-sgn(xj t) A 0.

It follows that xj’- -Ixj- tlt’-lsgn(xj- t) takes the same value for
each j. Since is no greater than the average of XI, X2,... ,Xm either
X x2 Xn x or at least one x is greater than t. In the latter
case, Lemma 2.1 applies and we conclude that X x2- x, x.
In either case we have

Mn n(xp tP(2x/t- 1) (x- t)p)

which is non-negative as we have seen in the case n 1. This completes
the proof in the case p > 2.
The proof that Mn < 0 in the case <p < 2 proceeds similarly.

The key inequality is presented next. It is more general than
Theorem 2.2 and will readily imply Theorems 1.1-1.4.
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THEOREM 2.3 Suppose p > 2 and # is a probability measure. Iff> 0 is
a #-measurable function then

2ffPd#> tP(-iffd#- l) + / [f tlPd# (2.2)

whenever 0 < < ffd#. The reverse inequality holds when < p < 2.

Proof It is a simple matter to show that (2) holds with equality when
p 2. When p > 2 we argue as follows.

Iffis not in LP then both sides of (2.2) are infinite so there is nothing
to prove. Fix f E LPu, and with 0 < < ffd#. Let f* denote the non-
increasing rearrangement of f with respect to #. We view f* as a
Lebesgue measurable function on [0, 1]. Since f is non-negative, fand
f* are equimeasurable, fP andf*P are equimeasurable, and If-tlp and
If*-tlp are equimeasurable. Thus (2.2) becomes

f*P :> p - + If* tle. (2.3)

For each positive integer n define the function fn on [0, 1] by

fn(s) Zf* (j/n)x((j-1)/n,j/n)(S)
j=l

and note that since f* is non-increasing, f* (s+ l/n) <f,(s) <f* (s) for
0 < s < 1. Clearly, the sequence {f,,} converges to f* in LP[0, 1]. It
follows that f fn converges to f0 f* so for sufficiently large n we have
0 < < ffn. By the Lebesgue Dominated Convergence Theorem,
(2.3) will follow provided we establish

lo’ fPn >- t - fn + Ifn tlp. (2.4)

for sufficiently large n. If we set xj=f* (j/n) then (2.4) becomes

x-I +- Ix-tlpn
j=

xj - j=
n
j=l

which holds by Theorem 2.2 when n is large enough that < f0 fn.
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This proves the theorem for p > 2 in the case 0 < < ffd#. The case

ffd# follows by an easy limiting argument.
The same argument yields the reverse inequality when <p < 2.

COROLLARY 2.4 Suppose p > 2, # is a probability measure, andf is a
non-negative, #-measurable function. Then

The reverse inequality holds when < p < 2.

Proof Take ffd# in Theorem 2.3, rearrange the result and take
p-th roots.

Proofs of Theorems 1.1-1.4 To prove Theorems 1.1 and 1.2 we fix
non-negative u-measurable functions f and g and apply Corollary 2.4
with fg-t; in place off and d# g’du/f gt,’du.
Theorem 1.3 follows from Theorem 1.1 in the same way that

Minkowski’s inequality follows from H61der’s. Fix non-negative
u-measurable functions f and g and define h by

h lff g(f + g)’-ldu- g ff(f + g)P-dul/ /(f + g)’du.

Let p > 2 and apply Theorem 1.1 with g replaced by (f+g)P- to get

ff(f + g)p-ldu <_ ( ffvau f hpau) l/v ( f(f + g)Vdu) /p’.

Interchanging the roles off and g yields

f g(f + g)p-ldu<_ ( f gPdu-

Adding the last two inequalities gives Theorem 1.3.
Theorem 1.4 follows from Theorem 1.2 by a similar argument.

Example 2.5 The hypothesis that f be non-negative cannot be
dropped in Corollary 2.4. That is, it is not necessarily true that

ffdlz <_ ( f [flPdlz- f If-/fdzlPd#)
/’
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when p > 2. The reverse inequality may also fail when p < 2 iff takes
negative values.

Proof Take p=3 and let f---X[o,7/8)-X(7/8,1]. Here # is Lebesgue
measure on [0, 1]. The left hand side is 3/4 while the right hand side
evaluates to (3/4)(4/3)

To show that the reverse inequality may fail it suffices to let
p 15/8 and f= XE0,1/32) X(/32,11. We omit the calculations.

Example 2.5 also shows that Theorems 1.1 and 1.2 may fail iff is
allowed to take negative values. Just take g 1.

Theorems 1.3 and 1.4 may fail for simpler reasons. They may fail to
make sense. When f and g are non-negative the function h is always
less than each of them in -norm. This may not be true iffand g take
negative values.

Example 2.6 Let u be Lebesgue measure on [0, 1] and suppose p > 2.
Setf= 1/2 and g (1/2)(Xt0,1/2)- X(l/2, 1). The function h of Theorems
1.3 and 1.4 satisfies

hPdu> f Ifledu and hPdv > J [glPdv"

Proof f+g XIo, /2) so h X(/2,11. Thus fhPdv= 1/2 while both

flflPdv and flg[Pdv are (1/2) P.


