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dWe consider the imbedding inequalit), I1.(). sr,,,dll IIn,fnu; H (R) is the Sobolev
space (or Bessel potential space) of L type and (integer or fa6tional) order n. We write
down upper bounds for the constants Sr,n,a, using an argument previously applied in the
literature in particular cases. We prove that the upper bounds computed in this way are
in fact the sharp constants if (r= 2 or) n > d/2, r= oe, and exhibit the maximising
functions. Furthermore, using convenient trial functions, we derive lower bounds on
Sr,n,d for n > d/2, 2 < r < oo; in many cases these are close to the previous upper bounds,
as illustrated by a number of examples, thus characterizing the sharp constants with little
uncertainty.
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1. INTRODUCTION AND PRELIMINARIES

The imbedding inequality of H" (Ra, C) into L (Rd, C) is a classical
topic, and several approaches has been developed to derive upper
bounds on the sharp imbedding constants Sr,,,d. A simple method,
based on the Hausdorff-Young and H61der inequalities, has been
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employed in the literature for special choices of r, n, d, as indicated in
the references at the end of Section 2. Little seems to have been done
to test reliability of the upper bounds derived in this way (i.e., their
precision in approximating the unknown sharp constants).

This paper is a contribution to the understanding of the Hausdorff-
Young-Hrlder (HYH) upper bounds, and aims to show their
reliability for n > d/2. This case is interesting for a number of reasons,
including application to PDE’s; its main feature is that the Hn norm
controls the L norms of all orders r > 2, up to r o.

The paper is organized as follows. First of all, in Section 2 we write
the general expression of the HYH upper bounds Srnd< S;,+n
(containing all special cases of our knowledge in the literature). In

+Section 3 we show that the upper bounds Sr,n,d are in fact the sharp
constants if (r= 2, n arbitrary or) n > d/2, r=o, and exhibit the
maximising functions; next, we assume n > d/2 and inserting a one
parameter family of trial functions in the imbedding inequality, we
derive lower bounds S,,,a > S,a for arbitrary r (2, o). In Section 4
we report numerical values of S +/- for representative choices ofr,n,d
n, d and a wide range of r values; in all the examples the relative
uncertainty on the sharp imbedding constants, i.e., the ratio

(St,n,d -Sn,d)/Sn,d is found to be << 1.

1.1. Notations for Fourier Transform
and Hn Spaces

Throughout this paper, dEN\{0} is a fixed space dimension; the
running variable in Ra is x=(xl,...,xa), and k =(kl,...,kd) when
using the Fourier transform. We write Ixl for the function
(Xl,...,Xd)HV/X12+ 4-Xd2, and intend Il similarly. We denote
with 2-,-1: S,(Rd, C) S,(Rd, c) the Fourier transform of tem-
pered distributions and its inverse, choosing normalizations so that
(for f in L (Ra, C)) it is ,T’f(k) (27r) -d/) x fRa dxe-ik’xf(x). The
restriction of 2" to L2 (Rd, C), with the standard inner product and the
associated norm 11 ]Its, is a Hilbertian isomorphism.

For real n > 0, let us introduce the operators

s’(, c) s’(, c),
+/-n

(1.1)
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(in case of integer, even exponent n, we have a power of minus the
distributional Laplacian A, in the elementary sense). The n-th order
Sobolev (or Bessel potential [1]) space of L2 type and its norm are

Hn(Rd, C) := {f S (Rd, c) V’l -Anf Z2(Rd, C) }
{ x/’l A-nu u E L2(Rd, C) }

Ilfllm :-IIV’l- AnfllL2 / Ikl= ’f (1.3)
L

Of course, if n < n’, it is H"’ (Rd, C)c Hn(Rd, C) and II I1.. II I1. ;
also, H L2.

1.2. Connection with Bessel Functions

For v > 0, and in the limit case zero, let us put, respectively,

G,,a ’-/ / 2/2-1I’(v/2)..a K,/2-d/2(lxl);
V/1 + Ikl2

Go,d := .T’-(1) (27r)a/26.

(1.4)

Here, F is the factorial function; K( are the modified Bessel functions
of the third kind, or Macdonald functions, see e.g. [2]; 6 is the Dirac
distribution. The expression of G,,,a via a Macdonald function [1]
comes from the known computational rule for the Fourier transforms
of radially symmetric functions [3]. With the above ingredients, we
obtain another representation of H" spaces [1]; in fact, explicitating
x/’l A-"u in Eq. (1.2) and recalling that ’- sends pointwise product
into (2zr) -a/2 times the convolution product., we see that

Hn(Rd, C) { (27r)d/2 Gn,d * U u 6 L2(Rd, C) } (1.5)

for each n >_ 0. All this is standard; in this paper we will show that, for
n > d/2, the function G2,,,d also plays a relevant role for /4(Rd, C),
being an element of this space and appearing to be a maximiser for
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the inequality I[ [ILo < const 11 II.. Incidentally we note that (for all

n >_ 0) the relation (1 + ]k]2) -n / Ikl / Ik gives, after

application of .T"-l, G2n,d=(27r) -d/2 Gn,d * Gn,d.
For future conveniency, let us recall a case in which the expression

of G,,d simply involves an exponential x a polynomial in Ix I. This
occurs if u/2-d/2--m+ 1/2, with m a nonnegative integer: in fact,
it is well known [2] that

---(2m-i)! pipm+I/2Km+I/2(P) -P

i!(m i)’ 2m-ii=0

(mEN, pER). (1.6)

2. HYH UPPER BOUNDS FOR THE IMBEDDING
CONSTANTS

It is known [1,4] that Hn(Ra, C) is continuously imbedded into
Lr(Rd,C) if 0_<n<d/2, 2<r<_d/(d/2-n) or n=d/2, 2<_r<oo
or n > d/2, 2 <_ r < o. We are interested in the sharp imbedding
constants

Sr,n,d "= Inf{S >_ 0[ Ilfllv -< sllfll, for allf EHn(Rd, C)}. (2.1)

Let us derive general upper bounds on the above constants, with
the HYH method mentioned in the Introduction; this result will
be expressed in terms of the functions F and E, the latter being defined
by

E(s) := s for s E (0, +oo), E(0) "= lim E(s) 1.
5,---0+

(2.2)

PROPOSITION 2.1 Let n O, r 2 or 0 < n < d/2, 2 < r < d/(d/2-n) or
+ wheren d/2, 2 < r < oo or n > d/2, 2 <_ r < oo. Then Sr,n,d < Sr,n,d,

Sr,+n,d (r’((n/(1- 2/r))- (d/2)))1/2--1#(4.1r)d/4-d/(2r) F((n/(1 2/r)))

(E(1/r))d/2x
E(1 l/r) if r 2, oo, (2.3)
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S+ +. l (I(n-d/2)) 1/2

2,,,d := 1, Soo,n,d (47r)d/4 l(n
(2.4)

Proof Of course, it amounts to showing that Ilfllv <_ s,+,allfllm for
all fE H"(Ra, C). For r= 2 and any n this follows trivially, because

IIflIL= --Ilfll,0 _< x Ilfllm.
From now on we assume r # 2 (intending 1/r := 0 if r o); p, s are

such that

1 2
-r +p-=l; -+-2=p-, i.e., s=.l_2/r (2.5)

Let fEH (Ra, C). Then, the Hausdorff-Young inequality for "
and the (generalized) H61der’s inequality for :’f / I1z

(V/1 + Ikl2n.T’f) give

Ilfll. _< c,.all=fll, c,,a :=
(2r)d/2_d/r E(1 l/r) (2.6)

dk
II/llm (2.7)

(C,a is the sharp Hausdorff-Young constant: see [5, 6] Chapter 5 and
references therein. Our expression for Cr,a differs by a factor from the
one in [6] due to another normalization for the Fourier transform).
Of course, statements (2.6), (2.7) are meaningful if the integral in

Eq. (2.7) converges; in fact this is the case, because the definition of s
and the assumptions on r, n, d imply ns > d. Summing up, we have

(E(1/r) ) d/2
Ilfll,: <- (2r)d/2_d# E(1 l/r)

x

de
Ilfllm, (2.8)
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with s as in (2.5). Now, the thesis is proved if we show that

constant in Eq.(2.8) S+,n,d

to check this, it suffices to write

(2.9)

(2.10)

and to explicitate s. I

Remarks

(i) Let us indicate the special cases of our knowledge, in which some
HYH upper bounds Sr,n,d+ have been previously given in the
literature. Reference [6] derives these bounds for d= 1, n 1/2,
d 2, n and 2 < r < o (with a misprint). The inequality in [7],
page 55 is strictly related to the case n=2, d>4, 2<r<

+ is given for arbitrary n > d/2d/(d/2-2). The upper bound So,n,d
by many authors, see e.g. [8, 9].
To our knowledge, little was done to discuss reliability of the

HYH upper bounds; the next two sections will be devoted to this
+topic, in the n > d/2 case. First of all, we will emphasize that Soo,n,d

is in fact the sharp imbedding constant for any n > d/2 (this is
shown in [6] for d 1, n only, with an hoc technique). S+2,n,d is
also the sharp constant (for any n), by an obvious argument; our
analysis will show that, for n > d/2 and intermediate values
2 < r < cx S+ gives a generally good approximation of the sharpr,n,d
constant.

(ii) Discussing reliability of the bounds S+ for n < d/2 would require,n,d
a separate analysis, which is outside the purposes of this paper; let
us only present a few comments.
The upper bound S+ is certainly far from the sharp constantr,n,d

+ divergesfor 0 < n < d/2 and r close to d/(d/2-n): note that St,,,d
for r approaching this limit, in spite of the validity of the
imbedding inequality even at the limit value. As a matter of fact
other approaches, not using the HYH scheme, are more suitable to
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estimate the imbedding constants if 0 < n < d/2, r d/(d/2- n). We
refer, in particular, to methods based on the Hardy-Littlewood-
Sobolev inequality [8]: the sharp constants for that inequality were
found variationally in [10]. Let us also mention the papers [11],
prior to [5], and [12]; the inequalities considered therein, for which
the sharp constants were determined, are strictly related to the
limit case r d/(d/2-n) with n 1 and 2, respectively.
The HYH upper bounds S+ might be close to the sharpr,nd

imbedding constants Sr,n,a in the critical case n d/2, but this topic
will not be discussed in the sequel.

+3. CASES WHERE Sr,n,d IS THE SHARP CONSTANT.
LOWER BOUNDS ON THE SHARP CONSTANTS
FOR n > d12 AND ARBITRARY r

Let us begin with the aforementioned statement that

+PROPOSIXlON 3.1 Sr,n,d is the sharp imbedding constant ifn > O, r 2 or

n > d/2, r oo. In fact:
(i) for any n > 0 and nonzerofE Hn (R a, C), it is

lim IIf>ll’= 1--s+ where
o+ IIf<)II,------ 2,n,d,

ff)(x) .=f(,Xx) for x in Rd, ,X (0, +c). (3.1)

(ii)

Ilfll / d/2 andSoo,,dllfll for n >

f :=.T’-I ( )(1 + Ikl2)n G2n,d. (3.2)

Proof
(i) Given any fEHn (Rd, C), define f( as above; by elementary

rescaling of the integration variables, we find

(’f())(k) -d (’f) for k e Ra; (3.3)
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IIf)ll dk( + Ikl=)= f X

_1--Zfdh(l/)2lhl2)"lf(h)12;a (3.4)

fdhlf(h)l2 (3.5)

(ii) Let n>d/2; then 1/(l+[kl:)nEL1 (Ra, C), so f in Eq. (3.2) is
continuous and bounded. For all x E Ra (and for the everywhere
continuous representative off) it is

f(x) (27r)d/2 a
dk

eik.x
(1 + Ik12)"’

If(x)l _< ddk(1 + ikl), =f(0),
(3.6)

so that

Ilfll,o =f(0) (27r)d/2
dk
( + Ikl2),

Also, it isfHn (Rd, C) and

(3.7)

(1 + ]kl2)’’ (3.8)

The last two equations give

Ilfll-------- (27r)d/-----5 a
dk

(1 + Ikl2)"’
(3.9)

and by comparison with Eqs. (2.8), (2.9) we see that the above
ratio is just +Soo,n,d.
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As an example, let us write down the maximising function f= G2n,d
of item (ii) when n d/2/ 1/2 or n d/2+ 1. According to Eqs. (1.4),
(1.6), we have

Ixll/2K1/2(]xl) v/-e-Il
02(d/2+/2),d 2/2_/2(d/2 + 1/2) 2/2(d/2 + 1/2)

I lrl(l l)
G2(/2+), 2d/2F(d/2 + 1)"

From now on n > d/2; we attaek the problem of finding lower
bounds on $,,d for 2 < r < c. To obtain them, one can insert into the
imbedding inequality (2.1) a trial function; th previous onsiderations
suggest to employ the one parameter family of resaled functions

G2n,d(X)(a) :-- G2n,d(Ax) (A (0, o))). (3.11)

Of course, the sharp constant satisfies

"-’2n,d I[ L
Sr,n,d Supa > 0 (x) (3.12)

one should expect the above supremum to be attained for A
_
0 if r

_
2,

and for A if r is large. Evaluation of the above ratio of norms leads
to the following.

PROPOSITION 3.2 For n > d/2, 2 < r < c it is Sr,n,d >_ S,n,d, where

(d/2))
I/2-I/r

Sn,d 2,/rd/2 2n-l’(n)v/r,n,d
(3.13)

dt d-1 (tn-d/2Kn_d/2(t))r, (3.14)

:= Znf
)>0

f0+ (1 +/2s2)nr,n,d() :--
)d-2d/r

ds sd-1

(1 + s2)2n
(3.15)
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Proof From the explicit expression (1.4), it follows (using the
variable t=

I1 .
27rd/Z
r(d/2) 2(n-)r(n)M

x dt d-1 tn-d/2Kn_d/2(t) (3.16)

By (3.3) with f:G2nd, it is (.T’G2n,d)(k) ,k-d(1 + Ikl2/,X2)
whence (using the variable s

(1 -I-Ikl2)"
(1 + IklZ/,X2)2"

27rd/2 fo
+

r(d/2)M
ds S

d-1 (1 + z2S2)n

(1 + s2)n
(3.17)

Eqs. (3.16), (3.17) imply

/r
,n,a (3.18)

2n-’r(n)v/Or,,,,d(A

and (3.12) yields the thesis.

Remarks

(i) For n integer, the integral in the definition (3.15) of or,n,a is readily
computed expanding (1 + A2 s2)n with the binomial formula, and
integrating term by term. The integral of each term is expressible
via the Beta function B(z, w)= F(z) F(w)/F(z+ w), the final result
being

(n E N).

(3.19)

For arbitrary, possibly noninteger n, the integral in (3.15) can be
expressed in terms of the Gauss hypergeometric function F= 2Fl,
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and the conclusion is

2/d_2d/r
B 2n , F ,-n, + 2n; +

( d d 2n) x+4n-aB n
2’2

(x F 2n, n , + 2n; (3.20)

(in the singular cases 2n-d/2-1 E N, the first hypergeometric in
(3.20) must be appropriately intended, as a limit from nonsingular
values).

(ii) Concerning L,n,d, there is one case in which the integral (3.14) is
elementary, namely n =d/2+ 1/2. In fact, this case involves the
function tl/2K1/2(t) V/2 e-t, so that

Ir,d/2+l/2,d " Io dt td-le-rt 7r

rd (3.21)

More generally, if n d/2+m+ 1/2, rn E N, the integral defining
L,,d involves the function m+l/2 Km+/2(t), which has the
elementary expression (1.6); for n as above and r integer,
expanding the power (tm+ 1/2 Kin+ 1/2(t)f we can reduce L,,d to
a linear combination of integrals of the type fo+ te-rt=
F(a + 1)/r+1 In other cases, L,n,d can be evaluated numerically.

4. EXAMPLES

We present four examples (A), (B), (C), (D), each one corresponding
to fixed values of (n, d) with n > d/2, and r ranging freely. Of course, in
all these cases the analytical expression of (2.3) of +Sr,n,d is available; the
expressions of the lower bounds ST,n,d are simple in examples (A), (D)
and more complicated in examples (B), (C), where the integral Ir,n,d is
not expressed in terms of elementary functions, for arbitrary r.
Each example is concluded by a table of numerical values of S :r,n,d

(computed with the MATHEMATICA package), which are seen
to be fairly close; the relative uncertainty +(Sr,n, S-;,,n,a )/S-;,,n,d is also
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evaluated. In cases (A), (C), (D) the space dimension is d-l, 2, 3,
respectively, and we take for n the smallest integer > d/2: this choice of
n is the most interesting in many applications to PDE’s. In case (B)
where n is larger, the uncertainty is even smaller. Whenever we give
numerical values, we round from above the digits of S/ and fromr,n,d
below the digits of S-;,,n,d.
(A) Case n-l, d-1 Equations (2.3), (2.4) give St, l, for all
r E [2, x]; the values at the extremes are

/ l/x/2 0.7072S+ S,,2,1,1 (4.1)

(coinciding with the sharp imbedding constants due to Prop. 3.1). Let
us pass to the lower bounds. The function r,l, is given by (3.19) and
attains its minimum at a point A- Ar, l,1; the integral L,1,1 is provided
by (3.21), and these objects must be inserted into (3.13). Explicitly,

+
4A1-2/r (4.2)

lrl Ir,1,1SI’I 21/2-1/r V/’ril,1 (/r,l,1)
E(l/r)(/ 2)’/4 ( 2):21;2-.l/rE +-r E 1--r

1/4
(4.3)

Computing numerically the bounds (2.3), (4.3) for many values of
r E (2, + o), we always found (Sr+,l,l S-;,,)/S-;,1, < 0.05, the maxi-
mum of this relative uncertainty being attained for r 6. Here are
some numerical values"

r 2.2 3 4 6 50 1000
S+ 0.8832 0.7212 0.6624 0.6345 0.6782 0.7046r,l,1
S;,1,1 0.8730 0.6973 0.6347 0.6057 0.6632 0.7027

(4.4)

(B) Case n 3, d= 1
particular

Equations (2.3), (2.4) give S+ for all r; inr,3,1

+ V/4 0.43311, soo,3, (4.5)
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We pass to the lower bounds. Equations (3.19), (3.14), (1.6) give

tr,3,1 ()0 37r(A6 -b 3A4 + 7A2 + 21).
512A1-2/r

(Tr)r/2fO+ 3)re-" (4.6)It,3,1 - dt 2 + 3 +

The minimum point )r,3,1 of r,3,1 is the positive solution of the
equation

( 2)A6 ( 6)A4 ( 14)A2 (21 42)=0;5+; + 9+; + 7+--- --- (4.7)

the integral Ir,3,1 can be computed analytically for integer r, and
numerically otherwise. The final lower bounds, and some numerical
values for them and for the upper bounds (2.3) are

/
,3,1S,3,1 27/2_l/r4’r,3,1(r,3,1)"

r 2.2 3 6 10 20
S+ 0.8605 0.6475 0.4888 0.4519 0.4341r,3,1

S,3,1 0.8597 0.6458 0.4872 0.4507 0.4333

(4.8)

(4.9)

For each r in this table +(S,3, S;,3,1)/S;,, < 0.004, with a maximum
uncertainty for r 6.

(C) Case n 2, d 2
particular

Equations (2.3), (2.4) give S+ for all r, and inr,2,2

+S+ Soo,2,2 1/ 0.28212,2,2 (4.10)

The function r,2,2 computed via Eq. (3.21), its minimum point ,r,2,2
and the integral Ir,2,2, defined by (3.14), are given by

!

A4 + A2 + /-1/r + V/1 31r2.qOr,2,2() 62_4/r At,2,2 =. + 2/r

Ir,2,2 dt tKl(t) (4.11)
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The above integral must be computed numerically. The final expres-
sion for the lower bounds, and some numerical values for them and for
the upper bounds (2.3) are

r 2.1
Sr,+, 0.8494
S,2,2 0.8465

ir /r
,2,2 (4.12)S:’2 2312-11"rll2-11" V@,.;E,2(,X,.,2,2)

3 6 18 50 100
0.4557 0.2949 0.2644 0.2694 0.2737. .(4.13)
0.4455 0.2854 0.2582 0.2659 0.2715

It is +(St,2,2 S2,2)/$7,2,2 < 0.04 for all r in this table, with a maximum
uncertainty for r 6.

(D) Case n 2, d 3
in particular

Equations (2.3), (2.4) give S+ for all r, andr,2,3

+S+ Soo,2,3 1/ 0.19952,2,3 (4.14)

The function qOr,2,3 computed from Eq. (3.19), its minimum point/r,2,3
and the integral L,2,3 provided by (3.21) are

qOr,2,3 (,k)
’7r’(5,4 - 2A2 -b 1)

32A3-6/r
61r + 4v/i + 31r 91r2)r,2,3 5(1 + 6/r)

)r/2r 2
(4.15)Ir,2,3 r-

The final expression for the lower bounds, and some numerical
values for them and for the upper bounds are

l/"E(1/r)
S;’2’3 212-31" V@,I2,3(A,.,2,3) (4.16)

r 2.1 3 4 7 11 20 100 1000
S+ 0.7830 0.3118 0.2183 0.1657 0.1594 0.1647 0 1864 0.1975r,2,3
$7,2, 0.7762 0.2912 0.1986 0.1486 0.1437 0.1511 0.1795 0.1960

(4.17)

For these and other values of r in (2, o), we always, found (St,2,3+
S,2,3)/S,,2,3 < 0.12, the maximum uncertainty occurring for r 7.
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