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1. INTRODUCTION

Let X be a real Banach space with norm l[ 11 and X* be the dual space
of X. The normalized duality mapping from X to the family of subsets
of X* is defined by

J(x)-- {x* x*.(x,x*) --Ilxll = --IIx*ll=}, x x,

where (., denotes the generalized duality pairing between X and
X*. A mapping T with domain D(T ) in X is said to be accretive if, for

* Corresponding author.
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each x, y E D(T ), there exists j(x-y) J(x-y) such that

(Tx Ty,j(x y)) > O.

Furthermore, T is called strongly accretive if there exists a constant
k > 0 such that, for all x, y D(T ), there exists j(x-y) J(x-y) for
which the inequality

(Tx Ty,j(x y)) >_ kl[x (2)

holds. T is said to be b-strongly accretive if there exists a strictly
increasing function 4: [0, oe) [0, ) with 4(0) 0 such that, for all x,
y D(T ), there exists j(x y) J(Jc y) for which the inequality

<Tx Ty,j(x y)> >_ q(llx yll)llx yll (3)

holds. Let F(T ) {x D(T ): x Tx} and N(T ) {x D(T ): 0 Tx}.
If N(T ) and the inequalities (1), (2) and (3) hold for any x D(T )
and yN(T ), then the corresponding operator T is called quasi-
accretive, strongly quasi-accretive and C-strongly quasi-accretive,
respectively. It was shown in [22] that the class of strongly accretive
operators is a proper subclass of 4-strongly accretive operators.
A class of mappings closely related to accretive operators is the class

of pseudo-contractions. A mapping T: D(T ) C X Xis called pseudo-
contractive (respectively, strongly pseudo-contractive, 4-strongly
pseudo-contractive, b-hemicontractive) if and only if (I- T ) is accre-
tive (respectively, strongly accretive, b-strongly accretive, 4-strongly
quasi-accretive), where I denotes the identity operator on X. Such
operators have been extensively studied and used by several authors
(see [4, 7, 22, 27, 28, 31 ]).

Recently, several strong convergence theorems for the Mann
(steepest descent approximation) and Ishikawa iterative (generalized
steepest descent approximation) processes in general Banach spaces
have been established for approximating either fixed points of strong
pseudo-contractions acted from a nonempty convex subset K into
itself or solutions of nonlinear equations with accretive operators
acted from.a Banach space X into itself (see [4, 7, 11, 19, 29, 30]).

In several practical applications, it is well known that a mapping
with domain D(T ) and range R(T ) need not be a self-mapping. If the
domain of T, D(T ), is a proper subset of the Banach space X and T
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maps D(T ) into X, then neither the Mann nor the Ishikawa iterative
process may be well defined.

It is our purpose in this paper to establish several strong con-
vergence theorems for the Mann iterative (steepest descent ap-
proximation) and Ishikawa iterative (generalized steepest descent
approximation) processes involving a class of non-self-mappings in
general Banach spaces.
For this purpose, we need the following:

LEMMA 1.1 [29]
inequality

Let X be a real Banach space. Then the following

IIx + yll 2 Ilxll 2 + 2(y,j(x + y))

holds for all x, y E X and allj(x+y) J(x+y).

2. MAIN RESULTS

THEOREM 2.1 Let X be a real Banach space and let A: D(A) CXX
be a c-strongly quasi-accretive and uniformly continuous operator.
Suppose that, for some initial value xoD(A), -(llAxoll) is well-

defined and there exists a closed ball B={xD(A): IIx-xoll _<
3( IIAxoll )} contained in D(A). Then the generalized steepest descent
approximation process (GSDA) defined by

x0 BI
Xn+! Xn anAyn, (GSDA)
Yn Xn nAxn

for all n > 0 remains in B1 and converges strongly to x* N(A) provided
that {an} and {/3,} are two real sequences in [0, 1) satisfying the
following conditions:

(i) Oln-[-n min {((qS-1( Ilhxol[ ))/(2M)), (6/2M)}, n >_ 0;
(ii) n=0 an oe; and

(iii) an O, n 0 as n oe, where M and 6 are somefixed constants.

Moreover, if inft >_ o(4)(t)/t) > O, then we have the error estimation

IIx. x*ll 2 <_

where r max{g)- 1( Ilaxoll ), } and On < for all n > 0 and On "* 0 as
n----.oo.
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Proof We first observe that

Ilxo x*ll _< - (llaxoll). (4)

Let M= sup{ 11.4ull’u B}. Since A: D(A) cXX is uniformly
continuous, we can choose a positive constant 6 such that

Ilaxoll[lax ayll <_
2

whenever IIx-Yll < . Now we can choose (cn} and {/n} satisfying the
conditions (i)- (iii).

CLAIM Ily,,-x*ll < -’(llAxol[) whenever IIx,,-x*ll < -’ (llAxoll).
Let IIx,,-x*ll _< -(ll-xoll). Then IIx,,-xoll _< 2O-’(llxoll) and

then IIAx.II <_ M. On the other hand, by (GSDA)1, we have

liT,, x*ll _< - (llAxoll) +/3.M < 2b-1 (llAxoll),

which shows ynEBI. Now we want to show that Ily,,-x*ll_<O-
(llAx011). Suppose that II y.-x*ll > -( IlAxoll ). Then dp( y.-x*ll ) >_
IIAxoll. Observe that

liT. x. II < ft. Ilax. I[ < flnM < 6

and so we have

IIA(y,) A(x)ll <
11I,,Axo,_________2 (5)

2

By using Lemma 1.1, (GSDA)I and (5), we have

ItY. x*ll 2 -IIx, x* naxnl[2

<_ Ilxn x* II - 2/3n (axn,j(yn x*))
_< IIx, x*l[ 2fl,O(lly. x*ll)lly, x*ll
+ 2.0- (l[axoll)lla(yn) a(x.)ll

_< IIx x*ll 2llaxoll- (llaxoll)
/2Ilaxo il- (llaxo II)

_< IIx x*ll 2, (6)

which implies that IlY,-x*ll IIx,-x*ll -’(llxoll). This contra-
dicts the assumption II y-x*ll > -( IIxoll ).
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CLAIM 2 IIx.-x*ll -(llxoll)for all n>O.
First of all, Ilxo-x*ll -( 114xoll ). Let IlXn--x*ll -( IIx011 ).

We shall prove that

X*IIx,,/ II-< - (llaxoll).

X*Assume that it is not the case, i.e., IIx/- II > (llxoll). Then we
have

b(llXn+l- x*lt) > IIAxolI.
Since IIx,-x*ll -( IIxoll ), by CZaim 1, we see that

Ily, x*ll q-(llAxoll).

Thus it follows from the definition of M that IlAx, ll M and
IIAy,,II <_ M. Observe that

IlXn+l X*II b-l(llAxoll) + oznM 2-(llAxoll),
so that Xn+ E B1. Observing that II y.-x,/ 11 (,,+n)M < , in view

of the uniform continuity of A, we have

IIAy Axn+ll < IlAxo
2

It follows from Lemma 1.1 and the above arguments that

XIIx.+- 2

Ilx. x*ll 2 2On(Ayn,j(Xn+l x*))

IIx. x*ll 2 2On(Ayn --AXn+l,j(Xn+l X*))
2an(ax,,+ -ax*,j(x.+ x*))__

[[Xn x’l[ 2 -+- 2anllaxolldp-l(llaxo[[)
2Onq-1 (llAxo II)IIAxo II

_< IIx,, x*ll 2, (7)

which implies that

X* X*IIx,,+ II-< Ilxn 1[ _< - (llaxoll).

This & a contradiction and so Claim 2 is true.
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CLAIM 3 Xn X* as n
Again using Lemma 1.1, we have

X*IIx.+l- =
<_ IlXn x*ll 2 2Onq(llXn+l x*ll)llx,,/l x*ll / O(n), (8)

X*Set lim sup,,_. IIx,,/l- a. Then a O. If not, suppose a > O.
Then we can do prove that there exists an positive integer No such that

X*for all n > No, ilx,,/ II > (a/2) and hence, for all n > No,

At this point, we can choose N

_
No so large that

a(a)o(.)_< . (9)

for all n >_ N. It follows from (8) and (9) that

a (a)t -x.
tl--Ni

which contradicts the assumption (ii). Therefore, we have

X*Ziminfllx/ x*ll _< limsupllx/l- I[-0.

This implies that Xn

Now we consider an error estimation. For this purpose, assume that

X*
inf b(l[X.+l II)

o" > 0.

Without loss of generality, we assume that o(a,,) <_ 2era. for all n >_ 0.
Define iteratively a real sequence {0.}. _> o as follows"

00= 1,
0.+1 ( -((2.)/( + 2.)))0. + ((o(.))/( + 2n))

for all n>_0. Then we have that 0._< 1, lim._0.=0 and

IIx-x*ll= <_ ;o for all n>_0, where r=max{-(llAx011), }. This
completes the proof.
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Remark 1 If A is Lipschitz continuous in Theorem 2.1, then we can
choose 6 < (llAxoll/2L), where L > is the Lipschitz constant for A.

Remark 2 If D(A)=X and b is surjective, then, for all XoEX,- ( IIAxoll ) always is well-defined. Moreover, B1 C X. In this case, the
convergence in Theorem 2.1 is global.

Remark 3 By taking /n=0 for all n > 0, then we obtain the cor-
responding convergence theorem for the steepest descent approxi-
mation to accretive operator equations in arbitrary Banach spaces.

THEOREM 2.2 Let X be a real Banach space and let A: D(A) C X--- X
be a uniformly continuous dp-hemicontractive mapping. Set T= I-A.
Suppose that, for some initial value xoEO(A), b-l( IITxoll ) is well-
defined and there exists a close ball B2={xD(A):llX-xoll <
3(llTxoll)} contained in D(A). Then the Ishikawa iterative process
(IS)I defined by

Xo (B2
Xn+l (1 On)Xn -- anayn, (IS)
Yn (1 ]n Xn "+"/nAxn

for all n > 0 remains in B2 and converges strongly to x* F(A) provided
that {an} and {fin} are two real sequences in [0, 1) satisfying the
following conditions:

(i) an+2/n < min{((ll Txoll- (11Txoll ))/(2(M + b- (11Txoll ))), (/
(2M)), ((b -1( II Txoll ))/(2M))}, n > 0;

(ii) oo-n=0 % o; and
(iii) % O,/n 0 as n o, where Mand 6 are somefixed constants.

Moreover, if inft >_ o (6(t)/t) > O, then we have the error estimation

[[Xn x*ll 2 _< 20.,

where r max{dp- 1( Zxol[ ), 1} and On < for all n > 0 and On 0 as
n----oo.

Proof We first observe that, if F(A)O, then F(A) must be a
singleton. Let F(A)= {x*}. By the definition of A, we have

IIx0 x*ll -(llTx01l), (10)
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Since A" D(A)X is uniformly continuous on D(A), so is T. Let M
sup{llTyll’yn2}. Then M<+c. For -(llTxoll-(llTxoll))/
(2(M/-(llTxoll))). there exists > 0 such that [[Tx- Tyll <_
whenever Ilx-yll _< . At this point we can choose {a,,} and {/3,,}
satisfying the conditions (i)-(iii).
We shall prove that II y-x* It _< -’( II Txolt whenever IIx- x* II <-- ( II Txoll ). Let Ilx- x* II -< - ( Txoll ). Then

IIx, x01l 2-1 (llTx011)

and hence II Tx,,{I < M by the definition of M. Observe that

Ily, x*ll -(llZx011) +/M 2- (llZxoll)

and

IlXn Y’,II /3riM < 6.

Thus we have Tx,-Ty.II . Assume that Y,-x*ll > -( Txoll ).
Then we have b( II y-x* ) > Txoll. Using Lemma 1.1, (IS)1 and the
above arguments, we have

< Ilx. x’l] 2 2fln(Txn,j(yn x*))

IIx,, x*ll = + 2/,,[ITx,, Ty.IIIIy x*ll
2/3,,b(lly. x* II) Ilyn x*

<_ IIx x*ll=, (11)

which implies that y,- x* -< IIx,- x* - *( Txoll ). This is a
contradiction and so IIY-X*II _< O-(IITxolI) whenever IIx-x*ll _<- ( Txoll ). Observe that

IIx.+ x*ll anM + q-I (llTxoll) 2-’ (llYxoll)

and

IIx.+ Ynll <_ (2/3n + an)M <_ 6,
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so that [ITx,,+ 1-Ty,,]l <_ e. Again using Lemma 1.1, (IS)l and the
arguments above, we obtain

IIx./ x*ll 2 _< Ilxn x*ll 2 2an(Xn --Ayn,j(Xn+l x*))

/ 2IITy Tx/IIIIx/I x*ll
X* X*-2cb(llX/l- II)llx/l- II

_< Ilx. x* II 2, (12)

X* X*which implies that IIx/- < IIx- < (lITxoll). This is a
X*contradiction and so [[X,+l- [I -< (ll rxoll) whenever [[x,-x* [[ _<

c- 1( [I Txo[[ ). By induction, we assert that

IIx. x*ll _< -l(llTx011)
for all n _> 0. Therefore, liTx.II <_ M and IITyll _< M for all n _> 0. It
follows from Lemma 1.1 and (IS)I that

X*IIx.+l- 2

X*< Ilxn x*[I 2 2anq(l[Xn+ X*II)IIx+I II q- O(an). (13)

X*Set lira sup._oo [[x.+ II r. Then r =0. If not, then we can do
prove that there exists a positive integer No such that, for all n >_ No,

X* X*IIx.+ - II -> (r/2) and then b( [ix,+ 1- 1[) (r/2). At this point,
we can choose N > No so large that o(a,)_< (r/2)c])(r/2). It follows
from (13) that

_x,

which is a contradiction and so r 0. Therefore, we have

X*lim inf IlX.+l x*ll lim sup IlX.+l II 0,

i.e., xn
Now we consider an error estimation. For this purpose, assume that

inf
b(llx.+l x*ll) > 0.. _> 0 IIx.+ x* II
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Without loss of generality, we assume that o(an) _< 2an for all n >_ 0.
Define iteratively a real sequence {0,}n > o as follows:

00= 1,
On+ (1 --((20"On)/(| -- 2gan)))On + ((O(an))/(1 + 2cran))

for all n>_0. Then we have that 0n_< 1, limn_o0,=0 and
[[x,-x*[l<rO, for all n>0, where r=max{-([[Txo[I),l}. This
completes the proof.

Remark 4 If A is Lipschitz continuous in Theorem 2.2, then we
can choose 6 <_ (( liTxo[Id?-l( I[Tx0[ ))/(2L(M+qS-( IITx011 ))), where
L >_ is the Lipschitz constant for A.

Remark 5 If D(A)= X and b is surjective, then the convergence in
Theorem 2.2 is global.

Remark 6 By taking /3n =0 for all n > 0 in Theorem 2.2, then we
obtain the corresponding convergence theorems for the Mann iterative
process in arbitrary Banach spaces.

TrEORE 2.3 Let X be a real uniformly smooth Banach space and let
T: D(T ) CXX be a -strongly quasi-accretive operator. Suppose
that, for some initial value Xo D(T ), - ( II Tx01l ) is well-defined and
there exists a closed ball B {x E D(T ): [Ix- Xol[ _< 3q-1( II Txoll )} c
D(T ) such that T(B) is bounded. Let {an} and { n} be real sequences
in [0, 1] satisfying the following conditions:

(i) an,/3n0 as n o;
(ii) O3

(iii) a,+n <_ min {(6/M), ((b-( IITxol[ ))/(4M))}, where 6 > 0 and M
are some fixed constants satisfying the property:

IIJ(x) -J(Y)II < 6[(1/4)-’(llTxll)]-(llTxll)
16M

whenever x, y 5 B(0, 2b- l( II Txoll )) and IIx-yll <_ .
Define the generalized steepest descent approximation {Xn}n>_ o as

follows:

x0 o(r),
Xn+l Xn anTyn, (GSDA)2
Yn xn 3nTxn



ITERATIVE APPROXIMATIONS FOR SOLUTIONS 587

for all n > O. Then we have the following conclusions:

(1) T has a unique zero point in D(T );
(2) IIx.- x* II _< -*( II Txoll ) for all n > 0;
(3) Xn X* as n o;
(4) If inft > o ((c(t))/t) > O, then we have also the error estimation"

IIx. x*ll
for all n > O, where r max{c- 1( II Txol[), } ana o. --, o as n .
Proof The proof of (1): If T has two zeros x*, x* EN(T), then, by
definition of T, we have

0 (Tx* Tx*,j(x* x*)) >_ dp(llx*

which gives that x* x1.* In the sequel, we denote the unique zero
point of T by x*. Set M sup { II TylI: y
The proof of (2): Since X is real uniformly smooth, j is uniformly

continuous on the ball B(0, 2b-1( Txoll )) and hence for e ((b((1/4)
-(llTxoll))-(llTxoll)/(16M)), there exists some fixed 6 > 0
such that IIj(x)-j(y)ll -< whenever x, y E B(0, 2b- 1( II Txoll )) and
Ilx-yll <_ . We finish the proof of (2) by the following two steps:

Step (I) [I Y.- x* l[ < d?- ([[ Txoll) whenever IlXn x* ll <- - (11Txoll).
We first observe that IlXo-X*ll _< -(llTxoll) by the choice of

Xo D(T ) and the assumption that b- 1( II Txoll ) is well-defined. Now
assume that

[[Xn x*ll
Then xn B and so II Txnll < M. Observe that

Ily x*ll q-I (llTx011) +/M 2q-1 (llTx011)

and

IlYn Xnll <M< ,
SO that d. IIJ( y.-x*)-j(x.-x*)[I < . We want to prove that

Ily x*ll - (llTx011).



588 H. ZHOU et al.

If not, i.e., Ily-x*l[ > - ( l[ Txoll ), then it follows from (GSDA)2
and the condition (iii) that IIx-x*ll >_ (1/2)-( Txoll ) and hence

b-(llx. x*ll) _> (llZx0ll)

Using Lemma 1.1, (GSDA)2 and the above arguments, we obtain

Ily x* = IIx. x* II = 2/3n (Txn,j(yn x*))

IIx. x*ll 2 + 2Mflndn 2/O(llx. x*ll)llx. x*ll
(14)

which implies that

Ily x*ll < Ilx, x*ll <_

This is a contradiction and so Step (I) is true.

Step (II) IIx.-x*l[ _< O-’(llTxoll) for all n>_0.
We have shown that, for n-0, the above assertation is true. Now

we assume that it is true for n k and we shall show that it is also true
for n=k+l. Since ]lxk-x*[[ _< b-([lTx0[[), we see that [[yk-x*[[ <
b- ([ITxol[) by Step (I) and hence [[TXk[[ <_ M and [ITyk[[ <_ M. On
the other hand, observe that

X* --Ilxk+ l[-< (llTx0ll) + at:M < 2q-1 (llTx0[[)

and

so that ek IIJ (x+ x*) -j(y,- x*)l < e.

X*Now we plan to show that IIx+- II <- (11Txoll). If not, then
we have

1_IIx-x*ll_> (llTx011), lb-1Ily x*ll >- (llTx011)

by (GSDA)2 and

4(lly x* I[) >- 4 4-
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by the property of b. It follows from Lemma 1.1, (GSDA)2 and the
above arguments that

X*Ilxk/-
<_ IlXk x*ll 2 2,k(Zyk,j(Xk+ x*))

<--IlXk x*ll 2 / 2M,ke; 2ak(llYk x*ll)llYk x*ll
< Ilxk x* II 2, (15)

which implies that

Ilxk+ x*ll _< Ilxk x*ll _< O-(llZx011).
This is a contradiction and so Step (II) is true.

The proof of (3): By (2), we see that IIx-x*ll _< -(llTx011) and
Ily-x*ll _< -(llTx011) and so IITxll <_ M and IlZYnll _< M. Observe
that

IIx/ -yll (n + fl)M 0

as n oo. Thus, in view of the uniform continuity ofj, we assert that

fn [Ij(x,,+-x*)-j(y,,-x*)ll ---,o as n--- o.
Set lim supnoo[[Yn-- X* II a. Then a 0. If it is not the case, then we

can do prove that there exists a positive integer no such that, for all
n > no, IIY- x* II -> a/2 and then (lly-x* II) -> (a/2). At this point,
we can choose nl > no such that, for all n > nl, fn < (ac(a/2)/2M).
Using Lemma 1.1, (GSDA)2 and the above arguments, we have

(16)

which implies that

a (a) y _x, 2

2b n_>n,
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This is a contradiction and so

lim inf IlYn x* 11 < lim sup Ily. x* I1-- 0,

which implies yn x* as n c. By (GSDA)2, we see that xn x* as
n c. This completes the proof of (3).
The proof of (4): Assume that inf,, _> 0((11y-x* II)/lly.- x* II)

cr > 0. By using Lemma 1.1 and (GSDA)2, we have

Ilxn x*ll 2 -< I[Yn x*ll + 2fln(Txn,j(xn x*))

<-llYn X*II 2 + 2MflnllXn x*[I

-< Ily. x*ll 2 / 2MC,,(I]x. -Yn[I + [[Y. x*ll)
2 2< []y x*[[ / 2M/,,4- (llTxoll) / 2M/, (17)

which implies that

Ily. x’l[ = _> Ilx. x*ll = 2M-(llTxoll) -2M2/.2 (8)

Substituting (18) in (16) yields to

XIlx.+ = (1 2c.)llx. x*l[ = + (19)

Without loss of generality, we assume that o(a,,) < 2tran for all n _> 0.
Define iteratively a real sequence {0,,}n > 0 as follows:

00= 1,
On+l (1 2ffan)On + 2cran

for all n>_0. Then we have that 0,,_< 1, lim,_.0,,=0 and
[Ix,,-x*ll2<_r20,, for all n>0, where r=max{4)-l(l[Txo[I),l}. This
completes the proof.

Remark 7 In Theorem 2.3, the choice of the iteration parameters
{a,} and {/3,} depends on the initial value x0, but not the smooth-
ness Px(-) of X. It is very interesting to determine the size of 6. If X
is a s-uniformly smooth Banach space, we can give a actual size of 6.

TUOREM 2.4 Let X be a real uniformly smooth Banach space and let
T: D(T) CXX be a c-hemicontractive mapping. Suppose that, for
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some initial value Xo E D(T), qb- l(l[Ax0ll) is well-defined and there exists
a dosed ball B {x E D(T): IIx- xoll _< 3- (llxoll)} D(T) such that
T(B) is bounded, where A I- T. Let {an} and {/n} be real sequences in

[0, 1] satisfying the following conditions:

(i) a,,, n O as n oo;
(ii) oo

Then there exist positive constants M and 6 such that the Ishikawa
iterative process generated by

xo D(T),
Xn+ an)xn + anTyn,
yn (1- n)xn + nTxn

(IS)2

for all n > 0 is well-defined and converges strongly to the unique fixed
point q of Tprovided that - (llAx011) )c. -+- <_ min

2M + ck-l(llAxoll)’4(2M + b-l(llAx01l))

Moreover, if inft>o(dp(t)/t)>O, then we have also the error
estimation:

IIx. qll r20n

for all n > O, where r max{b- (llaxoll), 1} and On 0 as n o.

Proof Let M=suP{llTxll’xeB}. Then M<o since T(B) is
bounded. Since X is uniformly smooth, j is uniformly continuous on
bounded subsets of X. Hence, for e (ok- (llaxoll)(1/4- (ll4xoll))/
8M), there exists a positive constant 6 > 0 such that

IIj(x) j(y)II <- e (20)

whenever x,yB and IIx-yll < . Let q denote the unique fixed
point of T. Then, by the definition of T and the choice of xo, we see
that

IIx0 qll - (llAx011).

We finish the proof of Theorem 2.4 by the following three steps:
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Step 1 Ily.-ql[ < -’(ilAxoll) whenever IIx.-ql] -’(llAxoll). As-
sume that IIx-qll _< -(llAxoll). Then IIx-xoll _< 2- (llAxoll), so
that Tx,,[[ <_ M by the definition of M. Now we want to show that

Ily qll -< 05- (llAxoll).

If it is not the case, assume that IlY-ql[ > -(llxoll). Then we have

14-1Itx. qll > - (llaxol[) n(2M + dp- (llaxoll)) >_ (llaxoll),

so that

4-t )O(llx -qll)>- (llaxoll)

Let a. Ij(x.- q) -j(y,,- q)ll. Observe that

IIY qll-< 24- (llAxoll)

and

I[Y. x.II /3n(2M + -(llAxoll)) .
Then, by the uniform continuity of j, we assert that an < . Using
Lemma 1.1 and (IS)2, we have

[lY qll <- (1 -/3)[Ix. ql[ z + 2n(Txn q,j(Yn q))

< (1 fln)llXn qll / 4M/3nan
/ 2/3,[[x, ql[ 2 2.(llx. qll)llx.

_< IIx. ql[ + 4Mnan 2flnqb(llXn qll)llx
_< Ilx. qll =, (21)

which implies that

IlYn qll 2 IlXn qll : < [05-1 (llAxol])] 2,

i.e., IlY-q[[-< 4-(llAxoll). This is a contradiction.

Step 2 Ilx-all -< -(llxoll) for all n > 0.
First of all, by the choice of xoED(T), we know that

Ilxo-qll _< -(l]xoll). Assume that IIx-qll < -(ll4xoll). Then,
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by Step we have

Ily qll < -1 (llax0 II).

Therefore, IITxll _< M and IITyI[ <_ M. If IIx+-all > -(llAxoll),
then we have

14-IIx qll-< -(llAx011) an(NM + o-l(llAx011)) > (llAxoll)

and so

IlYn ql[ >- -which leads to

l(llAx0][ -/3(2M + b-l(llAx0ll)) >_ b-l(llAx0ll)

b-1(lly -qll) >- (llAx011)

Let b IIJ(Y- q)-j(x+ q)ll. Observe that

IlY X+l II-< (n +/)(2M + -l(llax011)) _< .
Then, by the uniform continuity ofj, we see that IIj(yo)-j(xo+ 1)11 _< .
It follows from Lemma 1.1 and the above discussions that

[[Xn+l
< (1 an)ZllXn qll / 2n(Ty q,j(Xn+l q))

< (1 an)2llXn qll2 + 4Monbn q- 2c[[yn qll z

2c(lly qll)lly qll, (22)

which implies that

I[x+ qll = < IIx qll = _< [- (llax011)]=,
i.e., IIx/-qll _< -(llAxoll), This is a contradiction.

Step3 Xn q as n o.
It follows from the above arguments that

[]X+l qll 2 < Ilxn qll 2 c(lly qli)llyn qll / o(c) (23)

for very large n, which implies that there exist infinite subsequences
{Ynj } of {Yn} and {Xnj } of {xn} such that Ynj --* q and xnj q asj .
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By (IS)2 and induction, we can prove that xn q as n-. Assume
that

=ty>O

By using Lemma 1.1 and (IS)2, we have

-< Ily qll = + 2n(Axn,j(xn q))

-< IIY, q[I 2 + 2(M +- (i[Axoll))=llx, ql[

< Ilyn qll 2 + 2(M + 4- (llaxoll)).(llx Ynll + Ily. qll)

-< Ily qll 2 + 2(M + q-i (llax011))fl=-i (llax011)
2 2+ 2(M + b-1 (llax01])) /n, (24)

which gives to

[[Yn qll 2 >_ IIX, qll 2 2(M + -(I[AxolI))-(IIAxoII)
2(M / - (llax0 II )) 2/;,.2 (25)

Substituting (25) in (23) yields to

IIx,,+ qll 2 < (1 2c,,)llx,, q[[2 + o(an). (26)

Without loss of generality, we assume O(an)<_ 2an for all n > O.
Define iteratively a real sequence {O.}n > 0 as follows:

00= 1,
On+ (1 2Cran)On + 2cran

for all n>0. Then we have that 0n< 1, lim,o0=0 and

IIx.-x*ll=<r20= for all n>0, where r=max{-(llAxoll),l}.
This completes the proof.

Remark 8 In Theorem 2.4, the choice of the iteration parameters
{an} and {/3,,} depends on the initial value x0, but not the smoothness
px() of X. It is very interesting to determine the size of d. If X is a s-

uniformly smooth Banach space, we can give a actual size of .
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As a direct consequence of Theorem 2.4, we have the following:

COROLLARY 2.1 Let X be a real uniformly smooth Banach space and let
T: D(T) C X--, X be a b-strongly quasi-accretive operator. Suppose that,
for some initial value Xo D(T), dp-l(llTxoll) i well-defined and there
exists a closed ball B {x E D(T): IIx- xoll _< 3b-’(ll Txoll)} c D(T).
Let {an} and {fin} be real sequences in [0, 1] satisfying the following
conditions:

(i) Cn, n O as n ;
(ii)

Define Sx x- Tx for each x D(T). Then there exist positive
constants M(xo) and 6 such that the Ishikawa iteration process gen-
erated by

xo D(T),
Xn+I (1 On)Xn "+- onSyn,
yn (1- n)Xn + nSxn

(IS)3

for all n > 0 is well-defined and converges strongly to the unique zero
point of Tprovided that

6 -l(llTx0ll }On + fin

_
min

2M + t-1 (IITx011) ’2M + t-1 (IITx011)

Proof Observe that S:D(T)X is b-hemicontractive. Thus the
conclusion of Corollary follows from Theorem 2.4.

Remark 9 The iterative scheme used in Corollary 2.1 is different from
one used in Theorem 2.3. We don’t know which one’s rate of
convergence is faster. It is very interesting to make some differences
between these two kinds of iterative schemes.
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