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The theory of time scales has been introduced in order to unify discrete and continuous
analysis. We present a Lyapunov inequality for Sturm-Liouville dynamic equations of
second order on such time scales, which can be applied to obtain a disconjugacy criterion
for these equations. We also extend the presented material to the case of a general linear
Hamiltonian dynamic system on time scales. Some special cases of our results contain
the classical Lyapunov inequalities for differential equations as well as only recently
developed Lyapunov inequalities for difference equations.
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1. INTRODUCTION

Lyapunov inequalities have proved to be useful tools in oscillation
theory, disconjugacy, eigenvalue problems, and numerous other
applications in the theory of differential and difference equations. A
nice summary of continuous and discrete Lyapunov inequalities and
their applications can be found in the survey paper [8] by Chen. In this
paper we present several versions of Lyapunov inequalities that are
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valid on so-called time scales. The calculus of time scales has been
introduced by Hilger [13] in order to unify discrete and continuous
analysis. Hence our results presented cover (among other cases) both
the continuous (see [8, Theorem 1.1] and also [20]) and discrete (see
[8, Theorem 6.1 and also [1, 11.10.11 ], [10, Theorem 4.1 ]) Lyapunov
inequalities. For convenience we now recall the following easiest
versions of Lyapunov’s inequality.

THEOREM 1.1 (Continuous Lyapunov Inequality) Let p" [a, b] -, R +
be positive-valued and continuous. If the Sturm-Liouville (differential)
equation

Yc + p(t)x 0

has a nontrivial solution satisfying x(a)= x(b)=0, then the Lyapunov
inequality

b 4
p(t)dt >

b a

holds.

THEOREM 1.2 (Discrete Lyapunov Inequality) Let { Pk}O <_ k <_ v C +
be positive-valued. If the Sturm-Liouville difference equation

A2Xk q- PkXk+l 0

has a nontrivial solution satisfying Xo= xv=0, then the Lyapunov
inequality

lV- (2/m + l) /f N 2(m + l)
Pk >

k=0
, ((2m+ 1)/m(m+ 1)) /f N= 2m+

holds.

In this paper we prove a Lyapunov inequality that contains both
Theorems 1.1 and 1.2 as special cases. It is valid for an arbitrary time
scale, and it reads as follows.

THEOREM 1.3 (Dynamic Lyapunov Inequality) Suppose qF is a time
scale and a, b E with a < b. Let p :- -- + be positive-valued and rd-
continuous. If the Sturm-Liouville dynamic equation

xzx +p(t)x 0 (SL)
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has a nontrivial solution x with x(a)=x(b)=O, then the Lyapunov
inequality

b b-a
p(t)At >_

f(d) (1.1)

holds, where f: T -. is defined byf(t) (t- a)(b- t), and where dE T
is such that

2
-d =min

2
-s’sE[a,b]fqT

To see how Theorems 1.1 and 1.2 follow as special cases from
Theorem 1.3, it is at this point only important to know that

ql-= corresponds to the continuous case, and x= x, xa= c,
fbaf(t)At faf(t)dt, and an rd-continuous function is the same as a
continuous function in this case;
T=Z corresponds to the discrete case, and x(t)=x(t+l),
xA x x, fbaf(t)At b-1=’t=af(t), and any function is rd-
continuous in this case.

A short introduction to the time scales calculus is given in Section 2.
In Section 3 we prove the above Theorem 1.3, and for the proof several
lemmas on quadratic functionals connected to the Sturm-Liouville
dynamic equation (SL) are needed. In the time scales calculus, the
concept of a zero of a function is replaced by a so-called generalized
zero, and (as in the classical case), a Lyapunov inequality leads
immediately to disconjugacy criteria as presented in Section 3. Two
extensions which we have not considered in this paper are the cases
when p is not necessarily positive-valued and when the endpoints are
not necessarily zeros but generalized zeros. Finally, in Section 4, we
extend the theory to linear Hamiltonian dynamic systems of the form

xa A(t)x + B(t)u, uA -C(t)x -A*(t)u, (H)

where A, B and C are square-matrix-valued functions satisfying the
properties as given in Section 4 below. Such Hamiltonian systems
contain in particular Sturm-Liouville equations of higher order, and in
particular also equations (SL) as presented in Section 3. Several
lemmas concerning certain quadratic functionals connected to the
system (H) are needed, and a Lyapunov inequality for Hamiltonian
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systems (H) is presented, as well as a disconjugacy criterion as an
immediate application of the inequality. We also consider so-called
right-focal boundary conditions and offer a Lyapunov inequality for
this case, too.

2. PRELIMINARIES ON TIME SCALES

In this section we briefly introduce the time scales calculus. For proofs
and further explanations and results we refer to the papers by Hilger
[6,13, 14], to the book by Kaymakqalan, Lakshmikantham and
Sivasundaram [18], and to the more recent papers [3,4, 7, 12]. A time
scale T is a closed subset of JR, and the (forward and backward)jump
operators a, p:ql- T are defined by

a(t)=inf{sET:s>t} and p(t)=sup{sEq]-:s<t}

(supplemented by infq} supT and sup infq]-), while the graininess
/z" q]- [R + is given by

#(t) o’(t) t.

For a function f: q]- [ we define the derivative fzx as follows: Let
q]-. If there exists a number a such that for all e > 0 there exists a

neighborhood U of with

If(or(t)) f(s) a(a(t) s)[ < ela(t) s for all s U,

then f is said to be (delta) differentiable at t, and we call a the
derivative of f at and denote it by fzx(t). Moreover, we denote
f=fo a. The following formulas are useful:

. f:f+lfA;
(fg)A =fAg+fgZX ("Product Rule");
(f/g)ZX=(fZXg_fg)/(gg) ("Quotient Rule").

A function F with b- =fis called an antiderivative off, and then we
define

bf(t)At F(b) F(a),



LYAPUNOV INEQUALITIES FOR TIME SCALES 65

where a, b E T. If a function is rd-continuous (i.e., continuous in points
with tr(t)= and left-hand limit exists in points with p(t)= t), then it

possesses an antiderivative (see [6, Theorem 6]). We have that (see e.g.,
[6, Theorem 7])

b

f(t) >_ 0, a <_ < b implies f(t)At >_ O.

Throughout this paper we assume a, b E ql- with a < b. The two most
popular cases of time scales are ql- R, where faf(t)At faf(t)dt,b
and T 7/, where fbaf(t)At b-1,t=a f(t)" Other examples of time scales
(to which our inequalities apply as well) are e.g.

hT/ {hk: k E T/} forsomch>0,
q7/= {qk. k ( 7/} U {0} for some q >

(which produces so-called q-difference equations),

2 {k2. kc[}, {’ } u
k=l -" n Cv. [2k,2k+ 1],

kZ

or the Cantor set.

3. STURM-LIOUVlLLIE EQUATIONS

We let T c R be any time scale, p: q]- be rd-continuous with
p(t) >0 for all ET, and consider the Sturm-Liouville dynamic
equation (SL) together with the quadratic functional

’ 2}’(x) {(xZX)2-p(x) (OAt.

Our first auxiliary result reads as follows.

LEMMA 3.1 If x solves (SL) and if :F(y) is defined, then

’(y) ’(x) .T’(y- x) + 2(y x)(b)xZX(b) 2(y- x)(a)xa(a).
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Proof Under the above assumptions we find

where we have used the product rule from Section 2.

LErMA 3.2 Iff(y) is defined, then for any r, s E -g with a < r < s < b

’(yA(t))2At >_ (y(s) y(r))2

Proof Under the above assumptions we define

x(t)
y(s) y(r) + sy(r) ry(s)

s--r

We then have

x(r) =y(r), x(s) =y(s), xA (t) Y(s) Y(r) and xZX2 (t) O.

Hence x solves the special Sturm-Liouville equation (SL) where p 0
and therefore we may apply Lemma 3.1 to .T’0 defined by

o(X) (xZX)2(t)At
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to find

7:’o(y) ’o(x) -t- .’O(Y x) -t- (y x)(s)xZX(s) (y- x)(r)xA(r)
+ x)

>_

fr{Y(s)-y(r)} At

(y(s) y(r))2

and this proves our claim. I

Using the above Lemma 3.2, we now can prove one of the main
results of this paper, Theorem 1.3 as stated as in Section 1.

Proof of Theorem 1.3 Suppose x is a solution of (SL) with
x(a) x(b)= 0. But then we have from Lemma 3.1 (with y 0) that

b

’(x) {(xa)- -p(x)2}(t)At O.

Since x is nontrivial, we have that M defined by

M max{x2 (t)" t [a, b] f’l T} (3.1)

is positive. We now let c E [a, b] be such that x2(c)= M. Applying the
above as well as Lemma 3.2 twice (once with r a and s= c and a
second time with r c and s b) we find
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where the last inequality holds because off(d) max{f(t): E [a, b] fq

ql-}. Hence, dividing by M > 0 yields the desired inequality, m

Example 3.3 Here we shortly wish to discuss the two popular cases
q]-= and q]-= 7/. We use the notation from the proof of Theorem 1.3.

(i) If -[I- i, then

min{ 2 s’sE[a,b] =0 so thatd=
Hence f(d)=((b-a)2/4) and the Lyapunov inequality from
Theorem 1.3 reads

b 4
p(t)dt >_

b a"

(ii) If q]-= Z, then we consider two cases. First, if a + b is even, then

min{ s’s[a,b]fqZ =0 so thatd=
2 2

Hence f(d)= ((b-a)2/4) and the Lyapunov inequality reads

If a+ b is odd, then

b-1 4
b-a

t=a

min{ 2
s’sE[a,b]fqZ = so thatd=

2

This time we have f(d)= ((b-a)2-1/4) and the Lyapunov inequality
reads

ZP(t)t=a )-
b a -(1/(b a) 9-)

As an application of the above Theorem 1.3 we now prove a
sufficient criterion for disconjugacy of (SL).
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DEFINITION 3.4 Equation (SL) is called disconjugate on [a, b] if the
solution of (SL) with (a) 0 and ZX(a) satisfies

5:$:’ > 0 on (a, p(b)].

LEMMA 3.5 Equation (SL) is disconjugate on [a, b] if and only if
b

(x) {(xZX)2 -p(x)2}(t)At > 0

for all nontrivial x with x(a)= x(b)= O.

Proof This is a special case of [2, Theorem 5].

THEOE 3.6 (Sufficient Condition for Disconjugacy of (SL))
satisfies

Ifp

b b-a
p(t)At < f(d) (3.2)

then (SL) is disconjugate on [a, b].

Proof Suppose that (3.2) holds. For the sake of contradiction we
assume that (SL) is not disconjugate. But then, by Lemma 3.5, there
exists a nontrivial x with x(a) x(b) 0 such that ’(x) < 0. Using this
x, we now define M by (3.1) to find

M p(t)At >_ {p(x)2}(t)At

>_ (xZX)2(t)At

> M(b a)
f(d)

where the last inequality follows precisely as in the proof of Theorem
3.1. Hence, after dividing by M > 0, we arrive at

b b-a
p(t)At >_

f(d)

which contradicts (3.2) and hence completes the proof.
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Remark 3.7 Note that in both conditions (1.1) and (3.2) we could

replace
b a 4
f(d)

by
b a’

and Theorems 1.3 and 3.6 would remain true. This is because for
a < c < b we have

1 (a + b 2c)2 4 4
c-a b-c (b-a)(c-a)(b-c) +b-a- b-a

4. LINEAR HAMILTONIAN SYSTEMS

In this section we consider the linear Hamiltonian dynamic system
(H), where A, B and C are rd-continuous n x n-matrix-valued
functions on ql- such that I-Iz(t)A(t) is invertible and B(t) and C(t)
are positive semidefinite for all E 7. For the continuous case of this
theory we refer to [19] (in particular for Lyapunov inequalities [9])
while [5] is a good reference for the discrete case. A corresponding
quadratic functional is given by

,T’(x, u) {u*Bu (x Cx}(t)At.

A pair (x,u) is called admissible if it satisfies the equation of
motion

xa A(t)x + B(t)u.

As in the previous section we start with the following auxiliary
lemma.

LEMMA 4.1 If (x, u) solves (H) and if (y, v) is admissible, then

.T’(y, v) .T’(x, u) .T’(y- x, v- u)

+ 2 Re[(y x)* (b)u(b) (y x)*(a)u(a)].
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Proof Under the above assumptions we calculate

.T’(y, v) .T’(x, u) .T’(y- x, v- u)

{v*Bv- (y)*Cy u*Bu -b (xg) Cx

[(v- u)*B(v- u) (y x)*C(y x)]}(t)At

{-2u*Bu + v*Bu + u*Bv

+ 2(x’)*Cx’- (y)*Cx’ (x)*Cy}(t)At

{-2u*Bu + 2Re[u’By] .+ 2(x)*Cx- 2Re[(y)*Cx]}(t)At

2Re(fab{U*(Bv-Bu)+[(x)*- (y)*]Cx}(t)At)
2Re {u* (yZX Aye, xA + Axe,)

+ * A

+ 2i Im[u*Ax + (y)*A*u] }(t)At)
=2Re(fab{u*(yA--XA) h-(yr--X)*UA}(t)At)
=2Re(fab{u*(yA--XA) W(UA)*(yCr--Xr)}(t)At)

2Re(fab{[u*(y--x)]A}(t)At)
2Re{u*(b)[y(b) x(b)]- u*(a)[y(a) x(a)]}
2Re{[y- x]*(b)u(b) -[y- x]*(a)u(a)},

which is the conclusion we sought.

NOTATION 4.2 For the remainder of this section we denote by W(., r)
the unique (see [6, Section 6]) solution of the initial value problem

WA -A*(t)W, W(r) =I,
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where r E [a, b] is given. We also write

F(s,r) W*(t,r)B(t)W(t,r)At.

Observe that W(t, r) =_ I provided A(t) =_ O.

LEMMA 4.3 Given are W and F as introduced in Notation 4.2./f (y, v)
is admissible and if r, s - with a <_ r < s <_ b such that F(s, r) is
invertible, then

’(v*Bv)(t)At >_ [W* (s, r)y(s) y(r)]*F- (s, r)[W* (s, r)y(s) y(r)].

Proof Under the above assumptions we define

x(t) W*-’ (t,r){y(r) + F(t,r)F-l(s,r)[W*(s,r)y(s) y(r)]}

and

u(t) W(t,r)F-l(s,r)[W*(s,r)y(s) y(r)l.

Then we have

x(r) y(r), x(s) y(s), u/X(t) -A*(t)u(t),

and

x/X t) W*-’ (tr( t), r) (WA t, r) )*x( t) h- W*-’ (cr( t) r) W* t, r)B(t)u(t)
W*-’ (a(t),r)W*(t,r)a(t)x(t) + W*-’ (r(t),r)W*(t,r)B(t)u(t)
[W(t,r)W-l(a(t),r)]*[A(t)x(t) + B(t)u(t)].

But

W(t, r)W- (or(t), r) [W(cr(t), r) #(t)WZX(t, r)]W-1 (tr(t), r)
I + #(t)a*(t)W(t,r)W-(tr(t),r)

and therefore [I-#(t)A*(t)]W(t,r)W-(a(t), r)-I so that

[I- #(t)A(t)]x/X(t) A(t)x(t) + B(t)u(t)
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and hence

xzX(t) A(t)x(t) + #(t)A(t)xA(t) + B(t)u(t)
A(t)x(t) + B(t)u(t).

Thus (x, u) solves the special Hamiltonian system (H) where C 0 and
we may apply Lemma 4.1 to ’0 defined by

3:o(x, u) (u*Bu)(t)At

to obtain

’0(Y, v) ’0(x, u) + ’0(Y- x, v u)
+ 2ae{u*(s)[y(s) x(s)]- u*(r)[y(r) x(r)]}
o(x, u) + ’o(y x, v u) >_ o(x, u)

= rS(U*Bu)(t)At
[W* (s, r)y(s) y(r)]*F- (r, s)[W* (s, r)y(s) y(r)].

which shows our claim. 1

Remark 4.4 The assumption in Lemma 4.3 that F(s, r) is invertible if
r < s can be dropped in ease B is positive definite rather than positive
semidefinite.

As before in Section 3, we now may use Lemma 4.3 to derive a
Lyapunov inequality for Hamiltonian systems.

THEOREM 4.5 [Lyapunov’s Inequality] Assume (H) has a solution (x,
u) such that x is nontrivial and satisfies x(a)= x(b)= O. With W and F
introduced in Notation 4.2, suppose that F(b, c) and F(c, a) are invertible,
where I[x(c)l[ =maxt[a,b]qrllX(t)ll. Let A be the biggest eigenvalue of

F W*(t,c)B(t)W(t,c)At,

and let v(t) be the biggest eigenvalue of C(t). Then the Lyapunov
inequality

,()zx >_ -holds.
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Proof Suppose we are given a solution (x,u) of (H) such that
x(a) x(b)= 0. Lemma 4.1 then yields (using y v =0) that

b

.T’(X, U) {u*Bu- (x)*Cx}(t)At O.

So we apply Lemma 4.3 twice (once with r a and s c and a second
time with r c and s b) to obtain

fa [(x)*Cx’](t)At (u*Bu)(t)At

/a (u*Bu)(t)At + (u*Bu)(t)At

> x*(c)W(c,a)F-l(c,a)W*(c,a)x(c)
+ *()F- (b, c)(c)
*(c)[F-(b,) F-(, )]x()

>_ 4x*(c)F-x(c).

Here we have used the relation W(t,r)W(r,s)=W(t,s) (see [6,
Theorem 9 (i)]) as well as the inequality M-1+N-I> 4(M+N)-
(see [11, Lemma 11, page 63] or [21]). Now, by applying the Rayleigh-
Ritz theorem [17, page 176] we conclude

and this finishes the proof.
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Remark 4.6 If A =0, then W=I and F fba B(t)At. If, in addition
B=I, then F=b-a. Note how the Lyapunov inequality

fab v(t)At >_ (4/A) reduces to fbaP(t)At >_ (4/b a) for the scalar case
as discussed in Section 3.

It is possible to provide a slightly better bound than the one given in
Theorem 4.5, similarly as in Theorem 1.3, but we shall not do so here.
Without introducing the notion of disconjugacy for systems (H) we
now state the following corollary of Theorem 4.5 whose proof is
similar to the one of Theorem 3.6. For the definition of disconjugacy
and the result analoguous to Lemma 3.5 we refer to the recent work of
Roman Hilscher [15, 16] (see also [2]).

THEOREM 4.7 [Sufficient Condition for Disconjugacy of (H)]
the notation from Theorem 4.5,/f

4b

v(t)At < ,
then (H) is disconjugate on [a, b].

We conclude this paper with a result concerning so-called right-focal
boundary conditions, i.e., x(a) u(b) O.

THEOREM 4.8 Assume (H) has a solution (x, u) with x nontrivial and
x(a)=u(b)=O. With the notation as in Theorem 4.5, the Lyapunov
inequality

1
v(t) At > -holds.

Proof Suppose (x, u) is a solution of (H) such that x(a)= u(b)=0
with a < b. Choose the point c in (a,b] where IIx(t)ll is maximal.
Apply Lemma 4.1 with y=v=0 to see that ’(x,u)=0.
Therefore,

[(x)*Cx](t)At (u*Bu)(t)At > (u*Bu)(t)At.
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Using Lemma 4.3 with r a and s-c, we get

C(u*Bu)(t)At > [W*(c,a)x(c) x(a)]*F- c, a) [W* c, a)x(c)

x* (c)W(c, a)F- (c, a)W* (c, a)x(c)

-x*(c)F-l(a,c)x(c)

(/a )_lx*(c) W*(t, c)B(t)W(t, c)At x(c)

(/a )_l> x*(c) W*(t, c)B(t)W(t, c)At x(c)

x*(c)F-tx(c).

Hence,

b[(xg)*Cxal(t)At >_ x*(c)F-lx(c),

and the same arguments as in the proof of Theorem 4.5 lead us to our
final conclusion. B
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