

A Landau–Kolmogorov Inequality for Orlicz Spaces

HA HUY BANG* and MAI THI THU

Institute of Mathematics, National Center for Sciences and Technologies, P.O. Box 631, Bo Ho, 10000 Hanoi, Vietnam

(Received on 12 December 2000; In final form: 27 February 2001)

In this paper we prove that the Landau-Kolmogorov inequality for functions on the half line holds for any Orlicz space with the constants, which are best possible for L_{∞} -space.

Keywords: Landau-Kolmogorov inequality; Inequality for derivatives; Orlicz spaces.

Classification: 2000 AMS Subject Classification. 26D10.

1 INTRODUCTION

The Landau-Kolmogorov inequality

$$||f^{(k)}||_{\infty}^{n} \le K(k,n)||f||_{\infty}^{n-k}||f^{(n)}||_{\infty}^{k},\tag{1}$$

where 0 < k < n, is well known and has many interesting applications and generalizations (see [1–6, 15, 18–21]). Its study was initiated by Landau [11] and Hadamard [7] (the case n = 2). For functions on the whole real line \mathbb{R} , Kolmogorov [9] succeeded in finding in explicit form the best possible constants $K(k, n) = C_{k,n}$ in (1), and Stein proved in [20] that inequality (1) still holds for L_p -norm, $1 \le p < \infty$, with these constants (the same situation also happens for an arbitrary Orlicz

ISSN 1025-5834 print; ISSN 1029-242X. © 2002 Taylor & Francis Ltd DOI: 10.1080/1025583021000022441

^{*}Corresponding author. E-mail: hhbang@thevinh.ncst.ac.vn This work was supported by the Natural Science Council of Vietnam.

norm [1]). The best constants $C_{k,n}^+$ for the half line $\mathbb{R}_+ = [0, \infty)$ are not known in explicit form except for n = 2, 3, 4 (see [11, 13]), but an algorithm exists for their computation (Schoenberg and Cavaretta [17]). In this paper, essentially developing the Stein method [20], we prove that, for the half line, inequality (1) still holds for an arbitrary Orlicz norm with the constants $C_{k,n}^+$.

2 RESULTS

Let $G = \mathbb{R}$, \mathbb{R}_+ or [a, b], $\Phi : [0, +\infty) \to [0, +\infty]$ be an arbitrary Young function [10, 12–14], i.e., $\Phi(0) = 0$, $\Phi(t) \ge 0$, $\Phi(t) \ne 0$ and Φ is convex. Denote by

$$\overline{\Phi}(t) = \sup_{s>0} \left\{ ts - \Phi(s) \right\}$$

the Young function conjugate to Φ and $L_{\Phi}(G)$ -the space of measurable functions u such that

$$|\langle u, v \rangle| = \left| \int_G u(x)v(x)dx \right| < \infty$$

for all v with $\rho(v, \overline{\Phi}) < \infty$, where

$$\rho(v, \overline{\Phi}) = \int_{G} \overline{\Phi}(|v(x)|) dx.$$

Then $L_{\Phi}(G)$ is a Banach space with respect to the Orlicz norm

$$||u||_{\Phi,G} = \sup_{\rho(v,\overline{\Phi})<1} \left| \int_G u(x)v(x)dx \right|,$$

which is equivalent to the Luxemburg norm

$$||f||_{(\Phi,G)} = \inf\left\{\lambda > 0 : \int_G \Phi(|f(x)|/\lambda) dx \le 1\right\} < \infty.$$

Recall that $\|\cdot\|_{(\Phi,G)} = \|\cdot\|_{L_p(G)}$ where $\Phi(t) = t^p$ with $1 \le p < \infty$, and $\|\cdot\|_{(\Phi,G)} = \|\cdot\|_{L_\infty(G)}$ when $\Phi(t) = 0$ for $0 \le t \le 1$ and $\Phi(t) = \infty$ for t > 1.

We have the following results [13-14]:

LEMMA 1 Let $u \in L_{\Phi}(G)$ and $v \in L_{\overline{\Phi}}(G)$. Then

$$\int_{G} |u(x)v(x)|dx \leq ||u||_{\Phi,G} ||v||_{(\overline{\Phi},G)}.$$

LEMMA 2 Let $u \in L_{\Phi}(\mathbb{R})$ and $v \in L_1(\mathbb{R})$. Then

$$||u * v||_{\Phi, \mathbb{R}} \le ||u||_{\Phi, \mathbb{R}} ||v||_1.$$

LEMMA 3 [5, p. 37] Let $n \ge 1$. If $f \in L_{1,loc}(\mathbb{R}_+)$ has a generalized n-th derivative $g \in L_{1,loc}(\mathbb{R}_+)$, then f can be redefined on a set of measure zero so that $f^{(n-1)}$ is absolutely continuous and $f^{(n)} = g$ a.e. on \mathbb{R}_+ .

THEOREM 1 Let Φ be an arbitrary Young function, f and its generalized derivative $f^{(n)}$ be in $L_{\Phi}(\mathbb{R}_+)$. Then $f^{(k)} \in L_{\Phi}(\mathbb{R}_+)$ for all $k \in \{1, \ldots, n-1\}$ and

$$\|f^{(k)}\|_{\Phi,\mathbb{R}_{\perp}}^{n} \le C_{k,n}^{+} \|f\|_{\Phi,\mathbb{R}_{\perp}}^{n-k} \|f^{(n)}\|_{\Phi,\mathbb{R}_{\perp}}^{k}. \tag{2}$$

Proof We divide our proof into two steps.

Step 1 We begin to prove (2) with the assumption that $f^{(k)} \in L_{\Phi}(\mathbb{R}_+), k = 0, 1, \ldots, n$.

Fix 0 < k < n. Let $\varepsilon > 0$ be given. We choose a function $v_{\varepsilon} \in L_{\overline{\Phi}}(\mathbb{R}_+)$, $\rho(v_{\varepsilon}, \overline{\Phi}) \le 1$ such that

$$\left| \int_{0}^{\infty} f^{(k)}(x) v_{\varepsilon}(x) dx \right| \ge \| f^{(k)} \|_{\Phi, \mathbb{R}_{+}} - \varepsilon. \tag{3}$$

Put

$$F_{\varepsilon}(x) = \int_{0}^{\infty} f(x+y)v_{\varepsilon}(y)dy.$$

Then $F_{\varepsilon}(x) \in L_{\infty}(\mathbb{R}_{+})$ by virtue of Lemma 1, and it is easy to check that

$$F_{\varepsilon}^{(r)}(x) = \int_{0}^{\infty} f^{(r)}(x+y)v_{\varepsilon}(y)dy, r = 0, 1, \dots, n$$
 (4)

in the $\mathcal{D}'(0, \infty)$ sense.

Since $\rho(v_{\varepsilon}, \overline{\Phi}) \leq 1$, $||v_{\varepsilon}||_{(\overline{\Phi}, \mathbb{R}_+)} \leq 1$. So, for all $x \in \mathbb{R}_+$, clearly,

$$|F_{\varepsilon}^{(r)}(x)| \leq \|f^{(r)}(x+\cdot)\|_{\Phi,\mathbb{R}_+} \|v_{\varepsilon}\|_{(\overline{\Phi},\mathbb{R}_+)} \leq \|f^{(r)}\|_{\Phi,\mathbb{R}_+}.$$

Now we prove the continuity of $F_{\varepsilon}^{(r)}$ on \mathbb{R}_+ . We show this for r=0 by contradiction: Assume that for some $\delta>0$, a point x^0 and a sequence $\{t_m\}$ in \mathbb{R} with $x^0+t_m\geq 0$ and $t_m\to 0$ we have

$$\left| \int_0^\infty (f(x^0 + t_m + y) - f(x^0 + y))v_\varepsilon(y)dy \right| \ge \delta, m \in \mathbb{N}.$$
 (5)

Since $f \in L_{\Phi}(\mathbb{R}_+)$ we easily get $f \in L_{1,loc}(\mathbb{R}_+)$. Then $f(x^0 + t_m + \cdot) \to f(x^0 + \cdot)$ in $L_1[0,j]$ for any $j = 1, 2, \ldots$. Therefore, there exists a subsequence, denoted again by $\{t_m\}$, such that $f(x^0 + t_m + y) \to f(x^0 + y)$ a.e. in [0,j]. So, there exists a subsequence (for simplicity of notation we assume that it coincides with $\{t_m\}$) such that $f(x^0 + t_m + y) \to f(x^0 + y)$ a.e. in $[0,\infty)$.

For simplicity of notations we consider only the case when $x^0 = 0$. Because inequality (2) holds for f if and only if it holds for f/C, where C is an arbitrary positive number, without loss of generality we may assume that $\rho(2f, \Phi) < \infty$. By the Young inequality we get

$$|f(t_{m}+y)-f(y)||v_{\varepsilon}(y)|$$

$$\leq \Phi(|f(t_{m}+y)-f(y)|) + \overline{\Phi}(|v_{\varepsilon}(y)|)$$

$$\leq \frac{1}{2}\Phi(2|f(y)|) + \frac{1}{2}\Phi(2|f(t_{m}+y)|) + \overline{\Phi}(|v_{\varepsilon}(y)|).$$
(6)

Since $\Phi(2|f|)$, $\overline{\Phi}(|v_{\varepsilon}|) \in L_1(\mathbb{R}_+)$ and $t_m \to 0$, there are positive numbers M and h such that for all $m \in \mathbb{N}$

$$\int_{y>M} \left(\Phi(2|f(y)|) + \Phi(2|f(t_m+y)|) + \overline{\Phi}(|v_{\varepsilon}(y)|) \right) dy < \frac{\delta}{2}$$
 (7)

and

$$\int_{B} \Phi(2|f(y)|)dy < \frac{\delta}{6}, \int_{B} \Phi(2|f(t_{m}+y)|)dy < \frac{\delta}{6}, \int_{B} \overline{\Phi}(|v_{\varepsilon}(y)|)]dy < \frac{\delta}{6}$$
(8)

if $B \subset \mathbb{R}_+$, $\operatorname{mes}(B) < h$. On the other hand, by the Egorov theorem, there is a set $A \subset [0, M]$, $\operatorname{mes}(A) < h$ such that $f(t_m + y)v_{\varepsilon}(y)$ uniformly converges to $f(y)v_{\varepsilon}(y)$ on $[0, M] \setminus A$. Therefore, applying (6) and (8), we have

$$\overline{\lim}_{m \to \infty} \int_{0}^{M} |f(t_{m} + y) - f(y)| |v_{\varepsilon}(y)| dy$$

$$\leq \overline{\lim}_{m \to \infty} \int_{[0,M] \setminus A} |f(t_{m} + y) - f(y)| |v_{\varepsilon}(y)| dy$$

$$+ \overline{\lim}_{m \to \infty} \int_{A} |f(t_{m} + y) - f(y)| |v_{\varepsilon}(y)| dy$$

$$= \overline{\lim}_{m \to \infty} \int_{A} |f(t_{m} + y) - f(y)| |v_{\varepsilon}(y)| dy \leq \frac{\delta}{12} + \frac{\delta}{12} + \frac{\delta}{6} = \frac{\delta}{3}.$$
(9)

Combining (7), (9) and using (6), we get for sufficiently large m

$$\int_0^\infty |(f(t_m+y)-f(y))v_{\varepsilon}(y)|dy<\delta,$$

which contradicts (5). The cases $1 \le r \le n$ are proved similarly. The continuity of $F_{\varepsilon}^{(r)}$ has been proved.

The functions $F_{\varepsilon}^{(r)}$ are continuous and bounded on \mathbb{R}_+ . Therefore, it follows from the Landau–Kolmogorov inequality and (3)-(4) that

$$(\|f^{(k)}\|_{\Phi,\mathbb{R}_{+}} - \varepsilon)^{n} \leq |F_{\varepsilon}^{(k)}(0)|^{n} \leq \|F_{\varepsilon}^{(k)}\|_{\infty}^{n}$$

$$\leq C_{k,n}^{+} \|F_{\varepsilon}\|_{\infty}^{n-k} \|F_{\varepsilon}^{(n)}\|_{\infty}^{k}. \tag{10}$$

On the other hand,

$$||F_{\varepsilon}||_{\infty} \le ||f(x+\cdot)||_{\Phi,\mathbb{R}_{+}} ||v_{\varepsilon}(\cdot)||_{(\overline{\Phi},\mathbb{R}_{+})} \le ||f||_{\Phi,\mathbb{R}_{+}}, \tag{11}$$

$$\|F_{\varepsilon}^{(n)}\|_{\infty} \le \|f^{(n)}(x+\cdot)\|_{\Phi,\mathbb{R}_{+}} \|\nu_{\varepsilon}(\cdot)\|_{(\overline{\Phi},\mathbb{R}_{+})} \le \|f^{(n)}\|_{\Phi,\mathbb{R}_{+}}. \tag{12}$$

Combining (10)–(12), we get

$$(\|f^{(k)}\|_{\Phi,\mathbb{R}_{+}} - \varepsilon)^{n} \leq C_{k,n}^{+} \|f\|_{\Phi,\mathbb{R}_{+}}^{n-k} \|f^{(n)}\|_{\Phi,\mathbb{R}_{+}}^{k}.$$

By letting $\varepsilon \to 0$ we have (2).

Step 2 To complete the proof, it remains to show that $f^{(k)} \in L_{\Phi}(\mathbb{R}_+)$, $\forall k \in \{1, \ldots, n-1\}$ if $f, f^{(n)} \in L_{\Phi}(\mathbb{R}_+)$. By Lemma 3 we can assume that $f, f', \ldots, f^{(n-1)}$ are continuous on \mathbb{R}_+ and $f^{(n-1)}$ is absolutely continuous on \mathbb{R}_+ .

We define for k = 0, 1, ..., n,

$$f_{(k)}(x) = \begin{cases} f^{(k)}(x), & x \in [0, \infty) \\ 0, & x \in (-\infty, 0). \end{cases}$$

Let $\psi \in C_0^{\infty}(0, \infty)$, $\psi \ge 0$, $\psi(x) = 0$ for $x \ge 1$ and $\int_{\mathbb{R}} \psi(x) dx = 1$. We put $\psi_{\lambda}(x) = 1/\lambda \psi(x/\lambda)$, $\lambda > 0$ and $f_{\lambda} = f_{(0)} * \psi_{\lambda}$.

Fix b > 0. Then $\forall \varphi \in C_0^{\infty}(b, \infty)$ we have for $0 < \lambda < b$ and k = 1, ..., n

$$\langle f_{\lambda}^{(k)}, \varphi \rangle = (-1)^{k} \langle f_{\lambda}, \varphi^{(k)} \rangle$$

$$= (-1)^{k} \int_{0}^{\infty} \left(\int_{0}^{\infty} f_{(0)}(x - y) \psi_{\lambda}(y) dy \right) \varphi^{(k)}(x) dx$$

$$= (-1)^{k} \int_{0}^{\lambda} \left(\int_{b}^{\infty} f_{(0)}(x - y) \varphi^{(k)}(x) dx \right) \psi_{\lambda}(y) dy$$

$$= \int_{0}^{\lambda} \left(\int_{b}^{\infty} f^{(k)}(x - y) \varphi(x) dx \right) \psi_{\lambda}(y) dy$$

$$= \int_{b}^{\infty} \left(\int_{0}^{\lambda} f^{(k)}(x - y) \psi_{\lambda}(y) dy \right) \varphi(x) dx$$

$$= \int_{b}^{\infty} (f_{(k)} * \psi_{\lambda})(x) \varphi(x) dx$$

$$= \langle f_{(k)} * \psi_{\lambda}, \varphi \rangle.$$

So, we have proved that for $0 < \lambda < b$ and k = 1, ..., n

$$f_{\lambda}^{(k)} = f_{(k)} * \psi_{\lambda} \tag{13}$$

in the $\mathcal{D}'(b, \infty)$ sense. Therefore, for $0 < \lambda < b$ we have

$$\|(f_{(0)} * \psi_{\lambda})^{(n)}\|_{\Phi,[b,\infty)} = \|f_{(n)} * \psi_{\lambda}\|_{\Phi,[b,\infty)}$$

$$\leq \|f_{(n)} * \psi_{\lambda}\|_{\Phi,\mathbb{R}} \leq \|f_{(n)}\|_{\Phi,\mathbb{R}}$$

$$= \|f_{(n)}\|_{\Phi,\mathbb{R}_{+}} = \|f^{(n)}\|_{\Phi,\mathbb{R}_{+}}.$$
(14)

On the other hand, using $(f_{(0)} * \psi_{\lambda})^{(k)} = f_{(0)} * \psi_{\lambda}^{(k)} \in L_{\Phi}(\mathbb{R})$, $\forall k = 0, 1, ..., n$ and the proved in Step 1 Landau–Kolmogorov inequality for functions on $[b, \infty)$, we get for k = 1, ..., n - 1,

$$\|f_{\lambda}^{(k)}\|_{\Phi,[b,\infty)}^{n} \leq C_{k,n}^{+} \|f_{\lambda}\|_{\Phi,[b,\infty)}^{n-k} \|f_{\lambda}^{(n)}\|_{\Phi,[b,\infty)}^{k}.$$

Hence, combining (13), (14) we obtain for all $0 < \lambda < b$, k = 1, ..., n - 1,

$$\|f_{(k)} * \psi_{\lambda}\|_{\Phi,[b,\infty)}^{n} \leq C_{k,n}^{+} \|f_{(0)} * \psi_{\lambda}\|_{\Phi,[b,\infty)}^{n-k} \|f_{(n)} * \psi_{\lambda}\|_{\Phi,[b,\infty)}^{k}$$

$$\leq C_{k,n}^{+} \|f_{(0)} * \psi_{\lambda}\|_{\Phi,\mathbb{R}}^{n-k} \|f_{(n)} * \psi_{\lambda}\|_{\Phi,\mathbb{R}}^{k}$$

$$\leq C_{k,n}^{+} \|f\|_{\Phi,[0,\infty)}^{n-k} \|f^{(n)}\|_{\Phi,[0,\infty)}^{k}.$$
(15)

On the other hand, because $f_{(k)}$ is continuous on \mathbb{R}_+ , we easily get

$$\lim_{\lambda \to 0} f_{(k)} * \psi_{\lambda}(x) = f_{(k)}(x) = f^{(k)}(x), \forall x > 0.$$
 (16)

Indeed, for $\lambda \le x$ we have from the continuity of $f_{(k)}$ at x that

$$|f_{(k)} * \psi_{\lambda}(x) - f_{(k)}(x)| = \left| \int_{\mathbb{R}} f_{(k)}(x - y) \psi_{\lambda}(y) dy - \int_{\mathbb{R}} f_{(k)}(x) \psi_{\lambda}(y) dy \right|$$

$$\leq \int_{0}^{\lambda} |f_{(k)}(x - y) - f_{(k)}(x)| \psi_{\lambda}(y) dy$$

$$= \int_{0}^{\lambda} |f^{(k)}(x - y) - f^{(k)}(x)| \psi_{\lambda}(y) dy$$

$$\leq \sup_{0 \leq y \leq \lambda} |f^{(k)}(x - y) - f^{(k)}(x)| \to 0 \text{ as } \lambda \to 0.$$

For each function $v \in L_{\overline{\Phi}}[b, \infty)$, $\rho(v, \overline{\Phi}) \le 1$ and $0 < \lambda < b$, by (15) and the definition of the Orlicz norm we get

$$\left(\int_{b}^{\infty} |(f_{(k)} * \psi_{\lambda})(x)v(x)| dx\right)^{n} \leq C_{k,n}^{+} ||f||_{\Phi,[0,\infty)}^{n-k} ||f^{(n)}||_{\Phi,[0,\infty)}^{k}.$$

Therefore, using Fatou's lemma, (15) and (16) we obtain

$$\begin{split} \left| \int_{b}^{\infty} (f^{(k)}(x)v(x)dx \right|^{n} &\leq \left(\int_{b}^{\infty} \underbrace{\lim_{\lambda \to 0}} |(f_{(k)} * \psi_{\lambda})(x)v(x)|dx \right)^{n} \\ &\leq \left(\underbrace{\lim_{\lambda \to 0}} \int_{b}^{\infty} |(f_{(k)} * \psi_{\lambda})(x)v(x)|dx \right)^{n} \\ &\leq C_{k,n}^{+} \|f\|_{\Phi,[0,\infty)}^{n-k} \|f^{(n)}\|_{\Phi,[0,\infty)}^{k} \end{split}$$

So, by the definition of the Orlicz norm we have

$$||f^{(k)}||_{\Phi,[b,\infty)}^n \le C_{k,n}^+ ||f||_{\Phi,[0,\infty)}^{n-k} ||f^{(n)}||_{\Phi,[0,\infty)}^k < \infty.$$

On the other hand, it follows from the continuity of $f^{(k)}$ on $[0, \infty)$ that $f^{(k)} \in L_{\Phi}[0, b]$ for any b > 0. Therefore,

$$||f^{(k)}||_{\Phi,[0,\infty)} \le ||f^{(k)}||_{\Phi,[0,b]} + ||f^{(k)}||_{\Phi,[b,\infty)} < \infty.$$

The proof is complete.

Remark 1 To obtain Theorem 1 we have developed the Stein method because, for example, the property $[g(x+h)-g(x)]/h \to g'(x)$ in the L_p mean $(1 \le p < \infty)$, which is used in [16], holds for L_{Φ} only if Φ satisfies the Δ_2 -condition (see [12, 14]).

REMARK 2 By the representation [14]

$$||u||_{(\Phi,G)} = \sup_{\|v\|_{\overline{\Phi},G} \le 1} \left| \int_{G} u(x)v(x)dx \right|,$$

it is easy to see that Theorem 1 still holds for any Luxemburg norm.

Acknowledgements

In conclusion the authors would like to thank Professor Dinh Dung for the valuable discussions.

The second author would like to thank Hanoi Institute of Mathematics for a research grant

References

- [1] H. H. Bang, A remark on the Kolmogorov-Stein inequality, *J. Math. Analysis Appl.* **203** (1996), 861–867.
- [2] B. Bollobas, The spatial numerical range and powers of an operator, *J. London. Math. Soc.* 7 (1973), 435–440.
- [3] M. W. Certain and T. G. Kurtz, Landau-Kolmogorov inequalities for semigroups and groups, *Proc. Amer. Math. Soc.* (2), **63** (1977), 226–230.
- [4] P. R. Chernov, Optimal Landau-Kolmogorov inequalities for dissipative operators in Hilbert and Banach spaces, Adv. in Math. 34 (1979), 137–144.

- [5] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
- [6] Z. Ditzian, Some remarks on inequalities of Landau and Kolmogorov, Aequationes Math. 12 (1975), 145–151.
- [7] J. Hadamard, Sur le module maximum d'une fonction et des ses dérivées, C. R. Soc. Math. France 41 (1914), 68-72.
- [8] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
- [9] A. N. Kolmogorov, On inequalities between upper bounds of the successive derivatives of an arbitrary function on an infinite interval, *Amer. Math. Soc. Transl.* (1), 2 (1962), 233– 243.
- [10] M. A. Krasnoselsky and Y. B. Rutisky, 'Convex Functions and Orlicz Spaces', GITTL, Moscow, 1958, English Transl. Noordhoff, 1961.
- [11] E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc. 13 (1913), 43–49.
- [12] W. Luxemburg, 'Banach Function Spaces' (Thesis), Technische Hogeschool te Delft., The Netherlands, 1955.
- [13] A. P. Matorin, Inequalities between the maxima of the absolute values of a function and its derivatives on a half-line, *Amer. Math. Soc. Transl.* (2), **8** (1958), 13–17.
- [14] R. O'Neil, Fractional integration in Orlicz space I., Trans. Amer. Math. Soc. 115 (1965), 300–328.
- [15] J. R. Partington, The resolvent of a Hermitian operator on a Banach space, J. London. Math. Soc. 27 (1983), 507-512.
- [16] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1995.
- [17] I. J. Schoenberg and A. Cavaretta, Solution of Landau's problem concerning higher derivatives on the halfline, *Proc. Inter. Conf. on Constructive Function Theory*, Varna 1970, 297–308.
- [18] S. B. Stechkin, Best approximation of linear operators, *Math. Notes*, 1 (1967), 137–148.
- [19] S. B. Stechkin, On the inequalities between the upper bounds of the derivatives of an arbitrary function on the halfline, *Math. Notes*, 1 (1967), 665-674.
- [20] E. M. Stein, Functions of exponential type, Ann. Math. 65 (1957), 582-592.
- [21] V. M. Tikhomirov, G. G. Magaril-Il'jaev, Inequalities for derivatives, in 'Kolmogorov A. N. Selected Papers', Nauka, Moscow, 1985, 387–390.