

Polar Decomposition Approach To Reid's Inequality

C.-S. LIN*

Dedicated to Professor Gustavus E. Huige on his retirement

Department of Mathematics, Bishop's University, Lennoxville, PQ J1M 1Z7, Canada

(Received 19 March 2001; Revised 17 May 2001)

If $S \ge 0$ and SK is Hermitian, then $|(SKx,x)| \le ||K||(Sx,x)$ holds for all $x \in H$, which is known as Reid's inequality and was sharpened by Halmos in which ||K|| was replaced by r(K), the spectral radius of K. In this article we present generalizations of Reid's and Halmos' inequalities via polar decomposition approach. Conditions on S and SK are relaxed. Theorem 1 regards Reid-type inequalities, and Theorem 2 contains Halmos-type inequalities.

Keywords: Polar decomposition; Reid's inequality; Spectral radius

Classification: 47A63

Throughout the paper we use capital letters to denote bounded linear operators on a Hilbert space H. T is positive (written $T \ge O$) in case $(Tx, x) \ge 0$ for all $x \in H$. If S and T are Hermitian, we write $T \ge S$ in case $T - S \ge O$. T = U|T| is the polar decomposition of T with U the partial isometry such that N(U) = N(T) (N(A) means the null space of A), and |T| the positive square root of the positive operator T^*T , *i.e.*, $|T| = (T^*T)^{1/2}$. Also, we have $T^* = |T|U^*$ and $|T^*| =$ $(TT^*)^{1/2}$ with $N(U^*) = N(T^*)$. Recall that if $S \ge O$ and SK is Hermitian, then the inequality $|(SKx, x)| \le ||K||(Sx, x)$ holds for all $x \in H$. This is known as Reid's inequality [7], and was sharpened by Halmos

^{*} E-mail: plin@ubishops.ca

ISSN 1025-5834 print; ISSN 1029-242X. © 2002 Taylor & Francis Ltd DOI: 10.1080/1025583021000022496

[2] in which ||K|| was replaced by r(K), the spectral radius of K. Recently, the sharpened inequality was extended in [4], and the equivalence relation with the Furuta inequality appeared in [5] in which it is assumed that $S \ge O$ and SK is Hermitian in every result.

We shall prove in this paper the inequality by the polar decomposition approach, which also enables us to relax conditions on S and SK. In other words, we present generalizations of Reid's and Halmos' inequalities. More precisely, Theorem 1 regards Reid-type inequalities, and Theorem 2 contains Halmos-type inequalities. In the proof we require the Löwner-Heinz formula, *i.e.*, $A^r \ge B^r$ holds for $r \in [0, 1]$ if $A \ge B \ge O$ [3], but the inequality does not hold in general for r > 1. We also need some basic properties of the polar decomposition, *i.e.*, if T = U|T| as in above, then $U^*U = I$, the identity operator, and $|T^*|^c = U|T|^c U^*$ for c > 0. Our basic tool is the next result which is interesting by itself. In spite of our simple proof by direct replacements, (ii) in Lemma 1 below was shown without the bound in [1, Theorem 1], and equality conditions were discussed depending on the value of α .

LEMMA 1 For an arbitrary operator T and for $a, b, x, y \in H$ and $\alpha \in [0, 1]$, the following are equivalent.

(i) |(a,b)| ≤ ||a|||b|| (Cauchy–Schwarz inequality).
Equality holds if and only if a = δb for suitable δ. Moreover, the bound of inequality is

$$\frac{\|a\|^2 \|b\|^2 - |(a, b)|^2}{\|a\|^2} \le \frac{\|\beta b - a\|^2}{\beta^2}$$

for any real number $\beta \neq 0$ and $a \neq 0$.

(ii) $|(Tx,y)|^2 \leq (|T|^{2\alpha}x,x)(|T^*|^{2(1-\alpha)}y,y).$ Equality holds if and only if $U|T|^{\alpha}x = \delta |T^*|^{1-\alpha}y$ for suitable δ . Moreover, the bound of inequality is

$$\frac{(|T|^{2\alpha}x,x)(|T^*|^{2(1-\alpha)}y,y) - |(Tx,y)|^2}{(|T|^{2\alpha}x,x)} \le \frac{\|\beta|T^*|^{1-\alpha}y - U|T|^{\alpha}x\|^2}{\beta^2}$$

for any real number $\beta \neq 0$ and $|T|^{\alpha}x \neq 0$.

Proof Remark that the bound in (i) was proved in [6]. (i) implies (ii). All we have to do is replacing a and b in (i) by $U|T|^{\alpha}x$ and $|T^*|^{1-\alpha}y$,

respectively, and simplifying them due to the basic properties of the polar decomposition. More precisely,

$$(a, b) = (U|T|^{\alpha}x, |T^*|^{1-\alpha}y) = (U|T|^{\alpha}x, U|T|^{1-\alpha}U^*y)$$

= (U|T|x, y) = (Tx, y);

and

$$\|a\|^{2} \|b\|^{2} = (U|T|^{\alpha}x, U|T|^{\alpha}x)(|T^{*}|^{1-\alpha}y, |T^{*}|^{1-\alpha}y)$$
$$= (|T|^{2\alpha}x, x)(|T^{*}|^{2(1-\alpha)}y, y).$$

(ii) implies (i). Let T = I, x = a and y = b in (ii).

A different proof of (ii) in Lemma 1 is possible by letting $a = |T|^{\alpha}x$ and $b = |T|^{1-\alpha} U^* y$. Incidentally, from (ii) in Lemma 1 we have |(Tx, x)| = (|T|x, x) for any Hermitian operator T and any $x \in H$. Notice that the Cauchy-Schwarz inequality for positive S is the relation $|(Sx, y)|^2 \leq (Sx, x)(Sy, y)$, which is obviously a special case of (ii) in Lemma 1. If $\alpha = 1/2$ in particular, inequality (ii) is precisely Problem 138 in [2].

LEMMA 2 Let SK = V|SK| be the polar decomposition. Then the following inequalities hold for every $x \in H$ and $\alpha \in [0, 1]$.

- (1) $(|SK|^{2\alpha}x,x) \leq ||S||^{2\alpha}(|K|^{2\alpha}x,x).$ (2) $(|(SK)^*|^{2\alpha}x,x) \leq ||K||^{2\alpha}(|S^*|^{2\alpha}x,x).$ (3) $(|SK|^{2\alpha}x,x) \leq ||K||^{2\alpha}(|S^*|^{2\alpha}x,x)$ if SK is Hermitian. (4) $(|SK|^{2\alpha}x,x) \leq ||K||^{2\alpha}(|S|^{2\alpha}x,x)$ if both S and SK are Hermitian. (5) $(|SK|^{2\alpha}x,x) \leq ||K||^{2\alpha}(S^{2\alpha}x,x)$ if $S \geq O$ and SK is Hermitian.

Moreover, the power 2α in above inequalities may be replaced by the power $2(1 - \alpha)$ without changing inequalities.

Proof (1) Since the operator S/||S|| is a contraction, *i.e.*, $S^*S \le ||S||^2$,

$$0 \le \frac{|SK|^2}{\|S\|^2} = \frac{K^* S^* S K}{\|S\|^2} \le K^* K = |K|^2,$$

so that $0 \leq |SK|^2 \leq ||S||^2 |K|^2$. It follows that $|SK|^{2\alpha} \leq ||S||^{2\alpha} |K|^{2\alpha}$ by the Löwner-Heinz formula, and we have inequality (1).

(2) The proof is similar to (1) if we start with $KK^* \le ||K||^2$ since K/||K|| is a contraction. The relations

$$0 \le \frac{|(SK)^*|^2}{\|K\|^2} = \frac{SKK^*S^*}{\|K\|^2} \le SS^* = |S^*|^2$$

imply (2).

It is easily seen that all (3), (4) and (5) follow from (2), and the last statement is clear.

THEOREM 1 Let SK = V|SK| be the polar decomposition. Then the following inequalities hold for every $x, y \in H$ and $\alpha \in [0, 1]$.

(1)
$$|(SKx, y)|^2 \le ||K||^{2(1-\alpha)} (|SK|^{2\alpha}x, x) (|S^*|^{2(1-\alpha)}y, y)$$

 $\le ||S||^{2\alpha} ||K|^{2(1-\alpha)} (|K|^{2\alpha}x, x) (|S^*|^{2(1-\alpha)}y, y).$

(2)
$$|(SKx, y)|^2 \le ||S||^{2\alpha} (|K|^{2\alpha}x, x) (|(SK)^*|^{2(1-\alpha)}y, y)$$

 $\le ||S||^{2\alpha} ||K||^{2(1-\alpha)} (|K|^{2\alpha}x, x) (|S^*|^{2(1-\alpha)}y, y).$

(3) If SK is Hermitian, then

$$|(SKx, y)|^{2} \leq ||K||^{2\alpha} (|S^{*}|^{2\alpha}x, x) (|SK|^{2(1-\alpha)}y, y)$$

$$\leq ||K||^{2} (|S^{*}|^{2\alpha}x, x) (|S^{*}|^{2(1-\alpha)}y, y); and$$

$$\begin{aligned} |(SKx, y)|^2 &\leq ||K||^{2(1-\alpha)} (|SK|^{2\alpha}x, x) (|S^*|^{2(1-\alpha)}y, y) \\ &\leq ||K||^2 (|S^*|^{2\alpha}x, x) (|S^*|^{2(1-\alpha)}y, y). \end{aligned}$$

(4) If both S and SK are Hermitian, then

$$\begin{split} |(SKx, y)|^2 &\leq ||K||^{2\alpha} (|S|^{2\alpha}x, x) (|SK|^{2(1-\alpha)}y, y) \\ &\leq ||K||^2 (|S|^{2\alpha}x, x) (|S|^{2(1-\alpha)}y, y); \text{ and} \\ |(SKx, y)|^2 &\leq ||K||^{2(1-\alpha)} (|SK|^{2\alpha}x, x) (|S|^{2(1-\alpha)}y, y) \\ &\leq ||K||^2 (|S|^{2\alpha}x, x) (|S|^{2(1-\alpha)}y, y). \end{split}$$

782

(5) If $S \ge O$ and SK is Hermitian, then

$$\begin{split} |(SKx, y)|^2 &\leq ||K||^{2\alpha} (S^{2\alpha}x, x) (|SK|^{2(1-\alpha)}y, y) \\ &\leq ||K||^2 (S^{2\alpha}x, x) (S^{2(1-\alpha)}y, y); \ and \\ |(SKx, y)|^2 &\leq ||K||^{2(1-\alpha)} (|SK|^{2\alpha}x, x) (S^{2(1-\alpha)}y, y) \\ &\leq ||K||^2 (S^{2\alpha}x, x) (S^{2(1-\alpha)}y, y). \end{split}$$

Proof Firstly we notice that the inequality

$$|(SKx, y)|^{2} \leq (|SK|^{2\alpha}x, x)(|(SK)^{*}|^{2(1-\alpha)}y, y)$$

holds by Lemma 1. It follows that inequalities (1) and (2) in Lemma 2 imply both (1) and (2) in Theorem 1. Each other inequality above follows from the corresponding inequality in Lemma 2 and we shall omit the details.

In particular let y = x and $\alpha = 1/2$ in (5) of Theorem 1. Then we obtain Reid's inequality. We now consider sharpening of inequalities (3), (4) and (5) in Theorem 1, *i.e.*, replacing the norm of an operator by its spectral radius.

THEOREM 2 Let SK = V|SK| be the polar decomposition. Then the following inequalities hold for every $x, y \in H$ and $\alpha \in [0, 1]$.

(1) If $|S|^{2\alpha}$ K is Hermitian, then

$$|(SKx, y)|^{2} \leq [r(K)]^{2} (|S|^{2\alpha}x, x) (|S^{*}|^{2(1-\alpha)}y, y).$$

(2) If both S and $|S|^{2\alpha}$ K are Hermitian, then

$$|(SKx, y)|^{2} \leq [r(K)]^{2} (|S|^{2\alpha}x, x) (|S|^{2(1-\alpha)}y, y).$$

(3) If $S \ge O$ and $S^{2\alpha} K$ is Hermitian, then

$$|(SKx, y)|^2 \le [r(K)]^2 (S^{2\alpha}x, x) (S^{2(1-\alpha)}y, y).$$

Proof (1) If $|S|^{2\alpha} K$ is Hermitian, *i.e.*, $K^*|S|^{2\alpha} = |S|^{2\alpha} K$, then clearly $(K^*)^n |S|^{2\alpha} = |S|^{2\alpha} K^n$ for $n = 1, 2, \ldots$ Next we claim that

 $|(SKx, y)|^{2^{n}} \leq (|S|^{2\alpha}K^{2^{n}}x, x)(|S|^{2\alpha}x, x)^{2^{n-1}-1}(|S^{*}|y, y)^{2^{n-1}},$

and the proof will be done by induction. If n = 1, then

$$|(SKx, y)|^2 \le (|S|^{2\alpha}Kx, Kx)(|S^*|^{2(1-\alpha)}y, y)$$

by Lemma 1, which yields $|(SKx, y)|^2 \le (|S|^{2\alpha}K^2x, x)(|S^*|^{2(1-\alpha)}y, y)$. Now,

$$\begin{split} |(SKx, y)|^{2^{n+1}} &= [|(SKx, y)|^{2^n}]^2 \\ &\leq (|S|^{2\alpha}K^{2^n}x, x)^2 (|S|x, x)^{2^{n-2}} (|S^*|^{2(1-\alpha)}y, y)^{2^n} \\ &\leq (|S|^{2\alpha}K^{2^n}x, K^{2^n}x) (|S|^{2\alpha}x, x) (|S|^{2\alpha}x, x)^{2^{n-2}} (|S^*|^{2(1-\alpha)}y, y)^{2^n} \\ &= (|S|^{2\alpha}K^{2^{n+1}}x, x) (|S|^{2\alpha}x, x)^{2^{n-1}} (|S^*|^{2(1-\alpha)}y, y)^{2^n}. \end{split}$$

Note that the second inequality above is due to Lemma 1, and the induction process is done. It follows that

$$|(SKx, y)|^{2^{n}} \leq |||S|^{2\alpha} |||K^{2^{n}}|||x||^{2} (|S|^{2\alpha}x, x)^{2^{n-1}-1} (|S^{*}|^{2(1-\alpha)}y, y)^{2^{n-1}},$$

which gives us

$$\begin{split} |(SKx, y)| &\leq |||S|^{2\alpha} ||^{1/2^n} ||K^{2^n}||^{1/2^n} ||x||^{2/2^n} (|S|^{2\alpha}x, x)^{1/2 - 1/2^n} \\ &\times (|S^*|^{2(1-\alpha)}y, y)^{1/2} \to r(K) (|S|^{2\alpha}x, x)^{1/2} \\ &\times (|S^*|^{2(1-\alpha)}y, y)^{1/2} \quad \text{as } n \to \infty, \end{split}$$

and the inequality (1) follows.

Obviously inequalities (2) and (3) are special cases of (1) and the proof is finished.

In particular let y = x and $\alpha = 1/2$ in (3) of Theorem 2. Then we obtain Halmos' inequality. It seems that there is no sharpening for (1) or (2) in Theorem 1 if no other conditions are attached to operators *S* and/or *SK*. Let us pose this as an open question, *i.e.*, in Theorem 1 can we replace the term $||K||^{2(1-\alpha)}$ in (1) by $r(K)^{2(1-\alpha)}$ and the term $||S||^{2\alpha}$ in (2) by $r(S)^{2\alpha}$? However, we know by the Cauchy–Schwarz inequality that $|(SKx, y)| \le ||SK|| ||x|| ||y||$. Here ||SK|| may be replaced by a weaker con-

784

dition $r((SK)^*SK)^{1/2}$ as the following shows. For any operator E we claim by induction that

$$|(Ex, y)|^{2^n} \le ((E^*E)^{2^{n-1}}x, x)||x||^{2^n-2}||y||^{2^n}$$

for every $x, y \in H$ and $n \ge 1$. It follows that $|(Ex, y)|^2 \le ||(E^*E)^{2^{n-1}}||^{1/2^{n-1}}||x||^2 ||y||^2$; and passing to the limit as $n \to \infty$ we obtain

$$|E(x, y)|^{2} \le r(E^{*}E)||x||^{2}||y||^{2}.$$

We leave the details to the readers.

References

- Furuta, T. (1986) "A simplified proof of Heinz inequality and scrutiny of its equality", Proc. Amer. Math. Soc. 97, 751–753.
- [2] Halmos, P. R. (1982) Hilbert Space Problem Book, 2nd ed. (Springer-Verlag, New York).
- [3] Heinz, E. (1951) "Beiträge zur Strüngstheorie der Spektrazerlegung", Math. Ann. 123, 415–438.
- [4] Lin, C.-S. (1998) "On Halmos' sharpening of Reid's inequality", C. R. Math. Rep. Acad. Sci. 20, 62–64.
- [5] Lin, C.-S. (2001) "Inequalities of Reid type and Furuta", Proc. Amer. Math. Soc. 129, 855– 859.
- [6] Lin, C.-S. "Heinz-Kato-Furuta-type inequalities with bounds and equality conditions", Math. Inequalities Appli., to appear.
- [7] Reid, W. T. (1951) "Symmetrizable completely continuous linear transformations in Hilbert space", Duke Math. J. 18, 41–56.