
J oflnequal. & Appl., 2002, Vol. 7(6), pp. 779-785 Taylor & Francis
Taylor & Francis Group

Polar Decomposition Approach To
Reid’s Inequality
C.-S. LIN*
Dedicated to Professor Gustavus E. Huige on his retirement

Department of Mathematics, Bishop’s University, Lennoxville, PQ J1M 1Z7,
Canada

(Received 19 March 2001; Revised 17 May 2001)

If S > 0 and SK is Hermitian, then I(Sgx, x)l IKll(Sx, x) holds for all x E H, which is
known as Reid’s inequality and was sharpened by Halmos in which IIKI was replaced by
r(K), the spectral radius of K. In this article we present generalizations of Reid’s and
Halmos’ inequalities via polar decomposition approach. Conditions on S and SK are
relaxed. Theorem regards Reid-type inequalities, and Theorem 2 contains Halmos-type
inequalities.

Keywords: Polar decomposition; Reid’s inequality; Spectral radius

Classification: 47A63

Throughout the paper we use capital letters to denote bounded linear op-
erators on a Hilbert space H. T is positive (written T > O) in case
(Tx, x) > 0 for all x 6 H. If S and T are Hermitian, we write T > S in
case T- S > O. T- UIT] is the polar decomposition of T with U
the partial isometry such that N(U)- N(T) (N(A) means the null
space of A), and TI the positive square root of the positive operator
T’T, i.e., ITI =(T’T)/2. Also, we have T*= ITIU* and IT*I
(TT*)/2 with N(U*) = N(T*). Recall that if S > O and SK is Hermi-
tian, then the inequality I(SKx, x)l _< Ilgll(Sx, x) holds for all x 6 H.
This is known as Reid’s inequality [7], and was sharpened by Halmos
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[2] in which IIKII was replaced by r(K), the spectral radius of K. Re-
cently, the sharpened inequality was extended in [4], and the equiva-
lence relation with the Furuta inequality appeared in [5] in which it is
assumed that S >_ O and SK is Hermitian in every result.
We shall prove in this paper the inequality by the polar decomposition

approach, which also enables us to relax conditions on S and SK. In
other words, we present generalizations of Reid’s and Halmos’ inequal-
ities. More precisely, Theorem regards Reid-type inequalities, and
Theorem 2 contains Halmos-type inequalities. In the proof we require
the L6wner-Heinz formula, i.e., Ar>_ B’" holds for r 6 [0, 1] if
A >_ B >_ O [3], but the inequality does not hold in general for r > 1.
We also need some basic properties of the polar decomposition, i.e.,
if T U]T] as in above, then U*U I, the identity operator, and
[T*[ UITIU* for c > 0. Our basic tool is the next result which is
interesting by itself. In spite of our simple proof by direct replacements,
(ii) in Lemma below was shown without the bound in 1, Theorem ],
and equality conditions were discussed depending on the value of .
LEMMA For an arbitrary operator T and for a, b, x, y H and
0 6 [0, 1], the following are equivalent.

(i) I(a,b)l Ilallllbll (Cauchy-Schwarz inequality).
Equali holds ifand only ifa 6bfor suitable 6. Moreover, the
bound of inequality is

Ilall z Ilbll 2 I(a, b)l 2 Ilflb all 2

ilall 2

for any real number 5 0 and a 5 O.
(ii) I(Tx, y)l 2 <_ (ITlx,x)(IT*12-y,y).

Equality holds if and only if U Tlx 61PI’- yfo suitable 6.
Moreover, the bound of inequality is

(IYlx, x)(IT*12-y, y) I(Tx, y)l 2 IIHIT*I-y- UITIxll
(iTI2x,x)

for any real number fl # 0 and Tlx # O.

Proof Remark that the bound in (i) was proved in [6]. (i) implies (ii).
All we have to do is replacing a and b in (i) by UITIx and
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respectively, and simplifying them due to the basic properties of the
polar decomposition. More precisely,

(a, b) (UITIx, IT*l-y) (UITIx, UITII-U*y)
(UITIx, y) (Tx, y);

and

IlallZllbll 2 (UITIx, UITI=x)(IT*I-=y, IT*l-=y)
(ITl2x, x)(lT*12(-)y, y).

(ii) implies (i). Let T- I, x- a and y- b in (ii).

A different proof of (ii) in Lemma 1 is possible by letting a Tlx
and b [TII-U*y. Incidentally, from (ii) in Lemma we have
I(Tx, x)l (ITIx, x) for any Hermitian operator Tand any x 6 H. Notice
that the Cauchy-Schwarz inequality for positive S is the relation
I(Sx, y)l2 <_ (Sx, x)(Sy, y), which is obviously a special case of (ii) in
Lemma 1. If 1/2 in particular, inequality (ii) is precisely Problem
138 in [2].

LEMMA 2 Let SK- VISKI be the polar decomposition. Then the
following inequalities hoMfor every x H and [0, 1].

() (ISgl2x,x) IISIlZ=(Igl2=x,x).
(2) (l(Sg)*12x,x) <_ Ilgll2=(IS*12=x,x).

2 2(3) (ISglx,x) <_ Ilgll (IS x,x) ifsg is Hermitian.

(4) (ISgl2=x,x) <_ I[gll2=(ISl2=x,x) if both s and SK are Hermitian.

(5) (ISgl2x,x) <_ Ilgll2=(S==x,x) ifS >_ 0 and SK is Hermitian.

Moreover, the power 2 in above inequalities may be replaced by the
power 2(1 -) without changing inequalities.

Proof (1) Since the operator S/llSII is a contraction, i.e., S*S < IlSII z,
ISKIz K*S*SK

O<
iiSiiZ iiSii2

< K*K IKI=

so that 0 _< ISKIz <_ IISII21KI 2. It follows that ISKI <_ IISII2=IKI2= by
the L6wner-Heinz formula, and we have inequality (1).
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(2) The proof is similar to (1) if we start with KK* < IIKII 2 since
K/IIKII is a contraction. The relations

[(SK)* 2 SKK*S* 120 < < SS* IS*-IIKII2 IIKII z

imply (2).
It is easily seen that all (3), (4) and (5) follow from (2), and the last

statement is clear.

THEOREM Let SK VISK[ be the polar decomposition. Then the
following inequalities holdfor every x, y H and [0, ].

() I(Sgx, y)l2 Ilgll2(-)(Isgl2x, x)(IS*12(-)y, y)

_< IISII2 IIKI2-=)(IKI)x, x)(IS* 12t-)y, y).

(2) I(SKx, y)l2 _< IlSll2(IKIZx, x)(l(SK)*12(-)y, y)
<_ IISII2IIKIla-)(IKI2x, x)(IS*lZ(-)y, y).

(3) IfSK is Hermitian, then

(SKx, y)l 2 IlgllZ(IS*12x, x)(ISgla-=)y, y)
IIKII2(IS*I2x, x)(IS*la-=)y, y); and

I(SKx, y)l2 _< IIKII2(-)(ISKI2x, x)(IS*12(-)y, y)
<_ Ilgll2(Ia*12=x, x)(IS*l)--=)y, y).

(4) If both S and SK are Hermitian, then

(SKx, y)l 2 Ilgllz(lSIZx, x)(ISgla-=)y, y)
IIKIIZ(ISIZ=x, x)(lSI2(l-=)y, y); and

I(sgx, y)l2 _< Ilglla-)(ISgl2x, x)(ISIZ(-)y, y)
<_ Ilgll2(ISl2x, x)(Ialat-=)y, y).
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(5) IfS >_ 0 and SK is Hermitian, then

I(SKx, y)l 2 < IIKII2(S2x, x)(ISKl(-y, y)

< IIKII2(S2x, x)(S2(1-e)y, y); and
I(SKx, y)l _< Ilgll2(l-(ISgl2x, x)(S2(-y, y)

<_ Ilglle(S2x, x)(S2(-)y, y).

Proof Firstly we notice that the inequality

I(Sgx, y)l z < (ISgl2x, x)(I(SK)*I2t-)y, y)

holds by Lemma 1. It follows that inequalities (1) and (2) in Lemma 2
imply both (1) and (2) in Theorem 1. Each other inequality above fol-
lows from the corresponding inequality in Lemma 2 and we shall
omit the details.

In particular let y x and 1/2 in (5) of Theorem 1. Then we ob-
tain Reid’s inequality. We now consider sharpening of inequalities (3),
(4) and (5) in Theorem 1, i.e., replacing the norm of an operator by
its spectral radius.

THEOREM 2 Let SK VISKI be the polar decomposition. Then the
following inequalities holdfor every x, y H and [0, 1].

(1) If ISI2= K is Hermitian, then

[(SKx, y)lZ < [r(K)]z([Sl2x, x)(lS,12(1-)y, y).

(2) Ifboth S and IS[2 K are Hermitian, then

I(SKx, y)l2 _< [r(K)]2(lSlZx, x)(lSlZ(-=)y, y).

(3) IfS > 0 and S2 K is Hermitian, then

I(SKx, y)l2 _< [r(K)]2(S2x, x)(S2(-)y, y).

Proof (1) If ISI2= K is Hermitian, i.e., K*ISI2 -tSI2 K, then clearly

(g*)nlsl2= ISI2 gn
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for n 1,2 Next we claim that

I(SKx, y)l 2" < (ISIZK2"x, x)(ISIZx, X)2"-’-1 (IS* ly, y)2"-’,
and the proof will be done by induction. If n 1, then

I(SKx, y)l2 < (ISI2Kx, gx)(IS*12-)y, y)

by Lemma 1, which yields I(SKx, y)l < (ISIZgZx, x)(IS*la-)y, y).
Now,

I(SKx, y)l 2"+’ [I(SKx, y)12"]2
,2"-2 12(1< (ISl2=KZ"x, x)2(ISIx, x) (IS* -=)y, y)2"

< (IS[2=K2"x, K2"x)(ISI2=x, x)(lsl2=x, x)2.-2(ls.12(l-=)y y)2.
(ISI2=K2"+’x, x)(ISI2=x, x)2"-l(ls.lZ(l-=)y y)2".

Note that the second inequality above is due to Lemma 1, and the induc-
tion process is done. It follows that

[(Sgx, y)l 2" ISIZ=II g2" Ilxll2(ISI2=x, x)z"-’- (IS*lal-=)y, y)2"-’,

which gives us

(SKx, Y)I _< ISI2 /2" IlK2" 1/2" Ilxll 2/2" (ISI2x, X) 1/2-1/2"

x (IS*12-)y,y)/2 --+ r(K)(ISI2x,x)/2

x (IS* 12(l-)y, y)l/2 as n --+ cx,

and the inequality (1) follows.
Obviously inequalities (2) and (3) are special cases of (1) and the

proof is finished.

In particular let y x and 1/2 in (3) of Theorem 2. Then we ob-
tain Halmos’ inequality. It seems that there is no sharpening for (1) or
(2) in Theorem if no other conditions are attached to operators S an-
d/or SK. Let us pose this as an open question, i.e., in Theorem can we
replace the term IIKIJ 2(1-) in (1) by r(K)2(1-) and the term IISII2 in (2)
by r(S)2? However, we know by the Cauchy-Schwarz inequality that
I(SKx, Y)I _< IISKll IJxlJ JlyJl. Here IISKll may be replaced by a weaker con-
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dition r((SK)*SK)1/2 as the following shows. For any operator E we
claim by induction that

I(Ex, y)l2" < ((E*E)2"-’x, x)llxll2"-Zllyl[ 2n

for eve. x, y6H and n> 1. It follows that I(Ex, y)]2<
II(E*E)z- /2"-’ Ilxll 2 IlYl12; and passing to the limit as n cz we
obtain

IE(x, y)l z <_ r(E*E)llxllZllYll 2.
We leave the details to the readers.
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