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In this paper, we introduce and study a new class of implicit quasi-variational inclusions,
which is called the generalized nonlinear mixed implicit quasi-variational inclusion with set-
valued mappings. Using the resolvent operator technique for maximal monotone mapping,
we construct some new iterative algorithms for solving this class of generalized nonlinear
mixed implicit quasi-variational inclusions with non-compact set-valued mappings. We
prove the existence of solution for this kind of generalized nonlinear mixed implicit quasi-
variational inclusions with non-compact set-valued mappings and the convergence of
iterative sequences generated by the algorithms. We also discuss the convergence and
stability of perturbed iterative algorithm with errors for solving a class of generalized
nonlinear mixed implicit quasi-variational inclusions with single-valued mappings.
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1 INTRODUCTION

Variational inequality theory and complementarity problem theory are
very powerful tool of the current mathematical technology. In recent
years, classical variational inequality and complementarity problem
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have been extended and generalized to study a wide class of problems
arising in mechanics, physics, optimization and control, nonlinear pro-
gramming, economics, finance, regional, structural, transportation, elas-
ticity, and applied sciences, etc., see [1], [3-7], [9-16], [19-29], [31],
[33-38], [41-43], [45-50] and the references therein. A useful and an
important generation of variational inequalities is a mixed variational in-
equality containing nonlinear term. Due to the presence ofthe nonlinear
term, the projection method cannot be used to study the existence of a
solution for the mixed variational inequalities. In 1994, Hassouni and
Moudafi [20] used the resolvent operator technique for maximal mono-
tone mapping to study a new class of mixed variational inequalities for
single-valued mappings. In 1996, Huang [21 extended this technique
for a new class of general mixed variational inequalities (inclusions)
with non-compact set-valued mappings and Adly modified this tech-
nique for another new class of general mixed variational inequalities
(inclusions) for single-valued mappings, which includes the mixed var-
iational inequality considered by Hassouni and Moudafi [20] as special
cases. Recently, Huang [22-24] and Huang et al. [25-27] introduced
and studied some new classes of variational inequalities and inclusions
with non-compact set-valued mappings in Hilbert spaces.
On the other hand, Huang [23] introduced and studied the Mann and

Ishikawa type perturbed iterative algorithms with errors for the general-
ized implicit quasi-variational inequality (inclusion) in Hilbert spaces.
Very recently, Huang et al. [26] constructed a new perturbed iterative
algorithm for solving a class of generalized nonlinear mixed quasi-var-
iational inequalities (inclusions) and proved the convergence and stabi-
lity of the iterative sequences generated by the perturbed iterative
algorithm with errors.

Inspired and motivated by recent research works, in this paper, we in-
troduce and study a new class of implicit quasi-variational inclusions,
which is called the generalized nonlinear mixed implicit quasi-varia-
tional inclusion with set-valued mappings. We establish the equivalence
between generalized nonlinear mixed implicit quasi-variational inclu-
sion and fixed point problems by employing the resolvent operator tech-
nique for maximal monotone mapping. Using this equivalence, we
construct some new iterative algorithms for solving this class of general-
ized nonlinear mixed implicit quasi-variational inclusions with set-
valued mappings. We prove the existence of solution for this kind of
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generalized nonlinear mixed implicit quasi-variational inclusions with
non-compact set-valued mappings and the convergence of iterative se-
quences generated by the algorithms. We also discuss the convergence
and stability of perturbed iterative algorithm with errors for solving a
class of generalized nonlinear mixed implicit quasi-variational inclu-
sions with single-valued mappings. The results shown in this paper im-
prove and extend the previously known results in this area.

2 PRELIMINARIES

Let H be a real Hilbert space endowed with a norm II" and inner
product (., .). Let G, S, T, P: H --+ 2/4 be set-valued mappings, where
2/-/ denotes the family of all nonempty subsets of H, and
N: H x H--+ H be a single-valued mapping. Suppose that M: H
H 2/-/ is a set-valued mapping such that, for each fixed
H, M(., t) :H 2/4 is a maximal monotone mapping and range(P)
dom(M(., t)) - t3 for each 6 H. We consider the following problem:

Find u r H, x r Su, y r Tu, z r Gu, w r Pu such that w
dom(M(., z)) and

0 N(x, y) + M(w, z). (2.1)

The problem (2.1) is called the generalized nonlinear mixed implicit
quasi-variational inclusion with set-valued mappings.
A well known example [30] of a maximal monotone mapping is the

subdifferential ofa proper lower semicontinuous convex function. There-
fore, we can get some special cases of the problem (2.1) as follows:

(I) If M(-, t) tp(., t) for each tH, where qg:HxH--+
R U {+c} such that for each fixed H, q)(., t):H R U {+cx} is
a proper convex lower semicontinuous function on H and
P(H) t-I dom(Otp(., t)) 0 for each H and O(p(., t) denotes the sub-
differential of function (p(., t), then the problem (2.1) is equivalent to
finding u . H, x

_
Su, y c= Tu, z Gu and w Pu such that

w 6 dom(Oqg(., z)),
(N(x, y), v w) > q(w, z) qg(v, z) (2.2)

for all v 6 H.
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(II) If G is the identity mapping, then the problem (2.1) reduces to the
problem of finding u H, x 6 Su, y6 Tu, w6Pu such that
w 6 dom(M(., z)) # 0 and

0 N(x, y) + M(w, u). (2.3)

(III) If G is the identity mapping, then the problem (2.2) reduces to
the problem of finding u H, x Su, y Tu and w Pu such that

w e dom(Oqg(., z)),
(N(x, y), v w) > qg(w, z) q)(v, z) (2.4)

for all v 6 H.
(IV) If P is a single-valued mapping, then the problem (2.1) reduces

to the problem of finding u H, x Su, y Tu, z Gu such that Pu
dom(M(., z)) and

0 N(x, y) + M(Pu, z). (2.5)

The problem (2.5) is called the generalized nonlinear set-valued mixed
quasi-variational inequality, which was introduced and studied by
Huang et al. [26].

(V) If G is the identity mapping, P ia a single-valued mapping, and
M(s, t) M(s) for all H, where M H --+ 2/is a maximal mono-
tone mapping, then the problem (2.1) is equivalent to finding u 6 H,
x Su, y Tu such that Pu dom(M) and

0 N(x, y) + M(Pu). (2.6)

This problem (2.6) is called the generalized set-valued mixed varia-
tional inclusion, which was introduced and studied by Huang [24].

(VI) If G is the identity mapping, P is a single-valued mapping, and
M(., t) Oq9 for each 6 H, where q9 H -+ R tO {+o} is a proper
convex lower semicontinuous function on H and P(H)N dom(Oqg))- 0 and Oq9 denotes the subdifferential of function qg, then the problem
(2.1) is equivalent to finding u H, x Su, y Tu such that

Pu dom(Oqg),
(N(x, y), v- Pu) > q)(Pu) q(v) (2.7)
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for all v 6 H. The problem (2.7) is called the generalized set-valued
mixed variational inequality, which was studied by Noor, Noor and
Rassias [37]. It is known that a number of problems involving the non-
monotone, nonconvex and nonsmooth mappings arising in structural
engineering, mechanics, economics, and optimization theory can be
studied via the problem (2.7), see, for example, [12], [16] and the refer-
ences therein.

(VII) If G is the identity mapping, P, S and T are all single-valued
mappings, then the problem (2.1) is equivalent to finding u 6 H such
that Pu dom (M(., u)) and

0 N(Su, Tu) + M(Pu, u),

which is called the generalized nonlinear mixed implicit quasi-varia-
tional inclusion.

It is well known [44], [49] that there exist maximal monotone map-
pings which are not subdifferentials of lower semicontinuous proper
convex functions. Therefore the problem (2.1) is more general than
the problems (2.2)-(2.8).

For a suitable choice of the mappings S, T, G, N, P, M and the space
H, a number ofknown classes mixed variational inequalities, variational
inequalities, quasi-variational inequalities, complementarity problems,
and quasi-(implicit) complementarity problems in [1], [3], [5], [7],
[10], [13], [14], [20-26], [29], [34-38], [43], [45-49] can be obtained
as special cases of the generalized nonlinear mixed implicit quasi-varia-
tional inclusion (2.1). Further, these type of implicit quasi-variational
inclusions enable us to study many important problems arising in me-
chanics, physics, optimization and control, nonlinear programming,
economics, finance, regional, structural, transportation, elasticity, and
applied sciences in a general and unified framework.

3 ITERATIVE ALGORITHMS

It is well known (cf. [8], [30]) that, ifM is a maximal monotone map-
ping from H to 2/4, then, for every/ > 0, the resolvent (I //M)-1 is a
well-defined single-valued non-expansive operator mapping H into it-
self. By using the resolvent operator technique, it is possible to convert
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the generalized nonlinear mixed implicit quasi-variational inclusion
(2.1) into an equivalent equation which is easier to handle. To do
this, we multiply all the terms in (2.1) with some p > 0 and add w
and then we obtain

w pN(x, y) e w + pM(w, z).

Therefore we have the following:

LEMMA 3.1 (u, x, y, z, w) is a solution ofthe problem (2.1) ifand only
if (u, x, y, z, w) satisfies the relation

w J#"Z)(w pN(x, y)),

where p > 0 is a constant, j.,z) (I + pM(., z))- and I is the iden-
tity mapping on H.

Based on Lemma 3.1 and Nadler’s result [32], we now suggest and
analyze the following new general and unified algorithms for the pro-
blem (2.1).

Let N: H H -- H be a mapping and G, P, S, T :H - CB(H) be
set-valued mappings, where CB(H) is the family of all nonempty
bounded closed subsets of H. For given u0 6 H, we take xo Suo,
Yo Tuo, zo Guo, wo Puo, and let

Ul uo Wo + J#"z)(wo pN(xo, Yo)).

Since xo Suo CB(H), Yo Tuo CB(H), zo Guo CB(H), and
wo Puo CB(H), by [32], Nadler’s result, there exist x Su,
y Tu, z Gu and w Pu such that

IIx0 xll _< (1 + 1)H(Su0, Sul),
Ily0 y _< (1 / 1)n(Tu0, Tu),

IIz0 z _< (1 + 1)H(Gu0, Gul),

IIw0 w _< (1 / 1)n(eu0, Pu),

where H(.,-) is the Hausdorff metric on CB(H). By induction, we can
obtain our algorithm for the problem (2.1) as follows:
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ALGORITHM 3.1 Suppose that N: H x H --+ H is a mapping and
G, P, S, T: H --+ CB(H) are set-valued mappings. For given uo H,
Xo Suo, Yo Tuo, zo Guo, and Wo Puo, compute {u.}, {Xn}, {Yn},
{Zn}, and {Wn} from the iterative schemes

Un+l Un Wn "[-J/I("zn)(Wn pN(xn, Yn))

[[Xn x,+ _< (1 + (n + 1)-1)H(Sun, Sun+ 1),
[lYn --Yn+ II--< (1 + (n + 1)-)n(Tu, Tun+),

lien Zn/ll -< (1 + (n + 1)- )H(Gun, GUn+l),

Wn w/11 --< (1 + (n + 1)-l)H(Pu,, PUn+l ),

Xn - Sun

yn E TUn,

Zn Gun,

Zn Pun,

(3.1)

for n O, 1,2 where p > 0 is a constant.

From Algorithm 3.1, we can get an algorithm for the problem (2.2) as
follows:

ALGORITHM 3.2 Suppose that N: H x H --+ H is a mapping and
G, P, S, T: H --+ CB(H) are set-valued mappings. For given uo H,
Xo Suo, Yo Tuo, zo Guo, and wo Puo, compute {u,}, {x.}, {Yn},
{Zn}, and {Wn} from the iterative schemes

Un+ Un p(U.) "[- JpCP("Zn)(p(utt) pN(xn, Yn))

IIx,, Xn+ (1 + (n + 1)-I)H(Sun, SUn+l),
[[Yn-Yn+ < (1 +(n + 1)-1)H(Tun, Tun+),

IlZn --Zn+]] < (1 + (n + 1)-I)H(Gun, GUn+l),

Wn Wn/ -< (1 + (n + 1)-)H(Pu,, PUn+l ),

Xn Sun,

Yn Tun,

Zn Gun,

Zn C=_ Pun,

(3.2)

for n =0, 1,2,..., where p > 0 is a constant and jpO(.,z)=
(I + pOqg(., z))-1

For a suitable choice of the mappings S, T, G, N, P, M and the space
H, many known iterative algorithms for solving various classes of var-
iational inequalities and complementarity problems in [1 ], 13], 14],
[20-22], [24], [26], [34], [37], [38], [46], [47], [49] can be obtained
as special cases of Algorithms 3.1 and 3.2.
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4 EXISTENCE AND CONVERGENCE THEOREMS

In this section, we prove the existence of a solution of the problem (2.1)
and the convergence of iterative sequence generated by Algorithm 3.1.

DEFINITION 4.1 A mapping g H --+ H is said to be

(1) strongly monotone if there exists a number 6 > 0 such that

(g(u) g(u2), u u2) >_ 611Ul u2
2

for all ui E H, 1,2,
(2) Lipschitz continuous if there exists a number a > 0 such that

IIg(u) g(u2)ll < rllu u211

for all ui E H, 1,2.

DEFINITION 4.2 A set-valued mapping S H CB(H) is said to be

(1) H-Lipschitz continuous (f there exists a number q > 0 such that

H(S(ul), S(u2)) < r/llu- uzll

for all ui G H, 1,2,
(2) strongly monotone if there exists a number 7 > 0 such that

(X1 --X2, Ul U2) >__. TllUl u21l 2

.for all xi E S(ui), 1,2,
(3) strongly monotone with respect to the first argument of

N(., .)H H H, if there exists a nmnber 6 > 0 such that

(N(x, .) N(x2, "), Ul u2) > llu u2
2

for all xi S(ui), 1,2.

DEFINITION 4.3 The operator N H x H --+ H is said to be Lipschitz
continuous with respect to the first argument if there exists a constant

fl > 0 such that

IIN(u, .) N(u2, ")11 _</3llUl u211

for all ui H, 1,2.
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In a similar way, we can define Lipschitz continuity of the operator
N(., .) with respect to the second argument.

THEOREM 4.1 Let N be Lipschitz continuous with respect to the first
and second arguments with the constants , , respectively. Let
S H ---> CB(H) be strongly monotone with respect to thefirst argument
ofN(., .) with the constant . Let S, T, G H --+ CB(H) be H-Lipschitz
with the constants rl, ? and s, respectively, P H ---> CB(H) be strongly
monotone and H-Lipschitz continuous with the constants 6 and 0-, re-

spectively. Suppose that there exist numbers 2 > 0 and p > 0 such that,
for each x, y, z H,

IIJ("X)(z) JpM("Y)(z)II A.IIx Yll (4.1)

and

0 + 7(k- 1)

2fl2 22
V/(o + y(k 1)):z (rl2fl2 22)k(2 k)

> (1 k) q- 4(q2fl2 2},2)k(2 k), r/fl >

p < k, k 2s + 2/1 26 + 0"2, k < 1.

(4.2)

Then there exist u H, x e Su, y e Tu, z e Gu, and w e Pu satisfying
the problem (2.1). Moreover,

Un ---> U, Xn -"> X, Yn Y, Zn ---> Z, W. --+ W as n --->

where {Un}, {Xn}, {Yn}, {Zn}, and {Wn} are sequences defined in Algorithm
3.1.
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Proof From Algorithm 3.1 and (4.1), we have

J("z"-’)(Wn-I pN(xn-, Y,,-))II

< IlUn Un- (Wn Wn-)II + IIJt"z")(wn pN(xn, Yn))

Jp"z"-’)(Wn- pN(xn-,yn-))]l

<_ IlUn U._ (W. W.-)ll

+ IIJ"z")(w._ pN(x._, y._))

-J"z"-)(Wn-- pN(xn-, y,,-))ll + IIJff’’z")

(Wn pN(xn, Yn)) JC"’z")(Wn- pN(xn-, Y.-))ll

_< Ilu. Un- (W,, Wn-1)ll / 211Z. Z._

4- II(w pN(x, Yn)) (Wn-I pN(Xn-l, Y-))II

_< 2 u u_ (w Wn- )II + llz z_ll

+ Ilun u_ p(N(x.,y.) N(x-,y-))II

_< 21In. u.-t (w,, w,,-))ll / 211z. z,,_

+ IlUn Un-I p(N(x,, Yn) N(x,_,

+ pllN(X-l,y.) N(x.-,y._)l].

(4.3)

By the H-Lipschitz continuity and strong monotonicity of P and
Algorithm 3.1, we obtain

Ilu. -u._- (w. w._)ll 2

Ilu. u.- 2 2(u. -//n-l, Wn Wn-l) -1" IIw. w.- 2

<_ Ilu. u.-t = 2611u. u._ 2 4- (1 / n-l)2[H(Pun, Pun_l)]2

< (1 26 + tr2(1 + n-)2)llu u,,_ z.
(4.4)
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Since S is H-Lipschitz continuous and strongly monotone with respect
to the first argument ofN and N is Lipschitz continuous with respect to
the first argument, we have

Ilu. Un-1 p(N(xn, Yn) N(xn-1, yn))ll 2

Ilu, u,_ 2 2p(Un Un-1, N(xn, Yn) N(xn-1, Yn))

+ pZl]N(xn,Yn) N(Xn_l,Yn)ll 2

< (1 2p + pZq2(1 q- n-1)zflz)llUn ltn_ (4.5)

Further, since T, G are H-Lipschitz continuous and N is Lipschitz con-
tinuous with respect to the second argument, we get

IIN(xn-1, Yn) N(x,,_ l, Yn-1 )II IlYn Y,,-11

< Y(1 + n-)llun Un-1 (4.6)

and

IIz. z._ s(1 -+- n)-1)11Un Un- (4.7)

From (4.3),-(4.7), it follows that

Ilu. u.+ll 0. IlUn b/n-1 II, (4.8)

where

On 2s(1 -+- n-l) + 2V/1 26 + 0.z(1 -k- n-l)2

+ V/1 2p + p2r/2f12(1 q-- n-l)2 + py(1 -+- n-).

Letting

0 k + V/1 2p + p2r/2f12 -k-

where k 2s + 21 26 + 0"2, we know On " O. It follows from (4.2)
that 0 < 1. Hence On < for n sufficiently large. Therefore, (4.8) im-
plies that {Un} is a Cauchy sequence in H and we can suppose that
Un-- u _H.
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Now we prove that Xn "-+ x Su, Yn Y Tu, Zn z Gu and
w. w Pu. In fact, it follows from Algorithm 3.1 that

IIx. x._ 11 _< (1 + n-l)q Ilu. u._ ill,

Ily. y,,-ill _< (1 / n-l) Un Un- 11,

IIz z-t _< (1 / n-l)sllun Un-l II,

Wn W_ Ill --< (1 / n- )r u u_ 111,

which imply that {x.}, {y.}, {z.} and {w.} are all Cauchy sequences in H.
Let Xn -’+ x, Yn Y, Zn z and Wn w. Furthermore,

d(x, Su) inf{llx- vll v an}
_< IIx x. / d(xn, Su)
_< IIx x / n(Su., an)
_< IIx x / r/ll u,, ull 0.

Hence, we have x Su. Similarly, we have y Tu, z Gu, and w Pu.
This completes the proof.

From Theorem 4.1, we have the following result:

THEOREM 4.2 Let N, S, T, G, P be the same as in Theorem 4.1.
Suppose that there exist numbers 2 > 0 and p > 0 such that, for each x,
y, z6H,

[IJt"X)(z) Je,("Y)(z)ll <_ 21Ix -yll

and the condition (4.2) in Theorem 4.1 holds. Then there exist u H,
x Su, y Tu and z Gu, satisfying the problem (2.2). Moreover,

Un U, Xn X, Yn --+ Y, Zn --+ z, Wn --+ W as n -- c,

where {un}, {Xn}, {Yn}, {Zn}, and {Wn} are sequences defined in Algorithm
3.2.

For an appropriate and suitable choice of the mappings S, T, G, N, P,
M and the space H, we can obtain several loaown results in [1], [14],
[20-22], [24], [26], [34], [37], [38], [46], [47], [49] as special cases
of Theorems 4.1 and 4.2.
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5 PERTURBED ALGORITHMS AND STABILITY

In this section, we construct a new perturbed iterative algorithm with er-
rors for solving the generalized nonlinear mixed implicit quasi-varia-
tional inclusion (2.8) and prove the convergence and stability of the
iterative sequence generated by the perturbed iterative algorithm with
errors.

DEFINITION 5.1 Let T be a self-mapping of H, Xo H and let

Xn+l f(T, xn) define an iteration procedure which yields a sequence of
points {Xn}n=o in H. Suppose that {x H’Tx x} 0 and {Xn}no
converges to a fixed point x* of T. Let {Yn} c H and let
en IlYn+ -f(T, Yn)l[. /flimnoo en 0 implies that limnoYn x*,
then the iteration procedure defined by Xn+t f(T, Xn) is said to be T-
stable or stable with respect to T. If ’n=o 13n <-+-(X3 implies that
limnooYn X*, then the iterative procedure {Xn} is said to be almost T-
stable.

We remark that an iterative procedure {x which is T-stable is almost
T-stable and an iterative procedure {x which is almost T-stable need not
be T-stable (see [40]).
Some stability results of iterative procedures have been established by

several authors (see [2], [17], [18], [26], [27] and [39]). As pointed out
by Harder and Hicks [18], the study on the stability of various iterative
procedures is both of theoretical and numerical interest.

DEFINITION 5.2 Let {Mn} andM be maximal monotone mappingsfor
n 0, 1, 2 The_. sequence {Mn} is said to be graph-convergence to

nM (we write M-+M) if the following property holds." for every
(x, y) Graph(M), there exists a sequence (Xn, Yn) Graph(Mn) such
that Xn "- x and Yn

For our results, we need the following lemmas:

LEMMA 5.1 (See [27]) Let {an}, {bn}, and {n} be three sequences of
nonnegative numbers satisfying thefollowing conditions: there exists no
such that

an+l < (1 tn)an + bntn + Cn
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for all n > no, where

t [0, 1], t. +o, lim b. 0, cn < +cx.
n--O --oo

n--O

Then an -- 0 as n --+ +cxz

LEMMA 5.2 (See [4]) Let {Mn} and M be maximal monotone map-
n G

pingsfrom H into the power ofHfor n O, 1,2 Then M --+ M if
and only if

for every x H and 2 > O.

ALGORITHM 5.1 Let N: H x H H and S, T, P H --+ H be single-
valued mappings. Suppose that Mn" H x H --+ 2H is a sequence ofset-
valued mapping such that, for each y H, Mn(.,y): H--+ 2H is a
maximal monotone mappingfor n O, 1,2 For given Uo H, the
perturbed iterative sequence {un} are defined by

Un+ (1 an)Un + an[Vn Pvn

+ J""")(Pvn pN(Svn, Tv.))] + .en,

vn (1 n)u. + fln[Wn --PWn

+ J"("w")(Pwn pN(Swn, Twn))] + flnfn,

Wn (1 7n)U. + y.[Un --Pun

+ J"("u")(Pun pN(Sun, Tun))] + ngn

for n O, 1,2,..., where {en}, {f.}, and {g.} are three sequences ofthe
elements ofH introduced to take into accountpossible inexact computa-
tion and the sequences {a.}, {fin}, and {n} satisfy thefollowing condi-
tions:

0 < an, fin, Yn < (n 0), an O).

n--0
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If 7n 0 for n 0, 1, 2 then Algorithm 5.1 reduces to the follow-
ing algorithm:

ALGORITHM 5.2 Let N, S, T, P, and Mn be the same as in Algorithm
5.1. For given uo H, the perturbed iterative sequence {Un are defined
by

Un+l (1 an)Un "dr- an[Vn Pvn + J4"("v")(Pvn pN(Svn, Tvn))]

-]- anen,

1,’n (1 n)Un + fln[Un Pun .qt_ J4n(’,un)(pbln pN(Sun, Tun))]

for n O, 1,2 where {en} and {f,} are two sequences of the ele-
ments ofHintroduced to take into accountpossible inexact computation
and the sequences {an} and {/3n} satisfy the following conditions:

0 .< an, fin (n > 0), Z an cxz.
n--O

THEOREM 5.1 Let N be Lipschitz continuous with respect to the first
and second arguments with the constants [, , respectively. Let
S: H --+ H be strongly monotone with respect to thefirst argument ofN
with the constant a. Let S, T H --+ H be Lipschitz continuous with the
constants rl and , respectively, P: H ---> H be strongly monotone and
Lipschitz continuous with the constants 6 and a, respectively. Suppose
that Mn H x H ---> 214 is a sequence ofset-valued mapping such that,
for each y H, Mn(., y) H

G
---> 2H is a maximal monotone mappingfor

n O, 1, 2 Mn(., y) --+ M(., y), and there exist numbers 2 > 0 and
p > 0 such that, for each x, y, z H,

IIJt(")(z) JpM("Y)(z)ll Allx YlI, (5.2)

(5.3)



822 R.P. AGARWAL et al.

and

+ 7(k 1)
P-- q2f12 2,2

v/( + 7(k- 1))2 (,12fl2 2]2)k(2 k)
F/2f12 2,2

> (1 k)7 + 4(r/2fl2 22)k(2 k), t/ > ’,

PV < k, k 2 + 2/1 26 + 0"2, k < 1.

(5.4)

Let {y. be any sequence in H and define n by

e.n [[Yn+l {(1 on)yn + Zn[Xn Pxn + jy"(.,x.)

x (Pxn pN(Sxn, Txn))] + nen}[[,

x. + -Pz. +

x (Pzn pN(Szn, TZn))] + flnfn,

zn (1 7.)Y. + 7.[Yn -PY. + J"("Y")
x (PYn pN(Syn, Ty.))] + 7ngn

(5.5)

for n--0, 1,2
limnoo [[g. 0, then

If lim,,oo Ile,,ll O, lim,oo Ill 0 and

(I) The sequence {u, } defined by Algorithm 5.1 converges strongly to
the unique solution u* of the problem (2.8).

(II) /f -n00n < 00, then limn-, Yn u*.
(III) IflimnYn u*, then limne,n O.

Proof (I) It follows from (5.2), (5.4) and Theorem 4.1 that there exists
u* 6 H which is a solution of the problem (2.8) and so

Pu* Jy(""*)(Pu* pN(Su*, Tu*)). (5.6)
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From (5.3), (5.5), (5.6) and Algorithm 5.1, it follows that

Ilun+
I1(1 ,,)Un + On[12n Pvn if" j"(.,v.)
(Pvn pN(Svn, Tvn))] + nen (1 n)U*

On[U* PU* + J("u*)(Pu* pN(Su*, Tu*))]II

< (1 n)llun u*ll + znllvn PVn (U* Pu*)ll + ,llenll

at- nllJ’("v’)(evn pN(Svn, Tvn))

-Jt("u*)(Pu* pN(Su*, Tu*))II

< (1 On)llUn u*ll + nllV, U* (Pvn Pu*)ll / Onllenll

+ ,,llJ"("v’(ev,, N(Sv,,, Zv,d)

-J("v)(eu* N(Su*,

+ ,,llJ("v)(Pu* pN(Su*, Zu*))

-.l("u*)(eu* N(Su*, Tu*))II

+ nllJp"("u*)(eu* pN(Su*, Zu*))

-J("u*)(eu* N(Su*, Tu*))II

< (1 n)llun u*ll + 2nllVn u* (Pv, Pu*)ll

+ n(llell + hn) + nllv,, u* p(N(Svn, Tu*)

-N(Su*, Tu*))II + nllVn u*ll
< (1 On)llUn u*ll + 2nllVn u* (evn eu*)ll + n(llell

-l- hn) "l- nllvn u* p(N(Svn, Tv,,) N(Su*, Tvn))ll

+ ,,PlIN(Su*, Tv,,) N(Su*, Tu*)ll + OnllVn u*ll,
(5.7)

where

hn IlJ"("u*)(Pu* pN(Su*, Tu*))

-J("u*)(Pu* pN(Su*, Tu*))ll.
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From Lemma 5.2, we know that hn --+ 0 as n --+ o. By the Lipschitz
continuity ofN, S, T, P and the strong monotonicity ofS and P, we ob-
tain

IIv. u* (Pv, Pu*)ll 2 (1 26 + r2)llv. u*ll, (5.8)

IIv u* p(g(Sv,,, Tv,)- N(Su*, Tv))ll 2

< (1 2p + pzq2/2)llv u*ll 2 (5.9)

and

[[N(Su*, Tv.) N(Su*, Tu*)l[ _< ,[[v u*[[. (5.10)

It follows from (5.7)--(5.10) that

Ilu,+ u*ll (1 o,)llu, u*ll + Oo,llv. u*ll + ,(lle, + hn).
(5.)

where

0 2 + 2v/1 26 + o"2 + V/1 2p + p:Zq2//2 + p7.

Similarly, we have

v, u* (1 -/.) u, u* + O[3n W, U* +/3, llf

and

IlWn u*ll (1 ,,)llu, u*ll + O,,,llu, u*ll +

The condition (5.4) implies that 0 < 0 < 1. It follows that

IIWn U* IlUn u* + ’,, IIg

and so

IIv u*ll Ilu, u*ll + 3,(,llgll + I11).
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From (5.11) and (5.12), we have

U*Ilu,+ [1 0,(1 O)]llUn u*ll + ,,fl,,O(Ynllg,,ll +
+ n(llell + hn)

< [1 n(1 O)][[Un u*ll / n(1 O)d,,,

where

n(Ynllg,,ll + I11)+ Ilenll + hndn= ---0 as n -- or.
1-0

It follows from (5.13) and Lemma 5.1 that un u* as n c.
Now we prove that u* is a unique solution of the problem (2.8). In

fact, if u is also a solution of the problem (2.8), then

Pu JpU(")(Pu- pN(Su, Tu))

and, as in the proof of (5.11), we have

Ilu* ull _< Ollu* ull,

where 0 < 0 < 1. Therefore, u* u. This completes the proof of the
conclusion (I).
Next we prove the conclusion (II). Using (5.2) we obtain

IlYn+ u* _< [lYn+ {(1 ,n)Yn -Jr- n[Xn Pxn
(Pxn pN(Sxn, Txn))] + ne,}ll

-!- [1(1 n)Yn + n[Xn Px,, + jpm"(.,x.)
x (Pxn pN(Sxn, Txn))]

I1(1 n)Yn "+" On[Xn Pxn -I’- j"(.,x.)
(Pxn pN(Sxn, Txn))] + nen U* + en. (5.14)

As in the proof of the inequality (5.13), we have

I1(1 On)Yn -Jr- (Zn Xn Pxn ’]" Jt4n "xn (Pxn pN(Sxn Txn)) + nen u*ll
_< (1 ;n(1 O))lly. u*ll / .(1 O)d.. (5.15)
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It follows from (5.14) and (5.15) that

U*Ily,/ _< (1 ,(1 0))lly,, u*ll / (Xn(1 O)dn "- 8n. (5.16)

Since .0 e,n < cx, d. 0, and -’n0 an c, it follows from (5.16)
and Lemma 5.1 that lim.Yn u*.
Now we prove the conclusion (Ill). Suppose that lim.yn u*.

Then we have

e. Ily,,+ {(1 an)Yn + an[X,, Pxn + jpM"(.,x.)
x (Pxn pN(Sxn, Txn))] + nen}[[

-< IlY.+ u*ll / I1(1 .)Y. / .[x. Px. /
x (Pxn pN(Sxn, Txn))] + Ctnen u’l[

< IlYn+l u*ll / (1 ,,(1 0))llY. u*ll / n(1 O)dn 0

as n --+ cxz. This completes the proof.

From Theorem 5.1, we have the following result:

THEOREM 5.2 Suppose that N, S, T, P, and Mn are the stone as in
Theorem 5.1. Let {Yn} be any sequence in H and define {en by

e.. IlY.+ {(1 .)y. + o.[x. Px. +
x (Pxn pN(Sx., Tx.))] + nen}ll,

x. (1 .)y + .[v. -Py. +
(PYn pN(Syn, Tyn))] + flnfn

for n O, 1, 2 If the conditions (5.3) (5.5) hold, then

(I) The sequence {u,,} defined by Algorithm 5.2 converges strongly to
the unique solution u* of the problem (2.8).

(II) If -]n=O an < , then lim.__.y.- u*.
(III) Iflimny. u*, then lim. 2. 0.
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