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Let 7% be the modified Hankel transform

7%(f x) .I J(xt)_f(,)t.x.2+l dt,

defined for suitable functions and extended to some LP((0, o), x:+) spaces. Given 6 > 0, let
M be the Bochner-Riesz operator for the Hankel transform. Also, we take the following
generalization

7"tk(f, x) Ii J+k(xt)(xt) f(t)t-+l dt, k O, 1, 2

for the Hankel transform, and define Ma.k as

x )+7-/f), k =0, 1,2

(thus, in particular, M {M.k }kNM,0). In the paper, we study the uniform boundedness of
in LP((0, x), x2+1) spaces when 0 > 0. We found that, for 6 > (2 + 1)/2 (the critical index),
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M, i is satisfied for every p in the range < p < . And,the uniform boundedness of .kk=0
for 0 < 6 < (2 + 1)/2, the uniform boundedness happens if and only if

4(t + I) 4( + 1)
2cz + 3 +26

< p <
2 + 26"

In the paper, the case 6 0 (the corresponding generalization of the Zt0,l-multiplier for the
Hankel transform) is previously analyzed; here, for 0 > -I. For this value of 6, the uniform
boundedness of {M.k }k=0 is related to the convergence of Fourier-Neumann series.

Keywords: Bochner-Riesz operator; Multipliers; Hankel transform; Fourier-Neumann series

Classification: 1991 Mathematics Subject Classification" Primary: 42A45" Secondary: 42A38

1 INTRODUCTION

Let > -1/2. For a function f(t) on the interval (0, o), the so-called
modified Hankel transform 7-/(f, x), x > 0, of order is given by

7-[(f x) JJ(xt) ..2+1

..(xt) .f(,), dt, (1)

where J(x) is the Bessel function of the first kind of order . Well-
known bounds for Bessel function and H61der’s inequality show that
(1) is well defined for every f 6 LP((0, cxz),x2+ dx) (LP(x2+I), from
now on) with < p < 4(a + 1)/(2a + 3).

Furthenrore, it is easy to see that 7-/ is a bounded operator from
Ll(x2a+l) into L(xEa+l). Also, as usual, the expression (1) is extended
by continuity to different U’(x2+ ) spaces. For instance, it is well known
that 7-/r is an isomorphism from L2(x2+1) into itself and 7-/ o 7-/ Id
(for a > -1, the extension of 7 to L2(x2+) can also be done; see
[2, 7, 8, 23]). As a consequence, ofcourse, we can get the corresponding
interpolation result that we do not detail here.

.Associated with 7-/, we can define the ball multiplier M as the op-
erator that verifies the relation 7-/(Mf) Z[0,lT-/f; or, in other words,

M 7-/(Z[0, ]7-/).
This operator is bounded from LP(x2+1 ) into itself if and only if
4(a + 1)/ (2a + 3) < p < 4(a + 1)/(2a + 1). The first proof of this
fact can be found in 11 ]. For this and related properties on Hankel mul-
tipliers see also [4, 5, 9, 10, 14, 20, 23].
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Now, let us take the following generalization for the Hankel trans-
form. We consider

Ji7-/(f, x) ’t .f(t)t dt, k = 0, 1, 2 (2)

In this way, the operator M can be also generalized by taking

M,kf k ]7-tf), k 0, 2H(:Z[o, (3)

The study of the uniform boundedness of these operators in LP(x2+1 )
spaces is very useful. As we can see in [4, 10, 23], to prove the
mean convergence of Fourier-Neumann series is reduced to prove the
uniform boundedness of the operators {M,f},. There, it is proved
that the uniform boundedness in I(x2+) is equivalent to

max{4/3, 4(0 + 1)/(20 + 3)} < p < min{4, 4( + 1)/(20 + 1)}. Actu-
ally, in this article, we will explicitly show the uniform boundedness of
{M,d’}, only because it plays an important role in the proof of some
other results of the paper. Moreover, the boundedness for M,, is shown
not only for >_ -1/2, but also for 0 > -1.

Another multiplier for the Hankel transform is the Bochner-Riesz
multiplier; of course, it is similar to the well known Bochner-Riesz
multiplier for the Fourier transform (see, for instance, [16, 25] or [18,
Ch. IX, 2.2]). Taking > 0, the operator M is the one that makes
7"/o(M’)(1 2-x)+7-/f, being (1-x2)+ max{0,1-x2} (of
course, M.a for 6 0 would be M.). Also, it can be described as

M .((1 x2)+’Hc). (4)

Again, Bochner-Riesz multiplier can be generalized by using (2). Thus,
we take

3 k
X
2 67-t((1 7-tf) k 0, 1,2m.,f )+ (5)

Similarly to the ball multiplier generalization, we can wonder if these
operators are uniformly bounded in LP(x+). This paper is devoted
to the study of this fact. We will only deal with the case >_ 0.
We found that there exists an index 60 -(2 + 1)/2 such that, for

6 > 30, the uniform boundedness is true for every p in the range
1 _< p _< oo; however, for 0 < 6 _< 60, the uniform boundedness only
happens in a finite range of p. Moreover, as we will see, the proofs
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for both facts are different. This value 60 is called the critical index. The
existence of a critical index is also a common fact in the study of the
boundedness of the Bochner-Riesz operator for the Fourier transform
(see, for instance, 19]).
The paper is organized as follows. In Section 2, we give the main re-

suits of the paper. First, the uniform boundedness for {M,k} (Theo-
rem 1); then, the uniform boundedness for {M6,}, both for 6 > 0
(Theorem 2) and for 0 < _< 0 (Theorem 3). In Section 3, we give
the proof of Theorem 1, which is reduced to known results that already
appear in papers related with the uniform boundedness of Fourier-Neu-
mann series. In Section 4 we give the proof of Theorem 2. To obtain it,
we will use some results about the translation for the Hankel transform
and the corresponding convolution product. Finally, in Section 5, we give
the proof of Theorem 3. In this case, we will apply an interpolation re-
sult for families of analytic operators from Stein [17], and the uniform
boundedness of {M.k} that appears in Theorem 1.

Throughout this paper, we will use C (or C’) to denote a positive con-
stant independent off and k (and of any other variable, if it is the case),
which can assume different values in different occurrences. When C has
a subindex, it depends only on the parameters that appear in the subin-
dex.
Some of the operators defined in this paper have an integral expres-

sion only for suitable functions, and then they are extended by density
and continuity. Usually, a class S+ of smooth functions in (0, ),
related with Schwartz class S, is used (S+ are the even functions of S
restricted to (0, c)); see, for instance, [6, 8] for details (and [9, 20] for re-
lated density results). Moreover, with these functions, Fubini’s Theorem
can be applied when necessary. This is a standard technique; we will
implicitly use this kind of arguments sometimes without notice it again.

Remark 1 Note that, although we have referred to some results that
appeared in [4, 5, 10, 23], the Hankel transfonn used in these papers (as
well as by other authors such as [7, 8]) was sonaewhat different. In these
papers, instead of (1), it was used

X-/2 IO7-G(f x) J(’-)g(t)t dt, (6)
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defined in LP(x). And the ball multiplier M (and M,k) was also de-
fined for this Hankel transform. It is clear that, by the changes of vari-
ables t - t2 and x x2, the Hankel transform (6) in LP(x) becomes (1)
in LP(x2+). Of course, the range ofp for which there exists bounded-
ness is preserved.
Nowadays, it seems that the notation in (1) is more used (see, for in-

stance [1,2, 6, 9, 13, 14, 15, 20], although it is sometimes called Four-
ier-Bessel transform), so we have adopted it in this paper.
When studying the boundedness ofM and M,k, the notation in (6)

was more handy than (1): the operators that appear are, directly, Hilbert
transforms with weights (with (1), in the denominator, an x2 2 arises
instead of a x- t, and this requires extra work). However, in this paper,
is more suitable to use (1) and its corresponding M and M,,.

2 MAIN RESULTS

Let us begin to show an expression for the Z[0,l-multiplier generaliza-
tion M,f described in (3); or, in other words, aM,f for 6 0. We
will study {M,k}k not only for >_ --1/2, but also for > -1. By
using (3) and Fubini’s Theorem we obtain

M,k(f x) x- J+k(ts)J+k(xs)s +f(t) dr. (7)

The result that shows the unifo boundedness of this family of opera-
tors is the following:

THEOREM Let >-1, 1 < p < cx, and the family of operators
{M,k}kz defined as in (3). Then,

ifand only if
4
<p<4,
4( + 1)
<p<

2+3
4( + 1)
2+1

/f -1<<0,

/f 0 < .
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Now, let us consider the generalized Bochner-Riesz multiplier M’a.k de-
scribed in (5). Let us take 6 > 0. An expression that allows us to show

Ma,k as an operator with a kernel ’K’+, is the following:

’ f(t)K+k(x, t)t+l dt,r, x) x-
with

K+(x, t) s(1 s)J+(xs)J+(ts)ds. (8)

Again, it can be easily deduced by applying Fubini’s Theorem to the de-
finition for M’ given in (5).0,k
The main results in the paper are the ones that show uniform bound-

edness for {M’,k}k. When 6 exceeds the critical index, we have

THEOREM 2 Let t > 0, 6 > 6o (2 + 1)/2 and < p < cxz, and the
family of operators {Ma,k} defined as in (5). Then,

And, for 6 below the critical index, we have

THEOREM 3 Let >0, 0<6<6o=(2+1)/2 and < p < cx,
and the family ofoperators {M’,,}ka defined as in (5). Then,

’ k6[M’=,fll/(x2+,) _< CIIfllze(x=+,),

if and only if

4(0 + 1) 4(0 + 1)
< p < (9)

2t + 3 +26 2+ 26"
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3 PROOF OF THEOREM 1 (i.e., UNIFORM BOUNDEDNESS
FOR 0)

First, we are going to establish some new expressions for (7) that will be
more useful to study the uniform boundedness of the operators.
We will use von Lommel’s formula

Ii ds
xZ t2 (Jv(x)tJ(t) -Jv(t)xJ(x))

x2 t2 (XJv(t)Jv+(x) tJv+(t)Jv(x))

(for the last equality, use zJ(z) VJv(z)- ZJv+l(Z)). By applying it to
(7) we get

(10)

or, also,

(11)

Now, we have all the necessary for

Proof of Theorem 1 These are the operators that appear in the decom-
position of the partial sums of Fourier-Neumann series to prove their
uniform boundedness in LP(x2+) spaces, such as it is studied in
[4, 10, 23, ]. Actually, with this notation, the partial sums are

Snf-- W1,Qf- W2,0f-[- gr2,2n+2f- t’rl,2n+2f (take into account that the
notation in these papers is a little different and, also, that a change of
variable for x and is being used, as described in Remark 1).
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In this way, a sketch of the proof for the uniform boundedness ofM,k
is as follows:

For k 0, the decomposition (10) is used. Then, well-known bounds
for IJl and IJ/l are applied, and so the proof of the boundedness of
W2,0 and Wi,0 is reduced to the boundedness of the Hilbert transform
with weights. We get that this boundedness is true for < p <
when -1 <<-1/2; and for 4(+l)/(2t+3)<p<4(+l)/
(2 + 1) when > -1/2. (The case < -1/2 is studied only in [10].)

For k > 0, the decomposition (11) is used. Now, suitable bounds for
IJ+kl and IJ+kl are applied. Then, rl,k and /Vr2,k are bounded by Hil-
bert transforms with weights (that depend of k). Finally, unifonr Ap
weights theory is used to find the uniform boundedness of these Hilbert
transforms. Here, the condition 4/3 < p < 4 appears.

Remark 2 As we have commented in the previous proof, the condition
4/3 < p < 4 does not arise if we only analyze the case k 0. Then, for
the boundedness of the Z[0,]-multiplier M in LP(xZ+), < p <
and > -1, we have

This result is already implicit in [10], but not explicitely stated. And,
changing LP(x2+l) by some other weighted Lp spaces, also [22] can
be seen.
A completely different proof of this fact, based on multipliers for

Fourier-Bessel expansions and transplantion theorems, can be found
in [2].

4 UNIFORM BOUNDEDNESS FOR OVER THE CRITICAL
INDEX

First, let us describe the translation and convolution for the Hankel
transform as well as some of its properties. A wider exposition of
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these results can be found in [3, 12, 13]. Mostly in this section, we can
assume > -1/2, although the proof of Theorem 2 will require > 0
(because (18) is not true for < 0).
We consider the translation operator Tx, with x > 0, defined, for sui-

table functions h, by

F( + 1)
h(w) sin2 0 dO,TX(h, t) /-F( + 1/2)

where w2 x2 + 2 2xt cos O, x, t > O. Using this translation, the con-
volution operator can be described as

h g(x) g(t)TX(h, t)t2+1 dt. (12)

It is not difficult to check that, for > -1/2,

(13)

for 1 <_ p < c. The convolution structure and its boundedness will play
a significant role in the proof of Theorem 2.

/P() be the ultrasphe-Let us introduce some other notation. Let k k=0
rical polynomials of order (also known as Gegenbauer polynomials).
Here, and in the discussion that will follow, the usual modifications
must be applied if 0 (i.e., the use of Chebyshev polynomials). A
wide information on ultraspherical polynomials can be found in [21].
To simplify some expressions, we take

2-lk!F(e)
p(x)

r(2 + k)P)(x). (14)

For Bessel functions, we will denote

; 2 J+a+ (x)
,7"=(x) F(cz + 1) xO,+,+ (15)
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Also, we will use the Sonine’s formula (see [24, 12.11, p. 373] or [19,
Lemma 4.13])

zv+ IiJv+.+(z) 2vF(v + 1) J’(zs)s’+(1 sz)v ds, (16)

which is valid for Re(p) > -1 and Re(v) > -1.
Now, let us see a new expression for the Bochner-Riesz operator M,,

and its kernel K+,. It is more useful for our purposes than the previous
one we showed in (8).

LEMMA Let > -1/2 and 6 > O. Then,

6 X- 6f(t)K+k(x, t)t+ dtm.,k(f,x)

with

K+k(x, t) (xt) O) 0 dO,ff(w)pk(cos sin2

being w2 x2 + 2 2xt cos O.

(17)

Proof We have already seen that M’,6,k0r, x) can be written with K,+.
(x, t) as in (8). Now, let us transform this expression to become (17). For
this, we will use

sin2 0 dO
J+k(x)J+k(t)

O) xa

withp as in (14); this formula, that is valid for t > -1/2, can be found
in [24, 11.41, p. 367]. In this way,

K’+k (x, t) s(1 s2)aJ+k(xs)J+k(ts) ds

= (xty s2+l(1 s2)a J(sw) ,
(sw).pktcos O) sin2 0d0 ds.
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Exchanging the order of integration and applying Sonine’s formula (16),
we can conclude

6 S+IK+,(x, t) (xt) w-p,(cos 0) sin2 0 (1 s2)’J(sw) ds dO

(xt) ff(w)pt, (cos 0) sin2 0 dO. l

By using standard estimates for ultraspherical polynomials (see, for in-
stance [21, Th. 7.33.1]) we have that, for >_ 0,

Ip(x)l _< 1, x [-1, 1]. (18)

Also, the well-known estimates for Bessel functions (of order v > -1)

IJ(t)l _< Cvtv, (0, 1), IJv(t)[ <_ Cvt-/2, (1, cxz),

ensure that

(19)

for 6 > 60 (2 + 1)/2.
Now, we have all that we will use for

Proofof Theorem 2 By Lemma 1, we can write

IIM,IIL<x/,) x- f(t)K+,(x, t)t+ dt
/(x2+)

(20)

Moreover, by (17) and (18), we get

Ig+k(x, t)l C(xt) I(w)l sin2 0 dO.
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Then, by using this and (12), we have

X-O 6f(t)K’+(x,t)t+ dt _< C ’(t)[ IJa(w)[ sinz 0 dO 2+1 dt

C’ (t)l ’ t)fl+r (IJ=l dt

_< c’(IJal, Ifl)(x).

Finally, by applying (20), (13) and (19), we conclude

IIMff,fllLx=,+’) CIIIJl * bC’lllLx=+’)
CIIJa=ll.’(xZ=+’)llllL,(xZ=+’) C’lLfll/xZ=+’).

5 UNIFORM BOUNDEDNESS FOR BELOW THE CRITICAL
INDEX

The proof of Theorem 3 needs some prior machinery. In particular, we
will use Stein’s theorem on interpolation of analytic families of opera-
tors; it can be seen in [17]. Here, we will show this result adapted to
our spaces LP(x2+1).

First, let us consider the notion of analytic family of operators. A fa-
mily of operators Tz} depending on a complex parameter z that runs in
0 < Re(z) < is called analytic if:

(a) For each z, Tz is a linear transformation of simple functions on

(0, ) into measurable functions on (0, ).
(b) If q and ff are simple functions on (0, ), then

O(z) rz(q,, x)(x) dx

is analytic in 0 < Re(z) < and continuous in 0 < Re(z) < 1.

We say that an analytic family {T} is of admissible growth if O(z) is
of admissible growth; that is, if

sup sup log IO(x + iy)l <_ Aea,
lYl<_s 0<x<
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where a < rc and A is a constant. Both A and a may depend on the func-
tions b and qt.
The interpolation result is therefore:

THEOREM 4 Let {Tz} be an analytic family of linear operators of ad-
missible growth, defined in the strip 0 < Re(z)< 1. Suppose that
< Po,p, qo, q < o and

-r r -r r

P Po Pl q qo

for 0 < r < 1. We also assume

(21)

and

IITl+iyflltq,==+,) AI(Y)IIIz,=+,) (22)

for any simple function f Finally, suppose

log IAi(y)I < Aealyl a < rt O,

Then, we may conclude

T,.fllLq(x:+’) Ar IIIIL/’) (23)

were

log Ar < I o(1 r, y) log A0(y) dy + I co(r, y) log A, (y) dy

and

tan(for/2)
co(1 r, y)

2[tan2(rcr/2) + tanh2(rcy/2)] cos2(rcY/2)

Proof See 17] or 19, Ch. V, 4].
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Remark 3 Note that, if the family { Tz } depends on a parameter k, and
the estimates (21) and (22) are independent of k, we can conclude that
the boundedness (23) will be uniform in k.

The proof of Theorem 3 (the uniform boundedness of Ma,, in the
range 0 < 6 < 60) will use an analytic family of operators related
with Ma,,.

Let us consider 6(z) (1 -z)6o + e with e. > 0, 0 < Re(z) < and
60 (2 + 1)/2. We will take the family of operators

,tz)tc x) x- ,(z) t)F+jv,, v, f(t)K+,(x, dt, k [, (24)

v’(z) is as in (17) with 6 changed by 6(z). This defini-where the kemel ,+k
tion of tatz) is valid for simple functions in (0, )."0+k

Bessel functions of complex order 2 v + ip satisfy

(t/2)2 IiJ;(t)
F(1/2)F(2 + 1/2)

(1 $2)2-1/2 cos(st)ds, v > -1/2

(it is just a particular case of (16)), and the estimates

IJ,,+o,(t)l _< Cvenlt’lt-I/2, _> 1, v _> o, (25)

IZ.+g(t)l _< Cvelltv, > O, v > O. (26)

Then, it is not difficult to check that, for any k, the family of operators
(24) is analytic and of admissible growth. The details can be seen in [25,
3].
Now, let us prove the uniform boundedness for the operators /t’z) in"",k

Re(z) 0 and Re(z) for some values ofp. Lemma 2 will establish
the boundedness for Re(z) 0, and Lemma 3 for Re(z) 1.

LEMMA 2 Let > 0 and < p < oo. Consider /t’(z) the family of
operators given by (241 where 6(z) (1 z)6o + e, with e, > O,
0 _< Re(z) _< and 6o (20 + 1)/2. Then, the inequality

"6(iP)ll
2.+1

holds, with Ao(y) C=,petl6yl.

k 6[,
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Proof First, note that Lemma 1 can be reproduced with the change fi
by 6(iy). Then, the proof of this lemma is similar to the one of Theorem
2, by applying again the convolution structure. But, this time, we use the
estimation

a(iy)11 7= CezlSyl,

that follows from the bounds (25) and (26) for (15) (with 6(iy)).

Now, the boundedness for A/t6(+iY)"

LEMMA 3 Let > 0 and < p < oe. Consider AltO(z) the family of
operators given by (24), where 8(z)= (1-z)8o +e with e > O,
0 < Re(z) < and 60 (2 + 1)/2. If

4( + 1) 4( + 1)
< p < (27)

2 + 3 2 +

then the inequality

IIM,k )Cllp(x2=+,) _< Alfy)lLfllz(x=+,,

holds with A(y) C,p(1 + I0yl/D.

Proof Von Lommel’s formula

k6[,

d
sJv(xs)Jv(ts) x2 t2 ds

{StJv(xS)J’v(tS) sxJ:(xS)Jv(tS)

and an integration by parts in (8) (with 6 changed by 6(1 + iy)) give

"+kca(+iY)t, t) 26(1 + iy) s(1 S2)6(l+iy)-l],S+k(X t)ds,

where

g:(x, t) (X )J’v (tS) sxJ; (ts)
X2 t2 (28)
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Also, let us denote

7"s,k(f x) x- f(t)tCs+k(x, t)t+1 dr. (29)

In this way, by using Fubini’s theorem, we can write

ata+iv)(f,x) 20(1 + iy) S(| S2)6(l+iy)-l/"S,k(]e,x)ds.,a,k

Taking into account that 6(1 + iy)= e- iy6o and by applying Min-
kowsky’s integral inequality, we have

;A,,v(,,,k+’Yfll/(.,+,) _< C(e / 160yl)

2s(1 S2)e’-iYf-ITS,k(f, X) ds
/y(x2+)

s2)-I_< C(e + 16oyl) 2s(1 117",(f,x)ll/x+, ds.

Now, we claim that

holds for every s for p verifying (27). We have T’.k(f(.),x)= T,,.
(f((.)/s), sx), and then it is enough to prove the inequality

< (30)

But comparing (28) and (29) with (11), it is clear that

Then, by applying the uniform boundedness of Theorem 1, we get (30).
Finally, using that

Ii(e + 16oyl) 2s(1 --$2)e’-I ds < +
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we conclude

(l+y)f
ilv,a,k :llL(xZ+l) < C,p 1 + Ilfllz(x:+,).

Now

Proof of Theorem 3 We will restrict our attention to < p < 2. The
other values forp can be obtained by using a duality argument, because

f(x)M2,k(g(t), x)x2+ dx M,k(f(x), t)g(t)t2+1 dt.

To prove that (9) is a necessary condition, let us take a functionf 6 S+

such that 7-((f, x) ifx 6 (0, 1). Thus, by using the definition (5) and
Sonine’s formula (16), we get that

Now, by applying the well-known asymptotic estimate (see [24, 7.21
(1), p. 199])

Jv(x) x-1/2 cos x
2 + 0(x-3/2), x -+ 0,

it is clear that ma,5ofLp(x2a+l) ifp < 4(0 + 1)/(2 + 25 + 3).
Finally, let us prove that (9) is also sufficient. Let us take the analytic

family given by (24), with 6(z) (1 -z)6o + e, 5o (2 + 1)/2 and
e > 0, and take Po qo 1, pl ql 4( + 1)/(2 + 3) + e. Now,
let us use Lemmas 2 and 3 for po and pl. Then,

,a(iy),, < Ao(Y)llfll/o(x:=+,)Ivla,k JIILPo(x2a+l)



776 (. CIAURRI AND J. L. VARONA

with A0(y) "-’0,p0" and

a,r(l +iy)’

with A I(y) Cg,p (1 + I,0Yl/e,). In this way, Theorem 4 ensures

,(t)IIM’,k’flll(+,) < ClIfllmx+,) (31)

for those values for p which satisfy

F
---(I-r)+--, 0<r< 1.
P Pl

By using 6 6(r) (1 r)6o + e,, we have r (6 e,)/6o, so the
result holds for those values for p which satisfy

_1_- (6-e)( l)p 60 d--Pl--’ < t < e-k-60.

Taking an arbitrarily small e,, we see that, if 0 < 6 < 6o, the bounded-
ness (31) holds for those values of p which satisfy
1/p < (2 + 3 + 26)/(4( + 1)). This completes the proof.
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