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1 INTRODUCTION

Let Bk(t), k > 0, be the Bernoulli polynomials, Bk Bk(0), k > 0, the
Bernoulli numbers. The Bernoulli polynomials Bk(t), k > 0 are un-

iquely determined by the following identities

Bk(t) kBk_ (t), k > 1; Bo(t) (1.1)
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and

Bk(t + l)-Bk(t) kt-1, k > O. (1.2)

For example, the three first Bemoulli polynomials are given by
Bo(t) 1, B (t) t- (1/2), Bz(t) 2 / (1/6). For some further
details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2].

Let B*(t), k >_ O, be the periodic fimctions of period 1, related to the
Bernoulli polynomials as

(t) (t), 0 _< < , (t + ) *(t), t R.

From the properties of the Bernoulli polynomials it follows that

B 1, B’ is a discontinuous function with a jump of- at each inte-
ger, and BT,, k > 2, is a continuous function.

Letf" [a, b] R be such thatf"-) is a function of bounded varia-
tion on [a, b] for some n > 1. In the recent paper [4] the following two
identities have been proved:

f(x)
b a

f(t)dt + Tn(x) + R,(x) (1.3)

and

f(x)
b a

f(t)dt + Tn- (x) + R2n(x), (1.4)

where To(x) 0 and

Tin(x) Z (b a)k-

kk=l

xa

for < rn < n, while

(b a)n-I.x) In! j[a,bl

x
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and

Rn(X) (b -n!a)n-1 j x x-aia,b][B*n(b 5 ta) Bn(b a)] df(n-l’(t)"

Here, as in the rest of the paper, we write [a,b]g(t)dqg(t) to denote the
Riemann-Stieltjes integral with respect to a function qg" [a, b] R of

bbounded variation, and fa g(t) dt for the Riemann integral. The formulae
(1.3) and (1.4) hold for every x 6 [a, hi. They are extensions of the well
known formula for the expansion of an arbitrary functionf with a con-
tinuous nth derivative f(n) in Bernoulli polynomials [3, p. 17]:

Iif(t) dt + Tn-l(x) + Rn(x),f(x)
b a

where

(b a)n-1 Ji x x

n’ [B*n(b- ta)- Bn(b )]r(n,(t) dr"

Let the polynomials Pk(t), k > 0 satisfy the following condition

P(t) Pk-I (t), k >_ 1; Po(t)

For a sequence (Pk(t), k > 0) of polynomials satisfying the condition
(1.5), we say that it is a harmonic sequence of polynomials. From (1.5),
by an easy induction it follows that every harmonic sequence of poly-
nomials must be of the form

k
Ci tk-i,P#,(t) Z (k i)----.i=O

k>O,

where (ck, k > 0) is a sequence of real numbers such that co 1. In
fact, ck Pk(0), k > 0. Especially, we have Po(t) 1, Pl(t) + ci,

Pz(t) (1/2)t2 -+- cit + cz.
The aim of this paper is to generalize the formulae (1.3) and (1.4), by

replacing the Bernoulli polynomials by an arbitrary harmonic sequence
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of polynomials, and using them to prove some generalizations of
Ostrowski inequality.

2 EULER HARMONIC IDENTITIES

Assume that (Pk(t), k > 0) is a harmonic sequence of polynomials i.e.
the sequence of polynomials satisfying the condition (1.5). Define
P,(t), k > 0 to be a periodic functions of period 1, related to Pk(t),
k>0as

P(t)=Pk(t), O < < P(t-t-1) *-Pk(t), tER.

Thus, P(t) 1, while for k > 1, P(t) is continuous on R\Z and has a
jump of

k Pk(0) Pk(1) (2.1)

at every integer t, whenever czk-76 0. Note that --1, since

Pl (t) + Cl, for some Cl R. Also, note that from (1.5) it follows

,!Pk (t) Pk_l(t), k > 1, E R\Z. (2.2)

Let a, b 6 R, a < b, and.]" [a, b] --+ R be such thatf(n-l) is a func-
tion of bounded variation on [a, b] for some n >_ 1. For every x 6 [a, b]
and < rn < n we introduce the following notations

m

k=l

with convention To(x)= 0, and

m

Z,n(X) Z(b a)’- 0kf(k-l)(x),
k=2

(2.4)

with convention -t’l(X) O.
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LEMM, Let a, b 6 R, a < b, x 6 [a,b], k > O. Define q)k(x;.)’
[a, b] R as

qgk(x; t) P b-
a<t<b.

Ifk > 1, then for every continuous function F" [a, b] --+ R, we have

ia,b]
F(t) dqgk(x; t) F(t)qk_(x; t) dt akF(x),

for a < x < b, and

F(t) dok(b; t)
a,b]

F(t)qk_l(b; t) dt kF(a).

Proof Let k > and assume that a < x < b. The function qgk(x; .) is
differentiable on [a,b]\{x} and its derivative is equal to (-1/
(b- a))qgk_(x; .), by (2.2). Further, it has a jump of ok(x;x + O)-
qgk(x; x- 0) -k at x, which gives the first formula in this case. For
x a the function qk(a; .) is differentiable on (a, b) and its derivative is
equal to (-1/(b a))qgk_ (a; .). Further, it has jump of qgk(a; a + 0)
ok(a; a) -k at the point a, while qgk(a; b) qok(a; b 0) 0, which
gives the first formula for x a. The second formula is a consequence
of the first one and of the fact that qg(b; .) qg(a; .).

THEOREM Let (Pk, k > 0) be a harmonic sequence ofpolynomials
andf" [a, b] R such thatftn-1) is a continuousfunction ofbounded
variation on [a, b] for some n > 1. Then for every x [a, b]

f(x) b---- a f(t) dt + ’n(X) + Tn(X) -]-" knl(X), (2.5)

f(x) b-a f(t)dt + ’n- (x) + n(X) .qt_ kn2(X), (2.6)
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where n(X) and Zn(X) are defined by (2.3) and (2.4), respectively, and

ia,b]

X x--a

Proof For < k < n consider the integrals

I *(x-t)df(k-)(t)"I(x) ( a)- P a[a,b]

By partial integration we get

(2.7)

First, assume that a < x < b. For every k > we have

(;_:)P’ =P -a ) (x-a)=pk(Xb-a)=P*k b-a -a
Therefore, using the first fonnula from Lemma 1, we get from (2.7)

a

x d(k-l)(x) + (b a)k-z l)(t)P2_ ,Z,,a dt. (2.8)

Since exi -1, for k (2.8) reduces to

(x)I (x) P b L-a If(b) -f(a)] -f(x) + b a f(t) dt. (2.9)
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For k > 2 we have

(b a)k-2 Pk-I . (t) Ik_l(x)
[a,b]

and (2.8) can be rewritten as

x-a

+ (b a)- f(-l(x) + I_ (x). (2.10)

From (2.9) and (2.10) it is easy to obtain

n

k=l

-t- E(b a)k-I of(k-1)(x) f(x) + b a
f(t) dr,

k=2

which is equivalent to (2.5), since In(x) --n(X). Thus, (2.5) holds for
a < x < b. If x= b, then we have P,((b-b)/(b-a))- P(O)=
P,(O), P,((b a)/(b a)) P,(1) P,(0) Pk(0). Similarly as we
did for a < x < b, using the above equalities and the second formula
from Lemma 1, we get from (2.7).

D,(b) (b a)k-iP,(O)[f(k-1)(b) -f(k-1)(a)]
+ (b a)#’- kf(k-l)(a) + Ik_ (b),

bfor k > 2, and I1 (b) Pl (O)[f(b) -f(a)] -f(a) + (1 I(b a)) .a f(t) dt.
Applying the above identities, we get

In(b) Z(b a)-Pk(O)[f(-l)(b) -f(-l)(a)]
k=l

+ E(b a)k-1 kf(k-l)(a) --f(a) + b- a f(t) dt.
k=2
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We have zi -1 and, by (2.1), Pk(0) Pk(1) + k. Therefore, the last
identity can be rewritten as

n

I.(b) Z(b a)k-’Pk(1)[f(k-l)(b) f(k-1)(a)]
k=l

+ Z(b- a)-e(-(b)-f(b) + b a f(o
k=2

which is equivalent to (2.5) for x b, since In(b) -n(b).
Note that

Therefore, +&(X) --’.(X) ,,_ (X) //(X), SO that the formula (2.6)
follows from the formula (2.5).

Example 1 Let Pk(t)- (1/k!)Bk(t), k >_0, where Bk(t) are the
Bernoulli polynomials. From (1.1) it follows that (Pk(t), k > 0) is a
harmonic sequence of polynomials. Also, we have 1,23.1.19, 23.1.20]

B2j(O) B2j(1) B2j, B2j+l (0) B2j+l(1) O, j >_ 1,

which implies that cz 0 for k > 2, while 01 -1 as in the general
case. Moreover, in this case, for any f" [a, b] -- R such that f(n-l) is
a continuous function of bounded variation on [a, b], we get

L,(x) Tn,(X), "Cm(X) O, m _< n and kin(x) Rn(x),i Rn(x)~2 R2n(X),
where T,,,(x), Rn(x) and R2n(x) are defined as in the Introduction. Conse-
quently, the formulae (2.5) and (2.6) become (1.3) and (1.4), respec-
tively.

Example 2 For fixed ? R define

P(t)= (t--?)k, k>0.
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Then (Pk(t), k > 0) is a harmonic sequence of polynomials, and

e(0) T., (-r)
, P,(1)--(1

Therefore, in this case

a, P,(O) P,(1) -. [(-7)’ (1 7)’], k>l.

Further, we have

m

=
(b ,0

k!
k=l

?) ’ [fq’-)(b) fq’- )(a)]

and

m

"Cm(X) E (b a)’-
k!

k=2

[(_?)k (1 T)kV(k-l)(x),

for every x 6 [a, b].

3 GENERALIZATIONS OF THE OSTROWSKI INEQUALITY

In this section we shall use the same notations as above.

THEOREM 2 Suppose that (Pk(t), k >_ O) is a harmonic sequence of
polynomials. Letf’[a, b] -- R be such thatf(n-) is an L-Lipschitzian
function on [a, b] for some n >_ 1. Then

f(x)
b a

f(t) dt Tn- (x) "On(X)

<_(b-a) Ien(t)-Pn(b_a (3.1)

f(x)
b a

f(t)dt- ,(x) "Cn(X) <__ (b a)n IPn(t)[ dt. L,

(3.2)

for every x [a, b].
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Proof If tp:[a,b]--- R is L-Lipschitzian on [a,b], that is
[q(x)- p(y)[ < L. Ix- y[, Yx, y [a, hi, then for any integrable
function g:[a, b] --+ R we have

g(t) dip(t) _< [g(t)[ dt.L. (3.3)

Using this estimate we get

IkZ <x)l (b

x- x a
<_ (b -a)n-I IP:(b ta) -Pn(-b--L a)l dt. L.

)(t)

Since the function P*(.) has period 1, we have

[P(y + t)- z] dt ]Pn*(’)- zl dt IP,(t) z dr,

for every y, z 6 R. Therefore

x x- a Ii x- a[P:(b 5 ta) Pn("’b a,)l dt (b a) IPn(t) Pn(.b a)l dr,

which implies

and (3.1) follows from (2.6).
The inequality (3.2) follows from (2.5) by the similar argument.

Remark 1 Both of the above inequalities for n (the second one
with cl ---((x- a)/(b- a)) are reduced to the Ostrowski inequality
for a functionf which is L-Lipschitzian on [a, b] (see [10]).

Remark 2 (i) The inequality (3.1) for n--2 and cl--(-1/2) was
proved in [4]. Also it is an improvement and extension of the similar
result from [13] (for details see Remark 3 in [4]).
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For x a or x b we have the trapezoid inequality which with its
generalization and applications was considered in [5] (see also [16]).

For x ((a + b)/2) we have the midpoint inequality and its general-
ization and applications were considered in [6].

(ii) cl may be chosen depending on fixed x, e.g. 1--
-((x- a)/(b a)). In this case we get result which is an extension of
the same result from [11] where the above inequality was proved with
L I "11 for a class of functions with bounded second derivatives.

THEOREM 3
we have

Iff’ is L-Lipschitizian on [a, b], then for every x [a, b]

f(t) dt -1 (a+b,(x)+-(b-a) x
2

< x + 4)"
(3.4)

Proof If we put n 2 in the first identity from Theorem we have

f(x) =
b a f(t) dt + P .x

b
[f(b) -f(a)]

--a
+ (b- a)P2 (xb a)[f’(b)-f’(a)] + (b- a)zff’(x)

where

and

Pl(t) + Cl, P2(t) (t2/2) + cit + C2

2 -((112) + c).

First we chose C and C2 such that PI((X-a)/(b-a))= 0 and
P2((x-a)/ (b a)) O, i.e. Cl -((x- a)/(b a)) and c2=
(1/2)((x a)/(b a))2. This gives Pl(t) ((x a)/(b a)),
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P2(t) (1/2)(t ((x a)/(b a)))2

(b- a) so that we have
and 2 (x- ((a + b)12))/

’(x)f(x)
b a

f(t) dt + x-
2

, X

[a,b]

Further we consider the identity (3.5) for x b with P(t) and Pz(t)
replaced by/51 (t) = + c-1 and P-2(t) (t2/2) + c- + c-z, respectively,
i.e.

f(b)
b a f(t) dt + fil (1)[f(b) -f(a)]

+ (b a)fiz(1)[f’(b) -f’(a)]

-(b-a,(+Ul’,x,-,b-a,I[a,t,]15(-;-) df’(t).

We chose cr and 72 such that (1/2)+ (l- 0 and P2(1)--0, i.e.

(l -(1/2) and c2 0. This gives /3 (t) (1/2), fiz(t)
(1/2)t(t 1) and

f(b)
b a

f(t) dt + -} [f(b) -f(a)]

or equivalently

f(a) +f(b)
2 li’f(t) dt (b a) j

[a,b]
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If we multiply (3.6) and (3.7) with (1/2) and then add them up, we get
the identity

b- a
f(t) dt-- f(x) + +- x-
b -a ’l[a,b][e(;- ta) q_e(bb -)] (3.8)

If we denote the left hand side of (3.8) by R(x), then using the estimate
(3.3) we get

L [11 a+b[ (b a)31=b-a x
2 + 4-----

dt

Multiplying the above inequality by b a > 0 we get (3.4). (The equal-
ity case in the above expression can be done by elementary but rather
long calculation and we omit the details).

Remark 3 Whenf is a twice differentiable function with bounded and
integrable second derivative, the inequality (3.4) holds with L If"ll.
So this inequality is a correction and in the same time an extension of
the main result from [14]. Namely it is easy to see that

a)2
K(x, t), (3.9)

where

(a + b),) for [a, x],(t a)
2K(x, t)

(t b) ( (a + b),) for 6 (x,
2

(3.10)
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and for twice differentiable functionf with integrable second derivative
the identity (3.8) multiplied by b- a reduces to

if(t) dt - -=- K(x,t)f"(t)dt.

a +2 b)f’(x)

(3.11)

In [14] the incorrect version of the identity (3.11), with -(b-
a)(x- (a + b)/2) f’(x) in place of (1/2)(b a) (x (a + b)/2)f’(x),
was obtained as a basic result.

THEOREM 4 Let f" [a, b]-- R be such that f(n-l) is a continuous

function of bounded variation on [a, b] for some n >_ 1. Then

f(x) -’-- a f(t) dt ’n- (x) Zn(X)

< (b a)n-I max IPn(t)- en(xbt[o,l]

f(x)
b a

f(t) dt Tn(x) Zn(X)

< (b- a)"-! max [P(t)lVba(f(n-))
t[o,]

for every x [a, b], where Va (f("- 1)) is the total variation off(n- on

[a, b].

Proof If F" [a,b]--+ R is bounded and the Stieltjes integral

f[a,b] F(t) df(n-)(t) exists, then

F(t) df(n- )(t) _< max IF(t)l" Va(f("-)).
te[a,bl

(3.12)
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Let us apply this estimation to the second formula of Theorem 1. We
have

f(t) dt ’n- (x)

and

X X a[kn2(X)[ -(b a)n-1
a
[e (b ta) en (b ---a) l df(n-1)(t)

< (b a)n- max n Pn Vba(f(n-))
t[a,b]

xma
(b a)n-I max ]Pn(t)- Pn (b a)t[0,1]

which proves our first assertion. Similarly we prove the second one.

Remark 4 The first inequality for n was proved in [9] (see also [7]
and [17]). The second one with n and c -((x a)/(b a)) was
proved in [9]. For n 2 and c -((x a)/(b a)) in first inequality
we have result which is an extension of the result from [12] with
Vba(f’) I[f"lll for a class of functions f such that f" E LI (a, b).

THEOREM 5
[a, b] then

Iff’ is a continuous function of bounded variation on

IS 1[ f(a)f(b)] (a+b)f,(x)f(t) dt - f(x) + (b a) + - (b a) x
2

a+bl (b-a) a+b
x-. 2 + 2

for x [a,14-4qra +
(b-a)2

16

...+ 3-/
forxe 4a+ b,

4 4

X

4
{’-J 4 a+

4

3- + v/b)4
a+ 4
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Proof Using the estimate (3.12) we get from (3.8) and (3.9)

2 t[a,b]l

’)
sup IK(x, t)l,

2(b a)t[a,b]
(3.13)

where R(x) is the left hand side of (3.8) and K(x, t) is defined by (3.10).
Further, by a simple calculation we get

sup ]g(x, t)[ max[.(bl- a)2

t[a,b] 16

x-
2 +-2 x

forx a,.----a+
(b a)2

16

forx6
4 a+

a+b 2 b-a
+ 2

3 b] ["J[3 ’e/
4 4

aq-+ V/b,b]"4

Substituting this in (3.13) and then multiplying by b-a, we get
proposed inequality.

Remark 5 When f is a twice differentiable function with integrable
second derivative such thatf" L1 (a, b), the inequality proved in the
above theorem holds with V’(f’) replaced by Ilf"ll . Therefore this
inequality can be regarded as a double correction and, in the same time,
as an extension of the analogous result from [15] for a class of functions
f with f" E L (a,b). The first correction is related to the expression
within the absolute value sign at the left hand side (the same as in
Remark 3), while the second one is related to the obviously incorrect
equality IlK(x, ")ll suPt[a,b] Ig(x, t)[ ((b a)2/4) which is stated
and used in [15].
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THEOREM 6 Let f:[a, b] - R be such that f(n) is R-integrable and
f(n) Lp[a, b] for some n > and < p < c. Then

f(x)

f(x)

b a f(t) dt Tn_ (x) "Cn(X)

(If -a dr)< (b- a)n-l+l/q IPn(t) en(_ a)lq
1/q

b a
f(t) dt- Tn(x)

<_ (b a)n-l+l/q IP,(OI q dt

for every x [a, b], where 1/p + 1/q 1.

Proof Since f(n) is R-integrable, the integrals which occur in the ex-
pressions for/(x) and/2n(x) are the usual Riemann integrals with
df(n-l)(t) replaced withf(n)(t) dr. So by applying the H61der inequality
we get from (2.6)

f(x)

which proves the first stated inequality. The second one follows from
(2.5) by the similar argument.

Remark 6 This first inequality of the theorem above for n was
proved by A. M. Fink [18] (see also [8] and [17]).
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THEOREM 7
then

Iff" is R-integrable andf" E Lp[a, b], for < p < cxz,

b

-l[f(x)+f(a)f(b)] -1(x a+b/’(x)2
aY(t)

dt (b a) q-

l(b-a)
2+(l/q)

< Ill’lip-2 2

[B(q q- 1, q + 1) + Bx,(q + 1, q + 1) + Wx2(q + 1, q q- 1)](l/q)

forx a,
2

[B(q + 1, q + 1) + Bx3(q + 1, q + 1) + Bx4(q + 1, q + 1)](l/q)

[a+bb],forx6
2

where (l/p) + (l/q) 1, p > 1, q > 1, and B(., .) and Br(’, ") are the
Beta and the incomplete Beta function ofEuler given by

B(I, s) t- (1 t)s- dt, l, s > O, B,.(l, s) = t- (1 t)s- dt.

,.(1, s) tt-(1 + t)s- dt

is a real positive valued integral, x (2(x a)/(b a)), X2 x,
x3 Xl 1, x4 2 -Xl.

Proof Assuming the correction of the expression at the left hand side
as in the Remark 3, this inequality was proved in 15].

Remark 7 For n and c (x a/b a) we get the inequality
which is a result from [18].
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