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Modelling data from Multiple Sclerosis longitudinal studies is a challenging topic since the
phenotype of interest is typically ordinal; time intervals between two consecutive measurements
are nonconstant and they can vary among individuals. Due to these unobservable sources of
heterogeneity statistical models for analysis of Multiple Sclerosis severity evolve as a difficult
feature. A few proposals have been provided in the biostatistical literature (Heijtan (1991); Albert,
(1994)) to address the issue of investigating Multiple Sclerosis course. In this paper Bayesian P-
Splines (Brezger and Lang, (2006); Fahrmeir and Lang (2001)) are indicated as an appropriate tool
since they account for nonlinear smooth effects of covariates on the change in Multiple Sclerosis
disability. By means of Bayesian P-Spline model we investigate both the randomness affecting
Multiple Sclerosis data as well as the ordinal nature of the response variable.

Copyright q 2009 C. Di Serio and C. Lamina. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Multiple Sclerosis (MS) is a progressive neurological disorder classified among complex
diseases. Investigating MS causes and potential triggers is a difficult task since the clinical
manifestations and course vary considerably. Therefore longitudinal studies, both clinical
trial as well as natural history studies, become crucial to assess the disease evolution
over time. How to measure MS phenotype has been a major problem [1, 2] due to the
multifactorial nature of the disease. No unique criteria are provided in the literature for
classifying MS patients with respect to different MS courses. Estimating the MS incidence
rate is also a difficult feature due to the variability of MS symptoms and the potentially
long duration of the latent disease period [3]. These considerations, among others, offer an
insight about the numerous problems arising in measuring MS. The disease markers that
are used in the MS literature are typically related either to impairments of functional status
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(FS) or to dissemination of lesions. This latter measurement, though is not the object of our
analysis, is becoming crucial to measure early disease activity. This class of measures includes
magnetic resonance imaging (MRI), cerebrospinal fluid (CSF), and visual lesions. MRI data
present the advantage to be countinuos variable, unlike clinical measurements referred
to disability which are typically ordinal. Thus, whereas MRI data can still be modelled
within a time series approach (see Albert [4]), disability measurements cannot. Indeed, to
describe MS impairments data classical statistical models may fail due to (i) the difficult
definition of the outcome variable, (ii) a large number of individual observations at a small
number of time points, (iii) the high inter-individual variability. This paper is based on a
multicenter database built within a worldwide research program and collecting untreated
patients drawn from natural history studies as well as placebo patients sampled from major
therapeutic studies conducted either by academic research groups or by the pharmaceutical
industry( The program has been established at the Sylvia Lawry Centre for Multiple Sclerosis
in 2001 supported by MSIF). The data set used includes 897 patients selected from 17
placebo controlled clinical trials and it is mainly aimed at the better understanding of
the determinants of MS course in order to improve the efficiency of therapies for MS
patients. The patients were included according to the McDonald diagnostic criteria [5]. In
fact, data from clinical trials allow for a good monitoring and comparable time spans (1
to 4 months) between two subsequent observations; whereas natural history data do not.
However these data are heterogenous in their structure at different levels: (i) time intervals
between consecutive measurements as well as number of observations can vary considerably
among individuals.

This paper proposes a new statistical perspective to model both the longitudinal nature
of the data as well as the individual heterogeneity. The novelty is due both to the statistical
framework chosen to model these data and to the random variable used to describe MS
evolution (see Section 2). We use generalized additive mixed effect models (GAMMs) [6–9].
In general terms these models join the mixed effect models principles [10–13] together with
the generalized additive models theory (GAMs) [14]. The basic idea in mixed effect models
is that you want to incorporate not only population-specific effects that are constant among
all individuals, the so-called fixed effects, but also subject-specific characteristics through
random component. Thus, unobservable heterogeneity among individuals is included by
means of random effects. Covariates effect on the responses is modelled by particular
nonlinear smooth functions, a Bayesian P-Splines. This approach is proposed as a suitable
tool to investigate the MS data structure and understand the role of prognostic factors in
affecting the disease course.

In Section 2 some background on MS terminology and the related variables is
provided. In Section 3 we describe the general features of generalized additive models.
A Bayesian version of P-Splines [15] is introduced within the simplest case of random
intercept model. The extension to a random slope model is illustrated within the applied
MS framework (Section 4). We address the outcome variable both as a Gaussian as well
as an ordinal response. In Section 4 these statistical tools are applied to the MS data set.
Comparisons between the analyses performed with the different models and the discussion
on the results are provided in Section 5.

2. EDSS Weighted Change as a Measure of MS Disability

Multiple Sclerosis (MS) is a chronic progressive disease that affects the brain and spinal cord
(central nervous system). This disease is classified among the multifactorial genetic diseases
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(or complex diseases); the causes and potential triggers of MS are thought to be based both
on genetic predisposition and on biological and environmental patients characteristics. The
variability of the MS symptoms and the potentially long duration of the latent period of
the disease from onset make MS extremely difficult to measure. As mentioned above, the
disease markers used in MS literature to measure disease activity are typically related either
to impairments of functional status or to dissemination of lesions. This latter, which is not
the object of our analysis, are becoming crucial to measure early disease activity. In this
class of measures are included magnetic resonance imaging (MRI), cerebrospinal fluid (CSF),
and visual lesions. In this paper we consider as outcome variable the degree of functional
disability usually measured by the so-called Kurtzke Expanded Disability Status Scale (EDSS)
[16].

The Kurtzke Expanded Disability Status Scale (EDSS) is a method of measuring
disability in multiple sclerosis. This scale quantifies disability in eight Functional Systems
(FSs) and allows neurologists to assign a Functional System Score (FSS) in each of these. (
the Functional Systems are: pyramidal, cerebellar, brainstem, sensory, bowel and bladder,
visual, cerebral, and other.) EDSS steps 1.0 to 4.5 refer to people with MS who are fully
ambulatory. EDSS steps 5.0 to 9.5 are defined by the impairment to ambulation. The value
10 represents death due to MS. The EDSS has many shortcomings such as its nonlinearity
and its discontinuity. Common ways to overcome data related problems mentioned above
is to put MS data in survival analysis frameworks, modelling the time to a certain EDSS
level (4.0 or 6.0), or time to worsening, defined by an increase of 1 point in EDSS. Dynamic
approaches have been developed [17] to aim at early predictions of MS progression by means
of dynamic MCMC. However these survival models may not be the best tool whenever
the analysis focuses on modelling the EDSS course over time since the hazard function
h(t) is treated only at points where the failure occurs; a lot of available information is
again lost, as measurements between the first observation and the reaching of the event are
neglected. Thus, a survival framework does not really address the longitudinal nature of the
data.

To investigate MS evolution we introduce a new variable “EDSS change” that we
model over time. This is the ratio between two subsequent EDSS measurements. In addition,
since higher EDSS values (such as EDSS = 5.5) are dominated by a serious loss in ambulation
we have weighted the EDSS change to reflect the degree of severity in EDSS change. For
instance the changes in EDSS values with EDSS more than 5.5 have been weighted twice as
much than changes below this level. Thus, this weighted change “changewEDSS” is a measure
of severity in changes of disability but it is only conceptually related to the original EDSS
values (it ranges from −3.5 to 9.5 and takes 25 values).

In the paper we model the “changewEDSS” according to two different perspectives:
(i) “changewEDSS” is considered as a continuous variable. A Gaussian mixed effect model is
therefore investigated; (ii) “changewEDSS” values collapse in 5 categories, according to the
severity of disease change (see Table 11 in appendix). An ordinal threshold model is applied.

3. The Model

In the statistical literature (Pinheiro and Bates (2000), [18–20]) it has been seen how mixed
effects models provide a flexible and powerful tool for the analysis of repeated measures
data. They are intuitively appealing in biomedical frameworks. Fixed effects are associated to
an average population trend that is constant among all individuals; whereas random effects
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Figure 1: The random slopes model.

account for how the individual randomly deviates from the population trend. Therefore,
a primary goal of this modelling is to investigate how large is the variance component
associated to random effects in comparison to the residual variance [21]. In mixed effect
modelling any number of random effects can be specified. Though, identifiably problems and
computational complications may arise when introducing too many random components.
The type and number of random effects are clearly related to the focus of the analysis to the
extent that they are chosen to model the most important sources of unobserved heterogeneity.
In the previously presented MS setting a high portion of unexplained variation is commonly
thought to depend on the initial EDSS level and on the intensity of progression. Therefore it
is reasonable in our modelling to allow for both the intercept as well as the slope of evolution
profiles of each patient to vary randomly. In practice, a random-intercepts model is achieved by
assigning to each subject a random effect. In clinical terms this modelling can be restrictive
because it supports the hypothesis that the initial MS severity affects the MS course with a
random impact; whereas patients are thought to have the same profile as regarding the MS
progression. This means that these models require the slope coefficients to be equal for each
subject.

A random slope model is needed to allow the intensity of evolution to vary among
subjects since the coefficient of one or more explanatory variable varies randomly across
higher-level units. Thus, in a longitudinal setting, the evolution profiles for each subject have
specific intercepts and slopes (see Figure 1). In these models the between-subjects variance is
a quadratic function of the covariates. The source of the increasing variability is within units
rather than between. More details on variance structure for this kind of models are provided
in the literature [13].

The GAMMs are here adopted to investigate through mixed effects modelling
the MS data structure within a nonparametric Bayesian framework. This is done by
modelling the dependence between the response variable Y and the explanatory variables
x1, x2, . . . , xp by means of a smooth function fj(xj), j = 1, 2, . . . , p. With these types of
modelling we aim at exploring and discovering unknown trend in MS data. One advantage
of using smooth functions is that the functional form is directly drawn from the data leading
to an estimate of the trend which reduces the variability of Y . The shape of each covariate
effect is datadriven. The results can then be used to suggest a parametric form for the
effect of covariates when modelling is needed for prediction purposes. This approach is
flexible enough to allow for investigating within the same class of modelling the behaviour
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of “changewEDSS” when taken as continuous as well as ordinal response. The linear predictor
is assumed to be a sum of smooth functions and has the form

η = ν + f1(x1) + · · · + fp
(
xp

)
. (3.1)

Expression (3.1) highlights a basic concept of GAMM, that is, the assumption of
additivity of effects. Starting from this assumption it is possible to retain the interpretability
of the familiar linear model and to model some predictors with smooth functions f(x) and
others with constant parameters. In principle, any known smoother can be used to estimate
fj(xj), such as polynomial smoothing Splines or regression Splines. In general, Splines offer
a compromise between an interpolation of the data and a global smooth by representing
the fit as a piecewise defined function. The pieces on the interval [ξ0, ξm] are separated by a
sequence of knots ξ0 < ξ1 < · · · < ξm. The partial functions Bi’s, called basis functions, are
fitted to the data within the range of two subsequent knots. They are restricted to follow a set
of smoothing conditions with the neighboring basis functions at the breakpoints.

3.1. P-Splines

In this paper we deal with a particular class of smooth functions out of the big set of Splines,
the P-Splines [22]. These are based on the traditional assumption that the effect f of a
covariate x on the response can be approximated by a linear combination of Basic Splines
Curves (B-Splines) which are a popular choice for basis functions due to their numerical
stable behavior. Let Ψ = {ξi}, i ∈ Z be a set of knots with ξi < ξi+1, ξi → −∞ for i → −∞ and
ξi → ∞ for i → ∞. B-Splines depend only on the degree k and the values of Ψ. They are
nonzero functions in a defined interval and zero outside of this interval. The Splines curve
s ∈ Sk(Ψ) can then be described as a linear combination of the separate B-Splines and their
coefficients βi as

s(x) =
m+k∑

i=−1

βiBi(x), x ∈ [ξ0, ξm]. (3.2)

P-Splines are introduced to address a crucial problem in Splines theory, that is, the choice
of the number and the position of knots. In fact, to allow for flexibility in capturing the
variability of the data structure, a large number of knots are recommended. Nevertheless,
this may lead to overfitting. To address this issue we start noticing that the coefficients β′is in
(3.2) can be considered as a measure of the basis amplitude since they regulate the roughness
of the curves. The higher the difference between adjacent β′is is, the rougher the curve is. The
approach of Eilers and Marx [23] relies on this idea. The authors proposed to overfit the data
with a relatively large number of knots but to restrict the high variation of the curve by using
a difference penalty on coefficients of adjacent B-Splines. Consider the regression of N data
points (xj , yj) on a set of r = m + k − 1 B-Splines Bi. As a penalty we use the integral of the
squared second derivative of the form

P(λ) = λ
∫xmax

xmin

[
r∑

i=1

βiB
′′
j (x)

]2

dx. (3.3)
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The parameter λ controls for the smoothness of the function continuously, therefore
represents the smoothing parameter. Since minimization with this term is numerically
complicated, it is approximated by a simple difference penalty based on the lth differences
(Δl) of adjacent B-Spline-coefficients λ

∑r
i=l+1 (Δ

lβi)
2. This procedure leads to minimization of

the term
∑N

i=1(yi −
∑r

i=1 βiB
k
i (x))

2 + λ
∑r

i=l+1 (Δ
lβi)

2.The substitution of the integrated square
of the lth derivative with the corresponding difference reduces the dimensionality of this
problem from the number of observations N to the number of B-Splines r. This approach
allows to combine the opposite requisites of the modelling, that is, enough flexibility without
a large overfitting, a relatively large number of equally distant knots are suggested. The high
variation of the curves is then reduced by penalizing the likelihood with a l difference penalty
term (Δl) on adjacent B-Splines coefficients given by

P(λ) = λ
m+k∑

i=l+1

(
Δlβi

)2
. (3.4)

The Fisher-Scoring Algorithm is used to conduct the maximization on the Penalized
Likelihood with respect to the unknown regression coefficients. The smoothness of the
function is regulated by the smoothing parameters λj , j = 1, . . . , p. The method recommended
by Eilers and Marx is to minimize the Akaike information criterion (AIC). Details about
this criterion can be found in Hastie and Tibshirani [14]. The computation of AICs for
many values of λ is time consuming and becomes quite impracticable in higher dimensions.
Furthermore, the function AIC(λ) does not need to have a global minimum and it has been
proved to show often several local minima, which makes it difficult to decide on one optimal
λ value. It has been shown [15], that even in cases of a unique minimum, the choice of λ is
not optimal, to the extent that it produces a curve which describes a poor approximation of
the phenomenon of interest. Alternatives to AIC are cross-validation methods [18].

In the next subsections we use a Bayesian version of P-Splines in the case of a Gaussian
as well as ordinal responses [24]. Bayesian P-Splines represent an alternative model to elude
the problem of choosing an optimal λ value. Indeed, within this approach the assumption
of a constant smoothing parameter is not needed, which can be inappropriate in complex
situations where f is highly oscillating as well as rapidly changing.

3.2. Bayesian P-Splines and Mixed Effects Models

A Bayesian version for P-Splines has the advantage of allowing for simultaneous estimation
of smooth functions and smoothing parameters. It can easily be extended to complex
formulations like mixed effect models. This is a flexible way to use P-Spline since no constant
smoothing parameters are assumed and they are locally adaptive. This can be very useful in
MS context, where the smooth function may change curvature. Inference is fully Bayesian
using MCMC simulation technique to draw sample from the posterior. In the Bayesian
approach the unknown P-splines parameters β′is are model at another level in the hierarchy
of the overall Bayesian model through a distributional assumption. Previous knowledge of
the parameters, if available, can be used to define this prior distribution and to estimate
them simultaneously together with the other model parameters. In many situations however,
whenever no previous knowledge about the parameters is provided a diffuse prior distribution
is assigned; β ∝ const indicates that each value of the parameter has the same probability.
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Figure 2: Prior distribution for RW(1) (a) and RW(2) (b).

Classical P-Splines are based on the lth differences (Δl) of adjacent B-Spline-coefficients
λ
∑r

i=l+1 (Δ
lβi)

2
. The unknown parameters βi, i = 1, . . . , r are now considered as random

variables and therefore, it is necessary to elicit prior distributions. Following Fahrmeir and
Lang [7, 8] the difference penalty term P(λ) is now replaced by their stochastic analogues: a
random walks. For instance, first and second differences penalty terms correspond to first- and
second-order random walks, given respectively by

RW(1) : βi = βi−1 + ui,

ui ∼N
(

0, τ2
)
, β1 ∝ const

RW(2) : βi = 2 ∗ βi−1 − βi−2 + ui,

ui ∼N
(

0, τ2
)
, β1 ∝ const, β2 ∝ const.

(3.5)

Note that priors in (3.5) could be defined equivalently by specifying the conditional
distributions of a particular parameter βkj , given the left and right neighbours. Then the
conditional mean can be interpreted as locally linear or quadratic fits at the kjth knot position.

This concept is intuitively illustrated in Figure 2. The coefficient βi is restricted
to deviate at most by ui from the preceding coefficient βi−1, or alternatively from the
interpolating line between βi−2 and βi−1, in the case of a second-order random walk.

In this case the joint distribution of the prior is given by β ∝ exp(−(1/2τ2)β′Γβ) with Γ
being the symmetric penalty matrix. In addition to the coefficients, the variance parameter τ
regulating the smoothness of the function has to be supplemented with a prior distribution as
well and it is estimated by means of the single-component Metropolis-Hastings Algorithm.
The advantage of this procedure is that the problem of choosing a smoothing parameter is
avoided. The variance parameter τ corresponds to the smoothing parameter λ in the classical
approach of P-Splines, but in this Bayesian procedure it is not datadriven and therefore more
reliable than λ. For this last variance parameter we make use of a weakly informative inverse
gamma prior τ2 ∼ IG(a, b) that is p(τ2) ∝ (1/(τ2)a+1) exp(b/τ2) with small hyperparameters
a = b (e.g., with values 0.005), (see, e.g., Lang and Brezger [15]). Note that the asymptotic
scenario implies that the number of components in τ2 increases with growing sample size.
This is, apparently, a nonstandard setting in the full Bayesian model as the parameter space
changes with the sample size.
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To relate the full Bayesian setting to these results a set of coherent convergence
assumptions is needed on τ2 [25]. Notice that other priors can be chosen. The presented
choices are referred to a context where no a priori knowledge is assumed and are taken also
for the sake of mathematical tractability. We next describe how fixed as well as random effects
of the covariates can be easily included in a GAMM within a Bayesian perspective.

3.2.1. Bayesian P-Splines with a Gaussian Response

Suppose that repeated measurements have been taken on n individuals and a mixed effects
model is used. Bayesian P-Splines are considered to model the nonparametric effect of the
covariates on a Gaussian response. Fixed effects are included in the model additively with
respect to the random effect and the P-Splines components. Bayesian P-Splines within a
random intercept model are given by

yi = bi +
p∑

j=1

fj
(
xij

)
+

K∑

k=1

αkwik + εi, (3.6)

where bi, i = 1, 2, . . . ,N, is the random intercept. f ′js, j = 1, 2, . . . , p, denote the Bayesian P-
Splines and model the nonparametric effect of p individual metric covariates x′ijs on the
response yi. The α′ks are the fixed effects parameters of the K individual population-
specific covariates w′is.

In a Bayesian context, in addition to the above discussed variance component for the
random walk regulating the smoothness of the P-Splines, prior distributions are assigned to
all the parameters in expression (3.6). They are commonly chosen as follows

(1) Residual Variance Component. εi ∼ N(μi, σ2) with σ2 being the scale parameter. An
inverse gamma distribution is commonly assigned as σ2 ∼ IG(aσ, bσ). Setting aσ
to 1 and bσ to small values we obtain a weakly informative distribution, as afore
mentioned.

(2) Variance Component for the Random Effects. b′is, i = 1, . . . , n, are generally assumed to
be i.i.d. Gaussian, bi ∼N(0, τ2

ra). Similar to the hyperparameter in the random walk
approach, the variance parameter Var(bi) = τ2

ra is assumed to be random. Again
these are usually inverse gamma distributed, so that τ2

ra ∼ IG(ara, bra) with ara = 1
and bra = 0.005.

(3) Fixed Effects. diffuse priors are chosen to express no prior knowledge about the fixed
effects parameters.

We remark that in this framework two assumptions are required: (i) conditional
independence of y′is given the covariates; (ii) mutual independence of the prior dis-
tributions for variance components and fixed effects. Inference procedures are based on
Bayesian techniques to estimate the posterior distribution functions. Commonly posteriors
are intractable and MCMC methods [26] are required to draw random samples from the
posterior distribution. However the aforementioned elicitation of priors allows to overcome
these computational problems since the full conditional distributions of α, b are multivariate
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Gaussian; whereas the full conditionals of τ2, τ2
ra, and σ2 are all inverse gamma distributions.

Since all distributions are known, a simple Gibbs sampler can be used to update the
parameters of the model either in single component steps or blockwise. A detailed updating
algorithm and mean and variance parameters of the full conditionals can be found in Lang
and Brezger [15].

3.2.2. Bayesian P-Splines with an Ordinal Response

The threshold model is based on the idea that the observable variable Y is merely a
categorized version of a latent continuous variable Ỹ explained by the regressors in the linear
form Ỹ = −X′δ + ε with nuisance parameter E(ε) = 0. The relationship between Y and Ỹ is
then expressed by

Y = r ⇐⇒ θr−1 < Ỹ ≤ θr (3.7)

with −∞ = θ0 < θ1 < · · · < θk = ∞ for r = 1, . . . , k categories. That means when the latent
variable lies between the boundaries θr−1 and θr the observable variable takes the value r. The
distribution function F of the nuisance parameter ε naturally influences the appearance of the
model. Common choices are the logistic or the normal distribution (ordered probit model). A
detailed description of the cumulative threshold model can be found in Tutz [27].

The additive mixed effect model with an ordinal response does not differ from (3.6)
except for the meaning of the latent response variable Ỹ . The full conditional distribution
of the latent variable is a truncated standard normal distribution, with truncation points
determined by the thresholds as

P
(
Y | Ỹ

)
=

k∑

r=1

I
(
θr−1 < Ỹ ≤ θr

)
P(Y = r) (3.8)

with I the indicator function for the latent variable being between two subsequent categories.
Drawing out a truncated normal distribution evolves as numerically difficult and

almost not solvable together with random effects. Thus, reparametrization strategies are
used to overcome the numerical problems [18]. Furthermore, when we assume Ỹ to be the
underlying latent variable of the ordinal response Y with thresholds −∞ = θ0 < θ1 < · · · <
θk = ∞, then k − 1 parameters are to be estimated in addition to the unknown coefficient
parameters. In a Bayesian approach the thresholds θ = (θ1, . . . , θk−1)

′ are considered as
random and supplemented with diffuse priors as well as the fixed effects.

4. P-Splines Model to Investigate MS Clinical Prognostic Factors

In this section we show how Bayesian P-Splines with mixed effects constitute an efficient
method to model the heterogeneity in MS clinical data and to state the role of covariates in
determining the severity of the disease. The covariates included are chosen among the most
important prognostic factors in MS (Table 10 in appendix) according to the diagnostic criteria
provided by McDonald et al. [5]. The following models are investigated
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(1) P-Splines random intercept model:

(i) with a Gaussian response,
(ii) with an ordinal response.

(2) P-Splines random slope model:

(i) with a Gaussian response,
(ii) with an ordinal response.

Results from the latter modelling are here omitted since they do not really add
additional information for interpreting the covariates role.

4.1. P-Splines Random Intercept Model with a Gaussian Response

The influence of the covariates on changewEDSS is estimated with the Bayesian techniques.
For the metric variables, a Bayesian P-Splines of degree 3 and a second-order random walk
penalty were considered. For the benefit of estimating a smooth function for time, a random
slope term has been left out. Thus, possible nonlinear effects of time may be detected. The
further introduction of a random slope will require a linear term for time.

Let the response variable be normally distributed. The prior distribution functions for
the parameters are those chosen according to the previous section.

The model can be specified by the formula

change wit = f1(ti) + f2
(
agei

)
+ f3(edssi) + f4(duri) + α1 ∗ course(1)i

+ α2 ∗ course(2)i + α3 ∗ genderi + bi + εit,
(4.1)

where bi, i = 1, . . . ,N, is the random intercept. The functions fi, i = 1, . . . , 4, denote the P-
Splines defined in Section 3.1 with their Bayesian extension from Section 3.2. For the benefit of
estimating a smooth function for time, a random slope term has been left out. Thus, possible
nonlinear effects of time may be detected. The introduction of a random slope would require
a linear term for time. The model could be set in the framework of a random intercept model.

The prior distributions were chosen in the usual way, that is, diffuse priors for the
fixed effects α1, α2, and α3 and inverse gamma distribution for the variance component of
the random effect and the residual variance with a = 1 and b = 0.005 each. For the P-
Splines, 20 equidistant knots were chosen. The prior for the hyperparameter that regulates
the smoothness is also inverse gamma distributed with τ2 ∼ IG(1, 0.005). Bayesian P-Splines
functions are used to model nonparametrically the impact of four covariates. Fixed effects
are acting additively. In our modelling estimates for fixed effects have been calculated
by Maximum Likelihood (ML) or Restricted Maximum Likelihoo (REML) functions are
used to model nonparametrically methods and then, empirical Bayes methods were used
to get estimates for the random effects. In general, classical frequentist approach assumes
parameters to be unknown but fixed; whereas in the Bayesian context, all parameters
are specified as random variables with a prior distribution. The estimates are performed
with the software BayesX ( http:/www.stat.uni-muenchen.de/∼lang/bayesx/bayesx.html).
BayesX allows for estimation of regression models such as generalized additive models
(GAMs), generalized additive mixed models (GAMMs) within a unifying framework (see
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Figure 3: Autocorrelations of fixed effects and parameters for time (a,b) and mixing behavior of the
estimate for gender and one time parameter (c,d).

Table 1: Estimates of variance components.

source of variation Mean Std. dev. 10% qu. 50% qu. 90% qu.
Within patients 0.593373 0.009933 0.580887 0.593407 0.606655
Between patients 0.536405 0.000929 0.498304 0.535726 0.573733

Brezger et al. [28]). The advantage of using this software is that it supports nonstandard
regression situations such as regression for categorical responses. Inferential procedures are
based on two different inferential concepts: (i) mixed model methodology corresponding
to penalised likelihood or empirical Bayes inference (implemented in remlreg objects); (ii)
Markov chain Monte Carlo simulation techniques corresponding to full Bayesian inference
(implemented in bayesreg objects). Since the calculation of the posterior distribution obtained
by using Bayes’ theorem is computationally infeasible in most cases, Markov chain Monte
Carlo (MCMC) methods are used for simulation. The posterior mean plots illustrate the
impact of the risk factors on the EDSS weighted change. Before looking at the parameter
estimates, the convergence and mixing behavior of the MCMC procedure is of interest. Test
runs with a small number of iterations suggested to take a burn-in period of 20 000 and step
width 500. The number of iterations was therefore set to 520 000, so that 1000 samples were
stored. With these parameters, a good behavior of the chain was obtained. Figure 3 shows the
sampling and autocorrelation plots of the fixed effects and gender, and of one parameter for
the time effect. All other autocorrelation and sampling plots are comparable to the examples
showed.
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Table 2: Estimates of constant effects.

Variable Mean Std. var. 10% qu. 50% qu. 90% qu.
gender −0.053879 0.065302 −0.140182 −0.054003 0.031402
course(1) 0.323480 0.104238 0.185648 0.321651 0.460414
course(2) 0.339837 0.098472 0.210783 0.339599 0.469657

We notice in Table 1 that the two variance components have similar magnitude. This
suggests that the unobservable heterogeneity between patients explains a portion of total
variation similar to that explained by the observable covariates. The prognostic factors
included depict an average patient profile which is not representative of the population since
it does not capture a big part of its variability.

Table 2 reports results concerning the fixed effects. The gender of the patients (female
are reference category) has a negligible impact on the changewEDSS. Actually, an effect of the
variable “course” is revealed; patients entering the study in a progressive phase (course(1),
course(2)) show a higher risk of worsening than those who enter in a relapsing-remitting
phase (reference category). Notice that, based on this result, the variable can be interpreted
as a short-term predictor only. In fact, the course may change over time. Thus, interactions
with time can be investigated.

Posterior means are plotted in Figures 6(a), 6(b), 6(c), and 6(d). These plots show
an increasing linear effect of “time” on EDSS change (Figure 6(a)), thus suggesting that a
higher worsening is observed in the patients included in longer studies. The variables “age at
onset” (Figure 6(b)) and “duration” (Figure 6(d)) have a negligible impact on EDDS change
(credible interval of the posterior mean includes zero value) suggesting that they do not affect
the trend over time. This indicates that these covariates, which are commonly considered
increasing risk factors for MS, affect the initial level of MS severity only whereas no significant
impact on the intensity of progression of MS (described by changewEDSS) can be revealed.
More informative is the effect of the variable “baseline EDSS.” In Figure 6(c) a constant trend
is detected between levels 2 and 6 of baseline EDSS. This value is commonly reported for
patients who are relatively stable regarding ambulation disability. Actually, a remarkable
trend is attributable at the lowest and highest baseline EDSS levels. Patients with baseline
EDSS at 0 or 1 increase more in their level of disability than those between 2 and 6 as well
as patients entering with EDSS larger than 6.5. The direction of the trend depends on how
ambulation and other functional status are weighted in the EDSS computation. Patients with
high initial EDSS are likely to have their general functional status deteriorated rapidly (at
these levels EDSS is also computed for 0.5 steps amplitude). Credible intervals often happen
to widen in correspondence of Splines tails. In these dataset a low number of patients present
extreme values for the analysed covariates according to the inclusion criteria.

Overall, it has to be noted that not all included effects influence the response variable
significantly. This is also affected by the modelling approches. The plot of the population
residuals (Figure 4) shows a skewed distribution with negative outliers. That is, the fixed
part of the predictor highly underestimates the observed outcome variable for many patients.
The introduction of random effects causes a shrinkage towards zero. In particular in
Figure 5 a systematic trend in the residuals is revealed. Negative values of the response are
overestimated by the predictor; whereas positive values are underestimated. In general, the
fitted values tend to be more conservative and estimates are shifted towards less change
in EDSS. This again supports the idea that a high amount of variation is explained by the
random effects.
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Figure 4: Histograms and normal-quantile plots for population residuals (a,b) and individual residuals
(c,d).
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Figure 5: Plot of observed against fitted values (dashed line: linear regression line of the scatter plot; full
line: the diagonal).

4.2. P-Splines Random Intercept Model with an Ordinal Response

Let now include in the P-Splines analysis the ordinal nature of the variable changewEDSS
which has been discharged in the previous modelling. In fact, a comparison between the two
modelling aims at verifying whether investigating the response as a Gaussian rather than an
ordinal variable leads to different evaluations of the role of MS prognostic factors.
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Figure 6: P-Spline posteriors for random intercept models with Gaussian response. Posterior means and
confindence interval are plotted.

In Section 3 we have briefly described how in an ordinal thresholds model the
posterior mean estimate depends on the thresholds parameter vector θ = (θ1, . . . , θk−1)

′.
As mentioned in the Introduction, to focus on the severity of the disease change values

of the variable “changewEDSS” were grouped in 5 categories (see Table 11 in appendix).
An ordinal threshold model is performed. Each category includes at least a change of 1.0
on the EDSS score to be confident, according with MS literature [1], that a real change in
disability occurred. The new response variable “changeord” ranges, with 5 categories, from
“big decrease” to “big increase” over a “stable” phase.

In accordance with the Gaussian response P-Splines model in (4.1) a general ordinal
threshold model can be now written as

changeordit = f1(ti) + f2
(
agei

)
+ f3(edssi) + f4(duri) + α1 ∗ course(1)i

+ α2 ∗ course(2)i + α3 ∗ genderi + bi + εit.
(4.2)

Thresholds for ordinal response variable are described in Table 3where the thresholds
parameters θ′s have to be estimated from the data and interpreted according to Table 11 in
appendix. The prior distributional assumptions are the same described for model (3.6). In
addition, a diffuse non-informative prior p(θ) ∝ const was chosen.



Journal of Probability and Statistics 15

Table 3

Thresholds Changeord
≤ θ1 Big decrease (�)
(θ1; θ2 ) Small decrease (<)
(θ2; θ3 ) Stable (=)
(θ3; θ4 ) Small increase (>)
≥ θ4 Big increase (�)
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Figure 7: Sampling plots of threshold parameters.

The ordinal mixed effect model results are obtained by a combination of Bayesian and
classical estimation procedures. First, Bayesian estimates for the fixed effects are derived.
These estimates constitute the basis for the marginal likelihood estimation of the random
effect, as implemented by the software MIXOR ( http:/www.uic.edu/∼hedeker/mix.html)
[29]. In the first Bayesian step, as in the Gaussian response model, P-Splines of degree 3 with
second-order random walk penalty were considered. Convergence and mixing behavior of
the MCMC procedure [26] show a much larger number of iterations needed. Actually, to
guarantee an almost ideal behavior for the samples and autocorrelation plots of all P-Splines
parameters, a burn-in period of 500 000 and a step width of 1000 were chosen. The diagnosis
plots of the fixed effects showed a satisfying mixing behavior and a negligible autocorrelation.
However, the trace plots of the threshold parameter samples (Figure 7) illustrate a bad
mixing behavior. Positive and negative correlations seem to alternate. Hence, the estimation
of threshold parameters is not stable.



16 Journal of Probability and Statistics

Table 4: Estimates of threshold parameters.

Threshold Estimator Std. error z-value P -value
θ1 0 — — —
θ2 1.46894 5.66944 44.35629 <.0001
θ3 4.59204 0.03922 117.09799 <.0001
θ4 5.66944 0.04102 138.22608 <.0001

Table 5: Estimates of constant effects.

Estimate Std. error z-value P -value
gender −0.08919 0.08839 −1.00902 .31297
course(1) 0.54872 0.17777 3.08677 .00202
course(2) 0.62386 0.12768 4.88632 .00000

Table 6: Crosstab of observed and fitted response.

Fitted category
� < = > � Total

Observed category

� 10 61 47 0 0 118
< 16 120 556 4 0 696
= 85 128 4684 278 6 5181
> 2 15 704 661 17 1399
� 0 6 154 453 261 874

Total 113 330 6145 1396 284 8268

Bayesian estimates of the fixed effects provide information to reduce the number of
parameters and to construct an appropriate ordinal regression model with smooth functions
chosen as polynomial. Let now present the final estimation results obtained by this mixing
two-step procedure.

By this mixing two-step procedure, the estimated threshold parameters are given in
Table 4.

The fixed effect estimates are reported in Table 5. The estimates of both courses are
significant and can be so interpreted. The estimated effect of “course(2)” is about 0.62, thus it
lies between θ3 and θ4 which corresponds to a “small increase” in the EDSS change. This is
resonable since the secondary progressive course is more aggressive.

In Figure 8 the Splines for each variable in ordinal modelling with and without random
effects are compared.

Preserving the ordinal nature of the EDSS weighted change did not provide evidence
of a change in the interpretation of the estimated parameters when compared to the Gaussian
model. Results (Figure 8), that appear different in the first sight, like the regression Splines
for “duration” and “age at onset,” do not show such a discrepancy, when looked at closer.
Due to different outcome variables, the estimates cannot be compared directly. Furthermore,
the variance of the estimations has to be taken into account. The P-Splines credible intervals
in step I of the estimation process as well as the rough plots in step II can serve as indicators
for the accuracy of the estimations.

As in the Gaussian model, the model fit is analyzed by comparing the fitted values
against the observed values. Table 6 also indicates a systematic error. Only 69.4% of all
observations are classified correctly. A good fit is only achieved in the category that defines
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Figure 8: Estimation results for Gaussian model with no random effect (left) and with random effect
(right).
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a “stable” disease progression. All other fitted values are shifted towards this same category.
That is, observations on both extreme ends of disease progression cannot be explained well
by the ordinal model as well as by the Gaussian model. Moreover, it has to be noted that
many computational problems occurred during the estimation of the ordinal model. The
autocorrelation and trace plots of the threshold samples (Figure 7) showed a bad mixing
and convergence behavior, although random effects have not been included in this stage
of modelling. Analyzing the mixed-effects ordinal regression model in MIXOR also led to
computational difficulties. Adjustments were needed to improve the chances of convergence.
Thus, a Gaussian model should be preferred. Using the Gaussian model also seems to be
justified, as the results of both approaches do not differ substantially.

The fitted values plotted against observed values revealed a systematic bias in both
random intercept models. The analysis of residuals also suggested that additional random
components should be included in the analysis. We next investigate a random slopes model
as last step of our modelling.

4.3. P-Splines Random Slopes Model

Heterogeneity in individual MS progression is observed as regarding both the magnitude and
the speed. The disability may rise fast in some patients in the beginning and then stabilize;
whereas for other patients it rises steadily but slows thereafter. The random intercept models
proposed before may be debatable for fitting repeated measures of weighted change in
EDSS, since they underestimate the change for patients, whose disability greatly decreased
or increased within the time frame of a clinical study. This could cause the bias in the fitted
values seen previously within the random intercept models. Of course, the introduction of
a random slope alone is not sufficient, as it assumes a constant slope over the whole range
of the time frame. By adding a quadratic random effect, the curvature in the progression of
disability can be reflected. The splines for the time effect in the previous model (Figures 5(a)
and 5(b)) also showed a quadratic trend. Hence, a quadratic random slopes model seems
to be appropriate to account for the effect of time detected before as well as the increased
heterogeneity in disability. To ensure interpretability, fixed effects for the intercept, linear
slope and quadratic slope were also included. Random effects can then be interpreted as
deviations from the population mean as above discussed.

In the random slopes model the MS patients are considered to differ from the average
trend of the populations as regarding both the initial disability level (random intercept) and
the intensity of the MS clinical progression (random slopes). The proposed model is therefore
given by

change wit = f1
(
agei

)
+ f2(edssi) + f3(duri)

+ α1 ∗ course(1)i + α2 ∗ course(2)i

+ α3 ∗ genderi + (bi0 + α0)

+ (bi1 + α4) ∗ ti + (bi2 + α5) ∗ t2i + εit,

(4.3)

where bi0 is the random intercept, bi1 the random slope, and bi2 the quadratic random
slope parameter. The fixed intercept is denoted by α0, the fixed time by α4, and the fixed
quadratic time effect by α5. As in the Gaussian model, since no previous information on
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the parameters is available, a Bayesian approach is justifiable, when using a diffuse prior
distribution assumption for all fixed effects, whereas all random effects are assumed to be
normally distributed.

With the introduction of a random slope component we notice that the variance
components explained by the random intercept and slope shown in Table 7 are reduced
by a significant amount in comparison to the Table 1, where observable and unobervable
source of variation weighted similarly. Indeed the variance components attributable to the
random effects are much smaller than the scale parameter. This is due to the higher number
of parameters in the model, especially the random slope and quadratic random slope effects.
Histograms of the random effects (Figures 9 and 10) illustrate the corresponding posterior
distributions. The kurtosis is higher than a normal distribution and a lot of outliers can be
detected. Although the distributions are almost symmetric and bellshaped, a deviation from
a normal distribution is likely. The histogram in Figure 10 suggests presence of negative
outliers. The mean and median are also slightly negative. Furthermore, patients, that are
observed over a longer time generally deviate from the population effect in the negative
direction. Thus, the flat and almost negative trend at the upper tail of the time distribution,
that was detected before, is reflected in the random slope estimates.
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Table 7: Estimates of variance components.

Source of variation Mean Std. dev. 10% qu. 50% qu. 90% qu.
Scale 0.360485 0.006067 0.352562 0.360414 0.368427
Intercept 0.024117 0.009096 0.012335 0.024135 0.036359
Linear slope 0.000449 3.66∗10−5 0.000404 0.000448 0.000495
Quadr. slope 1.77∗10−5 9.30∗10−7 1.65∗10−5 1.76∗10−5 1.89∗10−5

Table 8: Estimates of constant effects.

Variable Mean Std. var. 10% qu. 50% qu. 90% qu.
Intercept 0.03068427 0.017732 0.006067 0.0352562 0.0360414
Time 0.004538 0.001049 0.003242 0.004499 0.005897
Time2 1.192∗10−4 0.000156 0.000191 0.000209 0.000218
Course(1) 0.129323 0.049309 0.070234 0.128142 0.192123
Course(2) 0.089652 0.042889 0.032993 0.089353 0.144362
Gender −0.070236 0.030946 −0.11044 −0.06945 −0.110436

To ensure comparability of the random intercept and random slopes model,
calculation in BayesX was performed with the same number of iterations, that is, a burn-
in of 20 000 and a step width of 500. The convergence and mixing behavior were comparable
to the ones obtained in the random intercepts model (Figure 3). Hence the models are also
computationally equivalent.

Let next present the results of this modelling. In Table 7 we notice how the variance
components of the random effects are significantly lower than the residual variance. This
suggests a significant improvement in the modelling when compared to the random intercept
models.

The estimation of the fixed effect is provided in Table 8. We notice that the fixed effects
for time and quadratic time are positive, thus indicating that the disability averaged over
the population is increasing over time. Furthermore the positive estimates of the progressive
course are smaller than before. It seems that some amount of information, that was given by
the course of disease in the previous model, is captured by the individual linear or quadratic
slopes. To confirm this assumption, a closer look has been taken into the distribution of
the random slope estimates within each group. Table 9 shows the mean values for the
linear and quadratic random slope parameters. Slopes for progressive patients (sp, pp, or
pr) are generally higher than for relapsing-remitting patients (rr). This suggests that the
categorization into disease courses reflects the kind of progression over time, so that a time-
dependent effect rather than a constant effect per group could be an alternative.

P-Splines curves plotted for the metric variables “age at onset,” “baseline EDSS,” and
“duration” are here omitted since it did not change substantially the information obtained in
the previous analyses, except for the credible intervals that resulted noticeably narrower than
before.

Finally, by looking at the plot of fitted against observed values (Figure 11) we can still
observe a systematic trend. But as the dashed line, indicating a linear regression fit, lies closer
to the diagonal, model fit is improved significantly. However, outliers can still be crucially
detected on both extreme ends of the weighted EDSS change.

Another question was whether it is justified to use the change in EDSS as a metric
outcome variable. However it is still debatable whether a 1 point change, although weighted,
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Table 9: Mean of random slope estimates, stratisfied for courses.

Course Mean of random linear slope Mean of random quadratic slope
pp or pr (course(1)) −0.000024 0.013340
sp (course(2)) 0.000927 0.000060
rr (reference category) −0.000561 −0.001539
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Figure 11: Plot of observed against fitted residuals in a random slope model.

does really have the same meaning over the whole EDSS range. Results on ordinal modelling
are here omitted. Indeed, combining levels of the outcome variable to 5 ordered categories
not only accounts for the ordinal structure in the response, but also ensures comparability
of the responses. However, P-spline results are very similar and do not justify the use of
such computationally demanding and time consuming procedure. Reducing the number of
ordered categories to three could be an alternative. In this case, the levels of the response are
reparametrized to obtain stable estimates and then, analysis can be carried out in BayesX.

5. Conclusions

In the biostatistic literature a few attempts of statistical modelling for investigating MS
course are provided Heijtan (1991). In this paper the focus of the interest lies on modelling
the unobserved heterogeneity in MS longitudinal data for the better understanding of the
impact of prognostic factors on MS severity. A nonparametric approach is suggested to avoid
restrictive assumptions about the analytical form of the relation between prognostic factors
and outcome of interest. Furthermore, the introduction of random as well as fixed effects of
the covariates addressed the issue of including both observed and unobserved heterogeneity.
Hence, generalized additive mixed models (GAMMs) have been presented as a natural
statistical tool to investigate nonparametrically, by means of Splines, the role of MS prognostic
factors.

We have been mainly addressing two fundamental features.

(1) Most of the statistical modelling in MS consider EDSS as a metric variable,
regardless of the ordinal nature of this measure. Does this assumption affect the
estimation of the effect of the prognostic factors?
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Table 10: Description of the covariates included in the analysis of SLCMSR data set (∗pp: primary
progressive; pr: progressive relapsing; sp: secondary progressive).

Changew Weigthed change in EDSS from first observation
t Time in weeks from first observation
Edss EDSS at first observation
Age Age at disease onset
Dur Duration in months from onset to first observation

Gender =

⎧
⎨

⎩

0 for female

1 for male

Course

Course(1) =

⎧
⎨

⎩

1 if course = pp∗ or pr∗

0 otherwise

Course(2) =

⎧
⎨

⎩

1 if course = sp∗

0 otherwise
Reference category is relapsing remitting

Table 11: Categorization of EDSS change.

weighted change ordinal change label number of observations
≤ −2 big decrease � 126
−1.5;−1 small decrease < 721
−0.5; 0; 0.5 stable = 5438
1; 1.5 small increase > 1440
≥2 big increase � 893

(2) Unobserved sources of heterogeneity affect individual MS development. Does this
source of heterogeneity create difference among patients as regarding how they
enter the study or also how large and fast the progression is?

An answer to the first question is provided by comparing results from Bayesian P-
Splines models performed with a Gaussian as well as an ordinal response. A first conclusion
is that the numerically demanding and time consuming estimation of an ordinal mixed effect
model is not justified by a real gain in the results. Actually, the interpretation of the role of
prognostic factors did not change dramatically. Thus, a Gaussian model is suggested. Overall,
the “baseline EDSS” appears to have a strong influence on the weighted change in EDSS.
Patients enrolled in a study with an EDSS lower than 2 or bigger than 5.5 are expected to
experience a higher increase in disability than in patients with EDSS between 2 and 5.5. The
effects of “duration,” “age at onset,” and “gender” are marginal and even negligible. Thus
duration can be considered an offset variable rather than an explicative one for the change
in EDSS over time. However, there is a general positive time trend during a clinical study.
That is, the more time elapses are, the higher the change in EDSS is. This is in favor of the
use of natural history data for addressing the issue of prediction in MS course. Again, the
“course” of the disease emerged as a short-term predictive factor. This variable can be seen as
a summary of the past disease progression. As soon as there are more variables available, that
hopefully explain the previous disease course of a patient, a shrinkage of this effect can be
expected. In general, the disability of patients, that are categorized in one of the progressive
courses, increases more.
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To address the second question the variance components in the random slope model
and in the random intercept model are compared. The introduction of a random slope leads to
a better estimate of the “within-patients” variability which is much higher than the “between-
patients” variability; whereas this was not the case in the random intercept model. This
implies that accounting for the variability in the progression of the individual disability
allows for a much better classification of the patients. Furthermore, a comparison between
the estimates of the fixed effect of time in random slopes model (Table 8) and the posterior
mean estimate of time in random intercept models can be made. The stabilization of the
effect of “time” after an increasing phase suggested by the random intercept model might
be attributable to the random quadratic time effect. This is consistent with the hypothesis
that unobserved heterogeneity plays a crucial role in evaluating the individual intensity of
progression. Finally, the influence of the disease “course” is much smaller in the random
slopes model. It has been shown that this is due to deviating random effects between the
3 groups of patients. Thus, it is advisable to think about time-dependent effects, that is, to
estimate one slope for each group of patients.

In conclusion Bayesian approach to random slope models, based on MCMC
algorithms, emerged as extremely flexible in the context of MS data as presented here. In
particular BayesX is implemented to allow for smooth P-Splines for metric covariates. This is
a noteworthy advantage with respect to common techniques based on simple linear models
or on other strict assumptions on the functional form since nonlinear effects like the influence
of the EDSS at first observation could not have been detected.

A fully Bayesian method for P-splines has been used according to Brezger (2000).
This emerges as extremely flexible in situations where large data sets are used and a
moderate number of smoothing parameters are to be estimated. Thus, Bayesian P-splines are
recommended as a suitable and flexible tool in addressing complex data like MS frameworks,
where the form of the smoothing function f is expected to be highly oscillating and rapidly
changing.

Appendix

See Tables 10 and 11.
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