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The classical t (or T2 in high dimensions) inference procedure for unknown mean μ : X ± tα(n −
1Sn/

√
n (or {μ : n(x − μ)′S−1(x − μ) ≤ χ2

(1−α)(p)}) is so fundamental in statistics and so prevailing
in practices; it is regarded as an optimal procedure in the mind of many practitioners. It this
manuscript we present a new procedure based on data depth trimming and bootstrapping that can
outperform the classical t (or T2 in high dimensions) confidence interval (or region) procedure.
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1. Introduction

Let Xn := {X1, . . . , Xn} be a random sample from distribution F with an unknown mean
parameter μ. The most prevailing procedure for estimating μ is the classical t-confidence
interval. A 100(1 − 2α)% confidence interval (CI) for μ and large n is

X ± tα(n − 1)
s√
n
, (1.1)

where X = (1/n)
∑n

i=1 Xi is the standard sample mean, s =
√

(1/(n − 1))
∑n

i=1(Xi −X)2 is
the standard sample deviation, and tr(N) is the rth upper quantile of a t distribution with
degrees of freedom N. The rule of thumb in most textbooks for the sample size n is: n < 15,
do not use t procedure, 15 < n ≤ 40, do not use it if outliers present, use it if n > 40. The
procedure is based on the large sample property and the central limit theorem. So it is not
exact but an approximation for large sample size n and arbitrary population distribution.
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In higher dimensions, the counterpart to procedure (1.1) is the celebrated Hotelling’s
T2 procedure: A 100(1 − α)% confidence region for the unknown vector μ and large n is the
region:

{
μ : n

(
x − μ

)′
S−1(x − μ

)
≤ χ2

(α)

(
p
)}
, (1.2)

where S is the sample covariance matrix and χ2
(α)(p) is the upper αth quantile of χ2

distribution with degrees of freedom p.
Procedure (1.1) and (1.2) are so prevailing in practices that in many practitioners,

mind they are regarded as optimal and unbeatable procedure. Are they really unbeatable? In
this manuscript we introduce a new procedure that can outperform these seemingly optimal
procedures.

The rest of the paper is organized as follows. Section 2 introduces the new procedure
and Section 3 conducts some simulation studies. The paper ends in Section 4 with some
concluding remarks.

2. A New Procedure for the Unknown μ

2.1. A Univariate Location Estimator

It is well known that the sample mean in the t procedure is extreme sensitive to outliers, heavy
tailed distributions, or contamination. The procedure therefore is not robust. So naturally, one
would replace the sample mean with a robust counterpart. We will utilize a special univariate
location estimator μ̂ to replace the sample mean X in the t procedure.

Now we consider a special univariate “projection depth-trimmed mean” (PTMβ) for
Xn in R

1, β > 0 (see Wu and Zuo [1] in R
1, also see Zuo [2] for a multidimensional PTMβ)

μ̂(Xn) := PTMβ(Xn) =
1
k

k∑

i=1

Xji , (2.1)

where j1, . . . , jk are distinct numbers from {1, . . . , n} such that PD(Xji , X
n) ≥ β for some β >

0, i = 1, . . . , k, and PD(Xi,X
n) := 1/(1 + |Xi − Med(Xn)|/MAD(Xn)); where Med(Xn) is

standard sample median and MAD := med{|Xi −Med(Xn)|, i = 1, . . . , n} is standard median
of absolute deviations (see Zuo and Serfling [3] and Zuo [4] for the study of PD in high-
dimensions).

Let Fn be the empirical distribution based on Xn which places mass 1/n at points Xi,
i = 1, . . . , n. We sometimes write Fn (for Xn) for convenience. Let F be the distribution of Xi.
Replacing Xn with F in the above definition, we obtain the population version. For example,
the popular version of PTMβ for F ∈ R

1 is

PTMβ (F) =

∫
PD(x,F)>βxdF(x)
∫

PD(x,F)>βdF(x)
. (2.2)
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Table 1: Average coverage (length) of 95% CI’s by t and PTMβ.

n = 100 method N(0, 1) t(3)

m = 300 PTMβ .9390 (.3819) .9515 (.5855)
t .9550 (.3967) .9605 (.6607)

m = 500 PTMβ .9470 (.3842) .9505 (.5902)
t .9520 (.3956) .9520 (.6618)

m = 1000 PTMβ .9410 (.3864) .9470 (.5916)
t .9490 (.3959) .9540 (.6582)

m = 2000 PTMβ .9435 (.3876) .9550 (.5943)
t .9480 (.3960) .9545 (.6589)

2.2. The New Procedure

Let X∗n = {X∗1 , . . . , X∗n} be a random sample from the empirical distribution Fn. It is often
called a bootstrap sample. Let Ym := {X∗n1, . . . , X

∗
nm} be m bootstrap samples from Fn.

We calculate yj := PTMβ(X∗nj) for j = 1, . . . , m. Now we calculate depth of yj with
respect to ym := {y1, . . . , ym}: PD(yj, ym) and then order yj with respect to their depth from
the smallest to the largest: y(1), . . . , y(m) where PD(y(1), ym),≤, . . . ,≤ PD(y(m), y

m).
Finally, we simply delete first 100 · 2α ·m% points from y(1), . . . , y(m). Then the interval

(or closed convex hull in high-dimensions) formed by y(�100·2α·m%	+1), . . . , y(m) is our 100(1 −
2α)% confidence interval for μ, where �·	 is the floor function.

3. Simulation Study

Now we conduct simulation study to examine the performance of the new and classical t (or
T2) procedure based on 2000 (replication) samples from various distribution F (including
N(0, 1), t(3), and others). Set α = 0.025 and β = 0.078; we consider the combinations of
n = 100 with the bootstrap number m = 300, 500, 1000, and 2000.

We will confine attention to the average length (or area) of the confidence interval
(or region) from both procedures as well as their coverage frequency of true parameter μ
(which is assumed to be the mean of the F), which ideally should be close to 95%. If both
procedures can reach the nominal level 95%, then it is obviously better to have a shorter (or
smaller) confidence interval (or region) or smaller average length (or area) of the intervals
(or regions).

3.1. One Dimension

Table 1 lists the simulation results at the normal and t(3) distributions.
Inspecting the table immediately reveals that the bootstrap number m affects the

average coverage of the new procedure, with the increase of m it gets closer to the nominal
level 95%, while the average length of intervals gets slightly larger. Of course, it does not
affect the t procedure which has nothing to do with bootstrap. Overall, both procedures are
indeed (roughly) 95% procedure and the new one produces an interval on the average about
2%-3% shorter than that of the classical t procedure even at N(0, 1) case, and it becomes
12%-13% shorter in the t(3) case.
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Figure 1: 95% confidence intervals by t (red one) and new procedures (blue one) for the mean of F based
on 100 sample points from F: (a) F =N(0, 1) and (b) F = t(3).

Figure 1 displays the typical single run results from two procedures based on
100 sample points from N(0, 1) (a) and t(3) (b). We see even at N(0, 1) case, the
new procedure outperforms the classical t procedure with a 95% confidence interval
[−0.1422550, 0.2463009] 10% shorter than that of t [−0.1644447, 0.2661397], both cover
the target parameter μ = 0. At t(3) case, new procedure produces an interval
[−0.0874566, 0.357108] 60% shorter than that of t : [−0.1644486, 0.9482213]. Both cover the
target parameter μ = 0.

In our simulation studies, we also compare our new procedure with the existing
bootstrap percentile confidence procedure (i.e., it orders means of m bootstrap samples and then
just to trim the upper and lower 
100 ·m · α%� points, the left points form an interval which
is called bootstrap percentile conference interval, where 
x� is the ceiling function of x), our
new procedure also outperforms this one. But the later performs better than the classical t
procedure in term of the average length of intervals at the same confidence level.

Our experiments with n also reveal that small n (the real situation in practice) is in
favor of our new procedure. Note that this is the exact case where it is difficult to determine
if the data are close to normal and hence to decide if one is able to use the classical CI. This is
what we expected since the classical CI is based on normal F (or on the large sample property
for large n). But this does not mean that the classical CI has an edge over the new procedure
at really large sample size n (say, 10,000) even for the perfect N(0, 1) case.

In addition to the distributions we considered in Table 1, we also conduct simulation
studies to compare the performance of the new and classical t procedure at contaminated
normal model: (1 − ε)N(0, 1) + εN(μ, σ2) with different choices of ε and (μ, σ2) since we
know in practice, there is never a pure (exact) N(0, 1); we may have just a slight departure
from the pure normal or some contamination. Our results reveal that the new procedure is
overwhelmingly more robust than the classical t; this is what we would expect since the
t procedure depends on the sample mean which is notorious for its extreme sensitivity
to outliers or contaminations. We also compare the performance of the two procedures
at Cauchy distribution since we know that sample mean x performs extremely well at
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Figure 2: 95% CIs by t (red one) and new procedures (blue one) for the mean of F based on 100 sample
points from F: (a) F = 0.95N(0, 1) + 0.5N(1.5, 0.12) and (b) F = t(1).

Table 2: Average coverage (length) of 95% CIs by t and PTMβ.

n = 100 method .95N(0, 1) + .05N(1.5, 0.12) Cauchy

m = 300 PTMβ .9455 (.3922) .9585 (1.135)
t .9595 (.4070) .9760 (57.76)

m = 500 PTMβ .9525 (.3953) .9765 (1.115)
t .9590 (.4081) .9825 (20.10)

m = 1000 PTMβ .9530 (.3972) .9715 (1.164)
t .9600 (.4073) .9775 (31.87)

m = 2000 PTMβ .9485 (.3994) .9725 (1.168)
t .9525 (.4077) .9830 (25.61)

symmetric light tailed distributions like N(0, 1) but not so at heavy tailer ones like cauchy
distribution.

We first display the typical single run results of 95% confidence intervals in Figure 2 to
demonstrate the difference between the two procedures.

Here in Figure 2, on the left-hand side are 95% CI’s by t (red one) and by our new
procedure (blue one) at the model 0.95N(0, 1) + 0.05N(1.5, 0.12) with an interval from t:
[−0.09723137, 0.3047054] and from new procedure [−0.06083767, 0.2763990] which is 16%
longer than that of t. These intervals are supposed to estimating the mean parameter μ in
this case is ε · u = 0.075. So both intervals cover the unknown parameter μ.

On the right-hand side are 95% CIs by t (red one) and by new procedure (blue
one) at the Cauchy distribution with an interval from t: [−19.02593, 6.527279] and from new
procedure: [−0.8909354, 0.5884936] which is 94% shorter.

Of course, the single run results may not represent the overall performance of the
two procedures. So we conduct a simulation over 2000 replications. The results are listed in
Table 2.
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Table 3: Average coverage (length) of 95% confidence regions by T2 and PTMβ.

n = 100 method N2(0, 1) t2(3)

m = 300 PTMβ .9501 (.1492) .9515 (.3045)
T2 .9524 (.1935) .9495 (.5137)

m = 500 PTMβ .9395 (.1582) .9577 (.3247)
T2 .9515 (.1947) .9507 (.5204)

m = 1000 PTMβ .9436 (.1672) .9475 (.3438)
T2 .9547 (.1949) .9353 (.5111)

m = 2000 PTMβ .9403 (.1736) .9586 (.3554)
T2 .9470 (.1949) .9488 (.5202)

Inspecting the table immediately reveals that the classical t procedure becomes useless
in the heavy tailed Cauchy distribution case: exceeding the nominal level 95% and reaching
98% with an extremely wide confidence interval, no informative any more. At the same
time, the new procedure can roughly reach the nominal level 95% (it is about 97%) and
provide a meaningful estimation about the underlying unknown parameter. We list the
results from the contaminated model with just 5% contamination to a pure N(0, 1) model
with the contamination also come from a normal distribution centered at 1.5 and with a small
variance 0.01. Under such a potential real situation, the classical t 95% procedure becomes
again useless since it can never reach the nominal level 95%, it is a roughly 96% procedure
with an interval slightly longer than that of the new procedure, while the new procedure still
is a reasonable 95% procedure with an interval on the average 2%–4% shorter than that of t
one.

3.2. Higher Dimensions

In higher dimensions, with the multivariate version of PTM and PD (see Zuo [4], Zuo [2])
it is straightforward to extend our new procedure described in Section 2. That is, with the
m bootstrap sample: Ym = {X∗n1, . . . , X

∗
nm} we calculate yj := PTMβ(X∗nj) for j = 1, . . . , m.

Then we calculate the projection depth of yj with respect to ym := {y1, . . . , ym}: PD(yj, ym)
and then we order yj ’s with respect to their depth from smallest to largest: y(1), . . . , y(m)

where PD(y(1), ym),≤, . . . ,≤ PD(y(m), y
m). The final step is the same as before: trimming

first 100 · 2α · m% points from yj ’s the left formed a convex hull, that is our 100(1 − 2α)%
confidence region for μ. We will examine the performance of this one and the classical
Hotelling’s T2 given in (1.2) in term of their average area of confidence regions as well as
their coverage frequency of true parameter μ (which is assumed to be the mean of the F). The
latter ideally should be close to 95%. If both procedures can reach the nominal level 95%, then
it is obviously better to have a smaller confidence region or smaller average area of confidence
regions.

We first display single run results of two procedures at bivariate standard normal
distribution N2(0, 1) and bivariate t distribution with 3 degrees of freedom t2(3) in Figure 3.

Of course, single run result may not represent the overall performance of the two
procedures. To see if the single run results are repeatable now we list the average of coverage
and the area of the confidence regions based on two procedures in 2000 replications in Table 3.
Here we set β = 0.1, n = 100 and α = 0.025.
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Figure 3: 95% confidence regions by T2 (red one) and new procedures (blue one) for the mean of F based
on 100 sample points from F: (a) F =N2(0, 1), (b) F = t2(3).

Inspecting the Table reveals that the two procedures are indeed (roughly) 95%
confidence procedures. Therefore it make sense to compare their average area of confidence
regions. The table entries show that the new procedure produce a confidence region on the
average 11%–22% smaller than that of the classical Hotelling’s T2 procedure in term of area
even at N2(0, 1). This becomes 32%–40% in t2(3) case.

4. Concluding Remarks

From the last section we see that the new procedure has some advantages over the classical
(seemingly optimal) procedures. But we know that we cannot get all the advantages of the
new procedure for free. What kind of price we have to pay here? For all the advantage of
the new procedures possess over the classical ones, the price it has to pay is the intensive
computing in the implement of the procedure. In our simulation study, there are 4 million
basic operations (the case n = 100, replication R = 2000, and bootstrap number m = 2000).
Computing the data depth in two or higher dimensions is very challenging. Fortunately, there
is a R package (called ExPD2D) for the exact computation of projection depth of bivariate
data already developed by Zuo and Ye [5] and is part of CRAN now. For high-dimensional
computation, see Zuo [6]. In one dimension it is straightforward. One can compute the
sample median in linear time (i.e., the worst case time complexity is O(n)) by employing
special technic (see any computer science Algorithm textbook), for further discussion about
the property of related remedian, see H. Chen and Z. Chen [7]. Fortunately, in practices,
only one replication is needed. Also with the everlasting advance in computing power, the
computation burden should not be an excuse for not using a better procedure.

A natural question is Why the new procedure has advantage over the classical one?
The procedure clearly depends on bootstrap and data depth. Is it due to bootstrap or
data depth? Who is the main contributor? If one just uses bootstrap, can one have some
advantages? The answer for the latter is positive, Indeed, in our simulation we compare
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the classical one with the bootstrap percentile procedure, it reveals that the bootstrap
percentile one does have some mild advantage over the classical one but still is inferior to
our new procedure. So both bootstrap and data depth make contributions to the advantages
of the new procedure. But remember, it is data depth that allow the bootstrap percentile
procedure (which originally was defined only in one dimension) implementable in high-
dimensions: to order sample bootstrap mean vectors. Without the data depth, it is impossible
to implement the procedure in high-dimensions. So overall, it is data depth that makes the
major contribution towards the advantages of the new procedure.

We also like to point out at this point that there is different new procedure introduced
and studied in Zuo [8], where depth-weighted mean used in the procedure instead of
the depth-trimmed mean used in our current procedure. However, our simulation studies
indicate that our current new procedure is superior to the one in Zuo [8] which confines
attention mainly to one dimension.

Our empirical evidence for the new procedure in one and higher dimensions is
very promising, but we still need some theoretical developments and justifications, which
is beyond scope of this paper and will be pursued elsewhere. A heuristic argument
is because the bootstrap percentile confidence interval has advantage over the classic
confidence interval procedure in term of at the same nominal level it can produce an
asymptotically shorter interval (see Hall [9], and Falk and Kaufmann [10]). But the classical
bootstrap percentile interval procedure is limited to one dimension, here we use data depth
to ordering high-dimensional estimators so that we can extend the procedure to high-
dimensions. The advantage of bootstrap percentile confidence interval carries on to high-
dimensions.

One question left about our new procedure in practices is how does one choose the
β value? Well, there are at least two ways to deal with this β value problem. First, one
can chose a fixed value, our empirical experience indicates a value between 0.01-0.1 will
serve most of our purposes. Or (second), dynamically choose β value by minimizing some
objective function which could be your interval length in our simulation case or variance in
the efficiency evaluation case. With such a data dependant β, one natural question raised is:
Is the theory in Zuo [2] established based on the fixed constant β still holds? Fortunately, all
still hold if we employ a more powerful tool (empirical process theory) from Pollard [11] or
van der Vaart and Wellner [12] to handle this situation with a data dependent β.

There are a number of depth functions and related depth estimators (see Tukey [13],
Liu [14], Zuo and Serfling [3], and Bai and He [15]), but among them projection depth
function used here is the most favorite one (see Zuo [4, 16]). Furthermore, the computation
of depth functions all are very challenging but we have some algorithm at hand for the
projection depth function, this is yet another motivation for us to pick the projection depth
function in this paper.

Finally, we comment that findings in this paper are consistent with the results obtained
in Bai and Saranadasa (BS) [17] which shows the Effect of high-dimension, that is, there are
better procedures than the classical inference procedures like Hotrlling’s T2 one which is
inferior compared to other procedures like Dempster’s nonexact test (Dempster [18]) and BS
proposed test even for moderately large dimension and sample sizes.
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