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1. Introduction

The last decade has seen an explosion in the use of Markov chain Monte Carlo (MCMC)
techniques in fitting statistical psychometric models. In this time, MCMC has been put
to advantageous use in estimating existing models and, more importantly, supporting the
development of new models that are otherwise computationally intractable. This paper
surveys the use of MCMC in modern psychometric models, namely, models that employ
(a) probabilistic reasoning in the form of statistical models to facilitate inference from
observations of behaviors made by subjects to more broadly conceived statements about the
subjects and/or the domain and (b) latent variables to model the presence of measurement
error. Additional modeling archetypes, including hierarchical and mixture modeling, are
noted where they intersect or overlay with the psychometric modeling paradigm of interest.

Psychometric models are typically organized in terms of assumptions about the
latent and observable variables. Factor analysis (FA; Bollen [1]; Gorsuch [2]) specifies
continuous latent and observable variables and frequently additionally assumes the latter
to be normally distributed. Structural equation modeling (SEM; Bollen [1]) may be
conceptualized as extending the factor analytic tradition to include regression-like structures
that relate latent variables to one another. Like FA, item response theory (IRT; Lord
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[3]) assumes the latent variables to be continuous but assumes that the observables are
discrete and, when polytomous, usually ordered. Latent class analysis (LCA; Lazarsfeld and
Henry [4]) and related models assume that both the latent and observable variables are
discrete.

This list is far from exhaustive and in later sections we will discuss these and other
psychometric models, some of which can be viewed as extensions or combinations of those
already mentioned. It is however important to recognize that these latent variable modeling
traditions evolved somewhat independently from one another, yielding a current state
in which a repository of fairly mature models possess only at best partially overlapping
foci, literatures, notational schemes, and—of interest in this work—paradigmatic estimation
routines and strategies. To illustrate, FA and SEM have historically been employed to model
relationships among constructs and typically do not involve inferences at the subject level.
Estimation typically involves maximum likelihood (ML) or least squares (LS) using first- and
second-order moments from sample data, with an emphasis on the estimation of structural
parameters, that is, parameters for the conditional distributions of observed scores given
latent variables (e.g., factor loadings) but not on the values of the latent variables (factors) for
individual subjects (Bollen, [1]). In contrast, IRTmodels are commonly employed to scale test
items and subjects. Estimation is usually conducted using individual level data or frequencies
of response patterns and assumptions regarding the distribution of the latent variables for
subjects. As in FA and SEM, the estimation of structural parameters (here interpreted as
item parameters) is important. However, in IRT the estimation of subjects’ values for the
latent variable(s) is important to guide desired inferences about subjects (Lord [3]). Disparate
estimation approaches organized around differences in input data (moments versus raw
data) and differences in the targets of the inference evolved in IRT and in FA and SEM, with
the unfortunate consequence of obscuring fundamental similarities among the models and,
as discussed below, hampering the development of each.

This paper is organized as follows. A brief description of the Bayesian approach to
psychometric modeling is advanced, followed by an overview of the most popular MCMC
samplers for psychometric models, where the emphasis is placed on how the elements of
the latter align with the features and challenges of estimating posterior distributions in
the former. Next, an overview of the key historical developments and current work on
MCMC for psychometric modeling is presented, emphasizing how MCMC overcomes the
limitations of other estimation paradigms, facilitates the estimation of models that would
be otherwise intractable, and frees the researcher from possible misconceptions about the
models. A discussion concludes the paper.

2. Bayesian Psychometric Modeling

BecauseMCMCprocedures yield empirical approximations to probability distributions, it fits
naturally with the Bayesian approach to statistical analysis in which unknown parameters
are treated as random and represented with probability distributions (Gelman et al. [5]),
though we note that MCMC estimation has been employed in frequentist applications as
well (Song and Lee [6]). As will be highlighted below, key features of the most flexible of
MCMC algorithms may be viewed as explicitly resolving the most difficult challenges in
estimating Bayesian models. Quite aside from the issue of estimation, a Bayesian approach
in which models are formulated hierarchically, prior information can be easily incorporated,
and uncertainty in unknown parameters is propagated offers advantages regardless of the
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estimation routine (see, e.g., Lindley and Smith [7]; Mislevy [8], for illustrative applications
not involving MCMC).

To formulate a Bayesian psychometric model, let θi be a possibly vector-valued
latent variable and let Xi = (Xi1, . . . , XiJ) be a vector of J observable variables for subject
i, i = 1, . . . ,N. Let θ and X denote the full collections of latent and observable variables,
respectively. Psychometric models are typically viewed in terms of their assumptions
regarding θ, X, and the specification of the probabilistic dependence of the latter on the
former via a conditional distribution P(X | θ,ω) where ω are parameters that govern
the conditional distribution of the data (e.g., factor loadings in FA/SEM, item parameters
in IRT, class-specific conditional probabilities in LCA). Assumptions of subject and local
independence imply that the distribution for any observable depends only on the latent
variable(s) for that subject and the conditional distribution parameters specific to that
observable. This allows for the factorization of the joint conditional distribution of X as

P(X | θ,ω) =
N∏

i=1

J∏

j=1

P
(
Xij | θi,ωj

)
, (2.1)

where ωj are the parameters of ω that concern observable j.
To conduct Bayesian inference, we specify prior distributions for the unknown

parameters. An assumption of exchangeability (Lindley and Smith [7]; Lindley and Novick
[9]) implies that a common prior distribution may be used for all subjects’ latent variables:

θi ∼ P(θi | η), (2.2)

where η are higher level parameters that govern the distribution of θi. Depending on
the application, η may serve the varied purposes of (a) resolving indeterminacies in the
location, scale, and orientation of latent axes, (b) defining features of the population, or (c)
specifying prior expectations. η may include free parameters that require estimation (e.g.,
factor covariances and structural coefficients in SEM); in these cases, these elements of η
would be assigned a prior distribution P(η).

Turning to ω, an exchangeability assumption with respect to observables implies that
a common prior distribution may be used for all the conditional probability parameters for a
given observable

ωj ∼ P
(
ωj | λ

)
, (2.3)

where λ are higher level parameters that govern the distribution ofωj . In models that include
multiple elements in ωj , it is common to specify independent prior distributions for each
element. For example, in three-parameter IRT models (Lord [3]), ωj = (bj , aj , cj) and P(ωj |
λ) = P(bj | λb)P(aj | λa)P(cj | λc) where λb, λa, and λc are components of λ that govern the
distributions of the b, a, and c parameters, respectively. When in need of estimation, elements
of λ are assigned a prior distribution P(λ).
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Following the conditional independence assumptions inherent in the above treatment,
the joint probability distribution for all the entities in the model can be expressed as

P(X,θ,ω,η,λ) = P(X | θ,ω)P(θ | η)P(ω | λ)P(η)P(λ)

=
N∏

i=1

J∏

j=1

P
(
Xij | θi,ωj

)
P(θi | η)P

(
ωj | λ

)
P(η)P(λ).

(2.4)

Once values for X are observed, the posterior distribution for the unknown parameters is
obtained as

P(θ,ω,η,λ | X) = P(X | θ,ω)P(θ | η)P(ω | λ)P(η)P(λ)
P(X)

=
P(X | θ,ω)P(θ | η)P(ω | λ)P(η)P(λ)∫

θ

∫
ω

∫
η

∫
λP(X | θ,ω)P(θ | η)P(ω | λ)P(η)P(λ)dθdωdηdλ

∝ P(X | θ,ω)P(θ | η)P(ω | λ)P(η)P(λ).

(2.5)

The current treatment resulting in the expression in (2.5) represents a basic psychometric
model. Extensions are possible and indeed are frequently warranted. For example, the
exchangeability assumptions for θi (similarly, ωj) may not be warranted if subjects
(observables) are hierarchically structured. In such cases, an assumption of conditional
exchangeability implies the use of group-specific prior distributions, possibly involving
covariates (De Boeck and Wilson [10]). In passing, we note that MCMC handles such
hierarchical or conditional structures in a straightforward manner; examples of MCMC
applications for these and other extensions will be discussed below. For the current purposes,
the development of (2.5) is sufficient to motivate the discussion of the development and
advantages of MCMC.

3. Markov Chain Monte Carlo Estimation

Model estimation comes to estimating the posterior distribution. Analytical solutions,
though ideal, are often impractical or impossible due to the necessity to evaluate the high-
dimensional integrals to obtain the marginal distribution in the denominator in (2.5). When
the posterior distribution is of known form, an empirical approximation may be obtained
by simulating values using straightforward Monte Carlo procedures (Lee [11]). However,
drawing independent samples is often computationally intractable, as posterior distributions
in psychometric models are most often not of known form. MCMC (Brooks [12], Gelfand and
Smith[13]; Gilks et al. [14]; Smith and Roberts [15]; Spiegelhalter et al. [16]; Tierney [17])
estimation consists of drawing possibly dependent samples from a distribution of interest
and as such provides an appropriate framework for computation in Bayesian analyses
(Gelman et al. [5]). Broadly speaking, we construct a Markov chain that has the posterior
distribution as its stationary distribution; that is, MCMC estimation consists of drawing from
a series of distributions that is in the limit equal to drawing from the stationary (posterior)
distribution (Gilks et al. [14]).
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To construct a Markov chain, initial values for all parameters must be specified.
Subsequent values for the parameters are repeatedly drawn creating a sequence that
constitutes the chain. Given certain general conditions hold (e.g., Roberts [18]), a properly
constructed chain is guaranteed to converge to its stationary or target distribution.

In the following sections, several of the most popular MCMC routines are described.
Emphasis is placed on the connection between the features of the MCMC routines that align
with features of Bayesian approaches to psychometric modeling.

3.1. Gibbs Sampling

LetΩ = (Ω1,Ω2, . . . ,ΩR) denote the R parameters in the model and let X denote the observed
data. Let P(Ωr | X,Ω(r)) denote the full conditional distribution of the rth model parameter, the
conditional distribution of the parameter given the data (X) and all other model parameters
Ω(r). It can be shown that a joint distribution may be defined by the complete set of such full
conditional distributions (Besag [19]; Gelfand and Smith [13]). Thus in a Bayesian analysis,
the joint posterior distribution of model parameters may be defined as the complete set of
full conditional posterior distributions. That is, the joint posterior P(Ω | X) may be defined
by P(Ω1 | X,Ω(1)), P(Ω2 | X,Ω(2)), . . . , P(ΩR | X,Ω(R)). Sampling from the joint posterior then
comes to sampling from these full conditional distributions.

Let Ωr
t denote the value of model parameter r at iteration t. Gibbs sampling (Gelfand

and Smith [13]; S. Geman and D. Geman [20]; see also Brooks [12]; Casella and George [21] ;
Gilks et al. [14]) consists of proceeding to the following steps.

(1) Initialize the parameters by assigning values for Ωt
1,Ω

t
2, . . . ,Ω

t
R for t = 0.

(2) For r = 1, . . . , R, draw values for parameter Ωr from its full conditional distribution
given the current values of all other model parameters and the observed data.
That is, for each parameter Ωr , we obtain the t + 1st iteration value of the chain
by drawing from P(Ωr | X,Ωt+1

1 , . . . ,Ωt+1
r−1,Ω

t
r+1, . . . ,Ω

t
R). One cycle is given by

sequentially drawing values from

Ωt+1
1 ∼ P

(
Ω1 | X,Ωt

2, . . . ,Ω
t
R

)

Ωt+1
2 ∼ P

(
Ω2 | X,Ωt+1

1 ,Ωt
3, . . . ,Ω

t
R

)

...

Ωt+1
R ∼ P

(
ΩR | X,Ωt+1

1 ,Ωt
3, . . . ,Ω

t+1
R−1

)
.

(3.1)

(3) Repeat step 2 for some large number T iterations.

The conditional independence assumptions greatly reduce the set of parameters that
need to be conditioned on in each of distributions in step 2. For example, in drawing a
value for a subject’s value of θ, respondent independence implies that the values of θ for the
remaining subjects need not be considered. Note also in step 2 that each draw for iteration
t + 1 is subsequently used in the full conditionals for the remaining parameters.
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3.2. Metropolis-Hastings Sampling

In complex models, it may be the case that while full conditional distributions may be
constructed, they are too complex to sample from. More complex sampling schemes, such
as the Metropolis-Hastings and Metropolis samplers, described in this and the following
section, are required.

To simplify notation, let π(Ω) = P(Ω | X) denote the target distribution (i.e., the
posterior distribution of interest). Metropolis-Hastings sampling (Hastings [22]; see also
Brooks [12]; Chib and Greenberg [23]; Gilks et al. [14]) consists of conducting the following
steps.

(1) Initialize the parameters by assigning a value forΩt for t = 0.

(2) Draw a candidate value y ∼ q(y | Ωt) from a proposal distribution q.

(3) Accept y as the t + 1st iteration forΩwith probability α(y | Ωt) = min[1, π(y)q(Ωt |
y)/π(Ωt)q(y | Ωt)]. Retain the current value ofΩt forΩt+1 with probability 1−α(y |
Ωt).

(4) Repeat steps 2 and 3 for some large number T iterations.

The acceptance probability α(y | Ωt) involves evaluating the posterior distribution π
and the proposal distribution q at both the current and candidate values. Note that in the
formulation here the proposal distribution q may be conditional on the current value of the
chain, which constitutes a random-walk sampler (Brooks [12]). More generally, q may be
any distribution that is defined over the support of the stationary distribution π . As such,
the Metropolis-Hastings algorithm is an extremely flexible approach to estimating posterior
distributions.

3.3. Metropolis Sampling

In Metropolis sampling (Metropolis et al. [24]; see also Brooks [12]; Gilks et al. [14]), q is
chosen so that it is symmetric with respect to its arguments, q(y | Ωt) = q(Ωt | y). The acceptance
probability then simplifies to α(y | Ωt) = min[1, π(y)/π(Ωt)]. A popular choice for q is the
normal distribution centered at the current value of the chain.

It is easily seen that theMetropolis sampler is a special case of theMetropolis-Hastings
sampler. It is somewhat less obvious that the Gibbs sampler may be viewed as a special case
of the Metropolis sampler, namely, where the proposal distribution for each parameter is the
full conditional distribution, which implies that the acceptance probability α will equal 1.

Recall that in Bayesian analyses of psychometric models the posterior distribution is
generally only known up until a constant of proportionality (see (2.5)). Further, recall that we
construct the chain to have the posterior distribution of interest as the stationary distribution.
Inspection of the Metropolis(-Hastings) sampler(s) reveals that the stationary distribution
π (i.e., the posterior distribution) appears in both the numerator and denominator of
the acceptance probability α and therefore only needs to be known up to a constant of
proportionality. MCMC alleviates the need to conduct high-dimensional integration over
the parameter space to estimate the posterior distribution. This is the key feature of MCMC
estimation that permits the estimation of complex Bayesian models.
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3.4. Metropolis(-Hastings)-Within-Gibbs

A Metropolis(-Hastings)-within-Gibbs sampler, also termed single-component-Metropolis
(-Hastings), combines the component decomposition approach of the Gibbs sampler with the
flexibility of Metropolis(-Hastings). As noted above, Gibbs sampling involves sampling from
the full conditional distributions for each parameter separately. When these full conditionals
are not of known form, aMetropolis(-Hastings) step may be taken where, for each parameter,
a candidate value is drawn from a proposal distribution q and accepted with probability α as
the next value in the chain for that parameter.

4. Psychometric Modeling Using MCMC

This section reviews key developments in the growing literature on psychometric modeling
using MCMC. In tracing the foundational developments and current applications, the
emphasis is placed on models and modeling scenarios where the power of MCMC is
leveraged to facilitate estimation that would prove difficult of not intractable for traditional
procedures, highlighting the flexibility of MCMC and the resulting freedom it provides.

4.1. Continuous Latent and Observable Variables

FA and SEM models with linear equations relating the latent and observed variables
and (conditional) normality assumptions may be easily handled by traditional ML or LS
estimation routines (Bollen [1]). However, in introducing Gibbs sampling schemes for SEM,
Scheines et al. [25] noted that Gibbs sampling holds a number of advantages in that (a) it
does not rely on asymptotic arguments for estimation or model checking and therefore may
be better suited for small samples (Ansari and Jedidi [26]; Lee and Song [27]), (b) inequality
constraints may be easily imposed, (c) information about multimodality—undetectable by
standard ML estimation—may be seen in marginal posterior densities, and (d) information
for underidentified parameters may be supplied via informative priors.

The great advantage of MCMC for SEM lies in its power to estimate nonstandard
models that pose considerable challenges for ML and LS estimation (Lee [11]). Examples
of such applications include heterogeneous and multilevel factor analysis models (Ansari
et al. [28]), complex growth curve models (Zhang et al. [29]), latent mixture SEM
(Lee and Song [30]; Zhu and Lee [31]), and models with covariates (Lee et al. [32]),
nonignorable missingness (Lee and Tang [33]), or interaction, quadratic, and similarly
nonlinear relationships among latent variables including nonlinear longitudinal effects
(Arminger and Muthén [34]; Lee et al. [32]; Lee and Tang [33]; Song et al. [35]).

The implication is that, though traditional estimation routines that evolved with
the standard FA and SEM paradigm may be suitable for simple models, extending the
standard models to more complex situations may necessitate the use of more flexible MCMC
procedures. Moreover, contrary to a common belief, the computation necessary to implement
MCMC estimation in such complex models is generally less intense than that necessary to
conduct ML estimation (Ansari and Jedidi [26]; Ansari et al. [28]; Zhang et al. [29]).

4.2. Continuous Latent Variables and Discrete Observable Variables

In this section, we survey applications of MCMC tomodels in which a set of discrete, possibly
ordinal observables are structured as indicators of continuous latent variables from both FA
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and IRT perspectives, highlighting aspects in which existing estimation traditions limit our
modeling potential.

The FA traditionmodels discrete data using continuous latent variables by considering
the observables to be discretized versions of latent, normally distributed data termed
latent response variables. Traditional FA estimation methods have relied on calculating and
factoring polychoric correlations, which involves the integration over the distribution of
the latent response variables. This approach suffers in that the FA routines were explicitly
developed for continuous rather than discrete data. Wirth and Edwards [36] concluded that
traditional FA methods can fail to capture the true fit of the model, even with corrections to
estimates and standard errors for discrete data. This illustrates the limitations that analysts
encounter by remaining within an estimation paradigmwhen trying to fit models beyond the
scope of those originally intended for the estimation routine.

The dominant estimation paradigm in IRT involves marginal maximum likelihood
(MML; Bock andAitkin [37]; see also Baker and Kim [38]), in which themarginal distribution
of the data as a function of item parameters is produced by numerically integrating
over an assumed distribution of the latent continuous variables. Taking this function as a
marginal likelihood for the item parameters, estimates for item parameters are obtained
by maximizing this function, possibly augmented by prior distributions (Mislevy [8]). In
assessment scenarios, estimation of subject parameters is of interest to facilitate subject-level
inferences. This is conducted by treating the just-estimated item parameters as known to
produce a likelihood function for the subject parameters, which is either (a)maximized or (b)
maximized or averaged over after being augmented by a prior distribution (e.g., Bock and
Mislevy [39]). This divide-and-conquer strategy suffers in that uncertainty in the estimation
of item parameters in the first stage is ignored when estimating subjects’ parameters. What
is needed—and what MCMC provides—is an estimation framework flexible enough to
handle a variety of assumptions about the distributional features of the observable variables,
latent variables, and the data-generating process, not to mention the all-too-real potential for
missingness or sparseness, all the while properly propagating uncertainty throughout.

A foundation for MCMC for IRT, and psychometric modeling more generally, was
given by Albert [40], whose seminal work showed how posterior distributions for item and
subject parameters in normal-ogive IRT models could be estimated via Gibbs sampling using
data augmentation strategies (Tanner andWong [41]). The algorithmwas extended to handle
polytomous data by Albert and Chib [42]; a similar Gibbs sampling approach was described
by Sahu [43] that allows for guessing as may be applicable in assessment contexts.

The turning point in the application of MCMC for psychometric modeling came
with the work of Patz and Junker [44], who offered a Metropolis-Hastings-within-Gibbs
sampling approach for the most common logistic IRT models. The flexibility of this approach
has produced an explosion in the use of MCMC for IRT-based models, including those
for polytomous-ordered data (Patz and Junker [45]), nominal data (Wollack et al. [46]),
missingness (Patz and Junker [45]), rater effects (Patz and Junker [45]), testlets (Bradlow
et al. [47]), multilevel models (Fox and Glas [48]), and hierarchical models for mastery
classification (Janssen et al. [49]).

To highlight an arena where the intersection of different modeling paradigms
and their associated traditional estimation routines poses unnecessary limits, consider
multidimensional models for discrete observables. The equivalence between IRT and FA
versions of the models has long been recognized (Takane and de Leeuw [50]). However, as
noted byWirth and Edwards [36], common misconceptions associated with each perspective
can be tied to the historical estimation traditions within each paradigm. In the FA tradition,
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the calculation of polychoric correlations involves the integration over the distribution of
the latent response variables. This integration becomes increasingly difficult as the number
of observables increases (as each observable has its own latent response variable), and
the applicability of ML and weighted LS routines requiring large sample sizes relative to
the number of observables becomes suspect. As a consequence, the FA perspective prefers
(relatively) few observables in the model but has no concern for the number of latent
variables. In contrast, traditional MML estimation approaches in IRT perform an integration
over the latent variables, which becomes increasingly difficult as the number of latent
variables increases. As a consequence, the IRT perspective prefers (relatively) few latent
variables in the model but is ambivalent toward the number of observables. Despite the long-
standing recognition of the equivalence of these perspectives with respect to the model, the
adoption of either one or the other tradition-specific estimation paradigms restricts the scope
of the model’s application.

MCMC may be seen as a unifying framework for estimation that frees the analyst
from these restrictive—and conflicting—misconceptions. Examples of the use of MCMC in
the multidimensional modeling from both FA and IRT perspectives include the consideration
of dichotomous data (Béguin and Glas [51]; Bolt and Lall [52]; Jackman [53]; Lee and
Song [30]), polytomous data (Yao and Boughton [54]), and combinations of continuous,
dichotomous, and polytomous data (Lee and Zhu [55]; Shi and Lee [56]), as well as models
for multiple groups (Song and Lee [57]), missing data (Song and Lee [58]), nonlinear
relationships among latent variables (Lee and Zhu [55]), and multilevel structures (Ansari
and Jedidi [26]; Fox and Glas [48]).

4.3. Discrete Latent Variables and Discrete Observable Variables

Similar to the case of FA of continuous data, ML estimation can typically handle traditional,
unrestricted LCA models that model discrete observables as dependent on discrete latent
variables. And here again, MCMC may still be advantageous for such models in handling
missingness, large data sets with outliers, and constructing credibility intervals for inference
when an assumption of multivariate normality (of ML estimates or posterior distributions)
is unwarranted (Hoijtink [59]; Hoijtink and Notenboom [60]). Similar to the case of IRT,
traditional estimation in LCA proceeds with a divide-and-conquer approach in which
conditional probabilities are estimated in one stage and then treated as known in a second
stage to estimate subject parameters. As noted above, MCMC simultaneously estimates all
parameters all the while properly accounting for the uncertainty in the estimation.

Turning to more complex models, MCMC has proven useful in estimating models
with covariates (Chung et al. [61]) and with ordinal and inequality constraints (van Onna
[62]). In assessment scenarios, diagnostic classification models (Rupp and Templin [63])
typically model discrete observables (i.e., scored item responses) as dependent on different
combinations of the latent, typically binary, attributes characterizingmastery of componential
skills necessary to complete the various tasks. The models frequently involve conjunctive or
disjunctive relationships tomodel the probabilistic nature of student responses. Thesemodels
pose estimation difficulties for traditional routines but can be handled by MCMC (de la Torre
and Douglas [64]; Hartz [65]; Henson et al. [66]; Templin and Henson [67]).

Thesemodels may be also be cast as Bayesian networks, which allow for the estimation
of a wide variety of complex effects viaMCMC. Examples include compensatory, conjunctive,
disjunctive, and inhibitor relationships for dichotomous and polytomous data assuming for
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dichotomous or ordered latent student skills or attributes (Almond et al. [68]; Levy and
Mislevy [69]). The recent growth in interest in these and other models that attempt to more
accurately depict the structures and processes of human reasoning (see, e.g., Bolt and Lall
[52], on the use ofMCMC to fit conjunctive multidimensional IRTmodels) illustrates how the
flexibility of MCMC opens the door for the application of complex statistical models that are
more closely aligned with substantive theories regarding the domain and the data-generating
process.

4.4. Combinations of Models

The discussion has so far been couched in terms of traditional divisions between models,
highlighting applications that pose difficulties for estimation routines typically employed. An
advanced approach to model construction takes a modular approach in which the statistical
model is constructed in a piecewise manner, interweaving and overlaying features from
the traditional paradigms as necessary (Rupp [70]). Simple examples include the models
that bridge the FA and IRT divided by modeling discrete and continuous observables
simultaneously (Lee and Zhu [55]; Shi and Lee [56]). More nuanced examples embed IRT
and FA models in latent classes to construct latent mixtures of IRT or FA models (Bolt et al.
[71]; Cohen and Bolt [72]; Lee and Song [30]; Zhu and Lee [31]).

Themachinery ofMCMC can be brought to bear in addressing recurring complications
inherent in psychometric applications. MCMC naturally handles missing data (e.g., Chung
et al. [61]; Lee and Tang [33]; Patz and Junker [45]; Song and Lee [58]) and offers a unified
strategy for handling latent variables as missing data (Bollen [73]; Jackman [74]). Similarly,
recent work has sought to simultaneously address the hierarchical structures of data as
well as the presence of measurement error. Examples of the use of MCMC for multilevel
psychometric models can be found in Ansari and Jedidi [26], Ansari et al. [28], Fox and Glas
[48], and Mariano and Junker [75]. To date, traditional estimation strategies have not been
established for these models.

To illustrate the need for a comprehensive model estimation paradigm that is sensitive
to the various data structures—and the capability of MCMC to fill that need—consider
the National Assessment of Educational Progress (NAEP), which is characterized by (a)
inferences targeted at the level of (sub)populations (rather than individuals) that are
hierarchically organized, (b) administration of dichotomously and polytomously scored
items, (c) complex sampling designs for subjects and items, and (d) covariates at each level
of the analysis.

Beginning with the piecewise traditional approach, multiple-imputation approaches
(Beaton [76]) accounted for the sampling design of subjects with jackknife procedures and
used IRT to combine information across distinct booklets of items, but they suffered in that
the point estimates of the IRT item parameters and latent regression models on covariates
were treated as known. Scott and Ip [77] demonstrated a Bayesian framework for the
multidimensional IRT model NAEP employs but do not consider the complex sampling
design. Longford [78] and Raudenbush et al. [79] detail population-based analyses for data
sets with hierarchical structures but did not address the presence of measurement error.

In contrast, Johnson and Jenkins [80] (see also Johnson, [81]) provided a Bayesian
approach—estimated with MCMC—to model the (sub)population distributions accounting
for the clustered-sampling designs and the matrix sampled item presentation. On the
basis of analyses of simulated and real data from operational NAEP, Johnson and Jenkins
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[80] compared the results from their unified model to the NAEP analysis with its
piecewise approximations and found that both approaches provided consistent estimates
of subpopulation characteristics, but their unified model more appropriately captured the
variability of those estimates. By treating IRT item parameters and population variances
as known, the standard analyses systematically underestimated the posterior uncertainty.
Moreover, MCMC estimation of their unified model provided more stable estimates
of sampling variability than the standard procedures. In this case, the use of MCMC
estimation supported an analytic sampling and psychometric model that simultaneously
better captured significant features of the design and provided better calibrated inferences
for (sub)population characteristics of interest.

5. Discussion

The Gibbs, Metropolis-Hastings, and Metropolis samplers are described in the context of
psychometric models with latent variables to illustrate the flexibility and power of MCMC
in estimating psychometric models under a Bayesian paradigm. It is emphasized that the
partitioning of the parameter space of Gibbs samplers and the requirement that the stationary
distribution need only be specified up to a constant of proportionality in Metropolis
(-Hastings) aligns these MCMC routines with the key features of the characteristics
and challenges posed by the desired posterior distribution in Bayesian psychometric
modeling.

Many of the examples are given to highlight how MCMC can be leveraged to (a)
estimate complex statistical psychometric models that cannot be practically estimated by
conventional means and (b) overcome the limitations of other approaches in situations in
which the traditions of modeling and estimation paradigms unnecessarily restrict the scope
of the models. Other examples highlight how MCMC can be gainfully employed in settings
where alternative estimation routines already exist, such as in the analysis of small samples,
missing data, and possible underidentification, and where divide-and-conquer strategies
systematically understate the uncertainty in estimation.

Despite these advances, it is far from clear that MCMCwill become as prevalent as, let
alone replace, traditional likelihood-based or least-squares estimation. For straightforward
applications of paradigmatic factor analytic, structural equation, item response, and latent
class models, traditional estimation is fairly routine, accurate, and accessible via widely-
available software (e.g., Mislevy and Bock [82], L. K. Muthén and B. O. Muthén [83]) and
may outperformMCMC (see, e.g., Baker [84] in the context of popular IRTmodels). For more
complex models, advances in tools for conducting traditional estimation (e.g., Schilling and
Bock [85]) and broad perspectives on modeling (e.g., B. O. Muthén [86], Rabe-Hesketch et al.
[87]) have supported the development of estimation routines and software for complicated
and nuanced models (e.g., L. K. Muthén and B. O. Muthén [83]; Rabe-Hesketch et al. [88]).
Nevertheless, when researchers want to push the boundaries of even these complexmodeling
paradigms, they may benefit by turning to MCMC (Segawa et al. [89]).

It is readily acknowledged that MCMC is difficult, both computationally in terms of
necessary resources and conceptually in terms of constructing the chains, making relevant
choices, and understanding the results. As to the computing challenge, the availability of
software for conducting MCMC is a burgeoning area. Programs are available for conducting
MCMC for IRT, FA, SEM, and diagnostic classification models (Arbuckle [90]; Henson et al.
[66]; Jackman [91], Martin et al. [92]; Sheng [93, 94]; Yao [95]). Furthermore, general use
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software such as the freely available WinBUGS (Spiegelhalter et al. [16]) and its variants
offers the psychometric community important resources for fitting familiar and innovative
models not yet packaged elsewhere. The publishing of code for such software (e.g., Bolt and
Lall [52]; Congdon [96]; Gill [97]; Lee [11]; Song et al. [35]) represents a meaningful step
in making these programs more accessible. Similarly, companion software for interfacing
MCMC software with other general statistical analysis software (e.g., Sturtz et al. [98]) and
software for analyzing the output of MCMC (Plummer et al. [99]; Smith [100]) constitute
more tools for researchers to employ when conducting MCMC estimation.

The criticism that MCMC is conceptually difficult is somewhat ironic, given that—
for complex statistical models that reflect substantively rich hypotheses—it may actually be
easier to set up an MCMC estimation routine than it is to proceed through the necessary
steps (e.g., solving for first- and possibly second-order derivatives) in ML and LS estimation
routines (Ansari and Jedidi [26]; Ansari et al. [28]; Zhang et al. [29]). MCMC allows analysts
to estimate models without the requiring high-dimensional calculus necessary to obtain (a)
derivatives in frequentist approaches to estimation or (b) the marginal distribution in a
Bayesian approach (i.e., in the denominator of (2.5)).

Nevertheless, there is no debating that a certain level of technical sophistication is
required to properly conduct an MCMC analysis. To this end didactic treatments of MCMC
generally (Brooks [12]; Casella and George [21]; Chib and Greenberg [23]; Gilks et al. [14];
Jackman [101]) and in the context of psychometric models (Kim and Bolt [102]) constitute
a firm foundation for researchers and practitioners learning about MCMC. The increasing
number of published applications of MCMC for simple and complex psychometric analyses,
especially those in textbook form that draw on the aforementioned software packages
(Baker and Kim [38]; Congdon [96]; Gelman et al. [5], Gill [97]; Lee [11]), will also prove
invaluable.

Further assistance in this area is provided by research that focuses on specific aspects
of MCMC estimation. For example, the research community is aided by dedicated treatments
and research on the complex issues of convergence assessment (see Sinharay [103] for a
review and examples in psychometric applications) and data-model fit assessment andmodel
comparisons. These latter two areas illuminate another potential unifying benefit of MCMC.
Data-model fit assessment frameworks using traditional estimation procedures are varied,
often localized to assumptions of the features of the observables or the aspects of fit, and
not easily generalized across models (Bollen [1]; Swaminathan et al. [104]. With regard to
this last point, the usage of modification indices across modeling paradigms represents a
notable exception (Glas and Falćon [105]; Sörbom, [106]). Data-model fit based on traditional
estimation may be limited in that it may be difficult to derive sampling distributions
(e.g., applications of many popular discrepancy measures in SEM frequently involve a
comparison to values to debated cutoff values, Hu and Bentler [107]). When sampling
distributions are advanced, they may not be well defined (see, e.g., Chen and Thissen
[108], for examples in IRT) and when they are well defined, they are typically justified only
asymptotically.

The computations necessary for Bayesian procedures, including posterior predictive
model checking (Gelman et al. [109]) and the Deviance Information Criterion (Spiegelhalter
et al. [110]), are easily conducted using MCMC, do not depend on asymptotic arguments,
fully propagate uncertainty in estimation, and are widely applicable across different kinds
of models (for examples from a wide variety of psychometric models, see, e.g., Ansari et al.
[28]; Fu et al. [111]; Lee [11]; Levy et al. [112]; Sahu [43]; Scheines et al. [25]; Sheng andWikle
[113]; Sinharay [103, 114], Sinharay et al. [115]).
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This is not to assert that these approaches to data-model fit are necessarily superior
to traditional approaches or are firmly established without debate. For example, posterior
predictive checks (Gelman et al. [109]) have been advanced as a powerful and flexible
approach to data-model fit assessment. However, these methods have been critiqued on the
grounds that they yield P -values are not uniformly distributed under null conditions (Bayarri
and Berger [116]; Robins et al. [117]), yielding conservative tests. This critique has spurned
research aimed at identifying (a) situations in which will not be the case (Bayarri and Berger
[118]; Gelman [119]; Johnson [120]), (b) mechanisms to calibrate the p-values (Hjort et al.
[121]), and (c) alternative methods in the Bayesian/MCMC tradition that not are not subject
to this critique (Bayarri and Berger [116]). Quite apart from this line of research lies an active
debate regarding whether the critique is indeed problematic for Bayeisan modeling (Gelman
[119, 122]). It remains to be seen if these methods of data-model fit assessment outperform
those used in traditional approaches to psychometric modeling. Such a finding would be
necessary if they are to be utilized in a more widespread manner. Additionally, didactic
treatments of this and other aspects of MCMC will prove important to their increased usage.
It is hoped that the current work adds to the growing body of resources by conceptually
arguing why the computational features make MCMC so advantageous and evidencing its
existing successes and potential for the future.

With regard to this last point, a number of historically reoccurring features,
assumptions, and beliefs about psychometric models (e.g., linear relationships, independence
and normality of errors, few latent variables in IRT, few discrete observables in FA) have
evolved in part from limitations on estimation routines. The flexibility of MCMC frees
the analyst from the bonds associated with other estimation approaches and allows the
construction of models based on substantive theory. Indeed, the lasting impact of Patz
and Junker’s [44, 45] work on the generality of Metropolis-Hastings-within-Gibbs was not
only that MCMC could be employed to estimate existing models of varying complexity
but also that MCMC was a general approach to estimation flexible enough to handle any
psychometric model that could be constructed. The explosion of MCMC in psychometrics
in the past decade serves as a testament to this new state of affairs. Under this new
paradigm, names like FA, IRT, and LCA no longer need to reflect choices that must be
made about models—and possibly-limiting associated estimation procedures—but rather
modules of recurring relationships or structures of associations that can be adapted and
assembled to suit the substantive problem at hand (Rupp [70]). From this model-building
perspective, it is worth noting that augmenting familiar models with multilevel or finite
mixture structures poses complications for tradition estimation routines but are rather trivial
increments for MCMC routines (Lee [11]). It is no surprise that analogous recommendations
for modular model construction are found in the Bayesian literature (Gelman et al. [5];
Pearl [123]). A Bayesian framework, and in particular the power and flexibility of MCMC
estimation, supports the removal of historical boundaries that are likely to hinder the growth
of substantively rich and methodological complex psychometric models.
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